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Abstract

We consider the problem of numerical representations of PQI interval
orders. A preference structure on a finite set A with three relations P,Q, I
standing for “strict preference”, “weak preference” and “indifference” re-
spectively, is defined as a PQI interval order iff there exists a representation
of each element of A by an interval in such a way that, P holds when one
interval is completely to the right of the other, I holds when one interval is
included to the other and Q holds when one interval is to the right of the
other, but they do have a non empty intersection (Q modelling the hesitation
between P and I). Only recently, necessary and sufficient conditions for a
PQI preference structure to be identified as a PQI interval order have been
established. In this paper, we are interested in the problem of constructing
a numerical representation of a PQI interval order and possibly a minimal
one. We present two algorithms, the first one in O(n2) aimed to determine
a general numerical representation, and the second one, in O(n), aimed to
minimise such a representation.

Keywords: Intervals, PQI Interval Orders, Numerical Representation,
Minimal Representation.
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1 Introduction

In preference modelling and decision support we often have to compare inter-
vals instead of discrete values. This is due to the fact that the comparison of
alternatives is usually realised through their evaluations on numerical scales,
subject to the unavoidable lack of precision and certainty. The conventional
structure adopted in order to compare two intervals, considers that “x is
preferred to y” (P (x, y)) iff the interval associated to x is completely to the
“right” (in the sense of the line representing the reals) of the interval asso-
ciated to y. In all other cases “x is indifferent to y”. Such a model (where
indifference is not transitive) may conceal the fact that “x being to the right
of y” (the intersection being not empty) is a situation intuitively different
from the case where one interval (let’s say x) is included in the other (let’s
say y). The second case can be considered a “sure indifference” as much
as can be considered a “sure preference” the case P (x, y). Under such a
perspective the first case is a situation of hesitation between preference and
indifference, which merits to be considered separately (see Tsoukiàs and
Vincke, 1997). We may denote such a situation as “weak preference” and
represent it as Q(x, y). We come up with a preference structure known as
PQI interval order (PQI-IO). For an intuitive representation of this concept
see figure 1.
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Figure 1: Relations P , Q and I

The PQI-IO has been discussed since 1988 by Vincke. The problem of
characterising such a structure was left open until recently. Tsoukiàs and
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Vincke (1999 and 2003) provided necessary and sufficient conditions for a
PQI preference structure to be identified as a PQI-IO. The operational
problem of detecting if a given PQI preference structure satisfies such con-
ditions was solved in Ngo The et al., 2000, through an algorithm which is
demonstrated to run in polynomial time.

In this paper, we are interested in the problem of numerical representa-
tions of a PQI-IO. For this purpose, our paper is dedicated to investigate
some aspects of the representation of a PQI-IO (once detected). First we
show the importance of considering what we call a “separated PQI-IO”
(where indifference is separated in two partial orders, one the inverse of the
other). Then we exploit well known results concerning conventional inter-
val orders and extend them to the case of PQI-IO. Practically we obtain a
result enabling to order the endpoints of the intervals of a PQI-IO. These
theoretical results lead to two algorithms: the first one determines a general
numerical representation and the second one a minimal one. On the no-
tion of minimal representation the reader can see Pirlot and Vincke, 1997,
chapter 4.

Our findings extend (partially) results obtained in the frame of the “In-
terval Satisfiability”(ISAT) problem (see Golumbic and Shamir, 1993, Pe’er
and Shamir, 1997). In this case the question is to find a realisation (a nu-
merical representation) for a set of “events” (possibly temporal ones, see also
Allen, 1983) when a number of possible relations hold among them. This is
a concept similar to ours. However, in the ISAT case only intersection and
not intersection (possibly oriented) are distinguished, while in our work we
distinguish oriented intersection from oriented inclusion. On the other hand
our work considers that one and only one relation holds for a given pair of
“events”, while in the ISAT case several possibilities are allowed.

The paper is organised as follows. Section 2 provides the basic nota-
tions and definitions. In section 3 we recall some definitions and previous
results concerning the numerical representation of interval orders. Section 4
is dedicated to PQI-IO. Section 5 gives the two algorithms constructing a
general representation of a PQI interval order and a minimal one. Appendix
A contains the (long) proofs of some theorems and propositions within the
paper.

2 Basic notations, definitions and known results

Further on, if not indicated differently, all the relations under consideration
are binary relations defined on a finite set A and denoted by P,Q, I, R, S, T .
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The fact that (x, y) ∈ S is denoted either by S(x, y) or xSy. We adopt the
following notation (cf. Roubens and Vincke, 1985).

S−1 = {(x, y) : S(y, x)} Sc = ¬S = {(x, y) : ¬S(x, y)}
Sd = ¬S−1 = {(x, y) : ¬S(y, x)} S∼ = A2 \ (S ∪ S−1)
S ⊂ T : ∀x, y, S(x, y)⇒T (x, y) S+(a) = {x ∈ A : S(a, x)}
S ∪ T = {(x, y) : S(x, y)∨T (x, y)} S ∩ T = {(x, y) : S(x, y)∧T (x, y)}
S≈ = {(x, y) : ∀z, S(x, z)⇔S(y, z) and S(z, x)⇔S(z, y)}
S.T = {(x, y) : ∃z, S(x, z)∧T (z, y)}, S2 = S.S

If S is an equivalence relation on A then the equivalence class containing
a ∈ A is denoted by [a]S . When there is no ambiguity, we can use simply
[a]. A binary relation S on a finite set A = {a1, a2, ...an} can be represented
by an n× n, 0− 1 matrix MS with MS

ij = 1 iff (ai, aj) ∈ R. Further on we
use the following definitions (see Roubens and Vincke, 1985).

Definition 2.1 A binary relation S is:
- a partial order iff it is asymmetric and transitive;
- a weak order iff it is asymmetric and negatively transitive;
- a linear order iff it is irreflexive, complete and transitive;
- an equivalence relation iff it is reflexive, symmetric and transitive.

We have the two following fundamental results from Fishburn 1985:

Theorem 2.1 If S is a partial order then
i) S≈ is an equivalence relation;
ii) S = S.S≈ = S≈.S;
iii) S≈(x, y)⇔{z : S(x, z)} = {z : S(y, z)} and {z : S(z, x)} = {z : S(z, y)};
iv) (A/S≈, S) is a partial order;

Theorem 2.2 If S is a partial order then the following are equivalent:
i) S is a weak order;
ii) S∼ is transitive;
iii) S∼ = S≈;
iv) S = S.S∼ = S∼.S;
v) (A/S∼, S) is a linear order;
In addition, S is a linear order iff S∼ is the identity relation.

In this paper we will consider relations representing strict preference,
indifference and possibly weak preference, respectively denoted as P, I, Q.
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Relation Q is expected to represent a situation of hesitation between prefer-
ence and indifference. The reason for which such a relation can be interesting
will be discussed in section 4. Such relations are expected to satisfy some
“natural” properties: I is reflexive and symmetric; P and Q are asymmetric;
I ∪ P ∪Q is complete; P,Q and I are mutually exclusive.

A useful tool to study the (possibly minimal) numerical representation
of a preference structure is the potential function in a valued graph. Let
G = (A,U, v) be a valued graph on a finite set of nodes A; a real value
v(a, b) is attached to each arc (a, b) of U .

Definition 2.2 A potential function of the valued graph G = (A,U, v) is a
function g : A 7→ R such that, ∀(a, b) ∈ U, g(a) ≥ g(b) + v(a, b).

It is easy to see that if g is a potential function whose minimal value is
0, then g(a) cannot be smaller than the maximal value of the paths starting
from a. A fundamental result is the following (Roy 1969).

Theorem 2.3 A valued graph admits potential functions iff there is no cir-
cuit of strictly positive value in the graph. The smallest non-negative poten-
tial function assigns to each node the maximal value of the paths starting
from the node.

3 Interval orders

Definition 3.1 A 〈P, I〉 preference structure on a finite set A is an interval
order iff ∃l, r : A 7→ R+ such that, ∀x, y ∈ A:
i) r(x) ≥ l(x);
ii) P (x, y)⇔l(x) > r(y);
iii) I(x, y)⇔l(x) ≤ r(y) and l(y) ≤ r(x).

Any couple (l, r) satisfying the above conditions is a general repre-
sentation of the interval order. Since A is finite, given a general repre-
sentation (l, r) of an interval order, there exists a positive constant ε =
min(a,b)∈P {l(a)− r(b)}. The triple (l, r, ε) is called an ε-representation of
the interval order. With an ε-representation, condition ii of definition 3.1
can be rewritten as: P (x, y)⇔l(x) ≥ r(y) + ε. Among all the possible ε-
representations (with the same ε), the minimal one is of special interest.
Naturally, it is defined as an ε-representation (l∗, r∗, ε) satisfying, for any
other ε-representation (l, r, ε), ∀a ∈ A, l∗(a) ≤ l(a) and r∗(a) ≤ r(a). The
construction of the minimal representation is based on the following results.
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Theorem 3.1 Let 〈P, I〉 be an interval order on a finite set A, and let
Tl = P.I, Tr = I.P . Then
i) Tl, Tr are weak orders on A;
ii)T∼l , T∼r are equivalence relations and Tl, Tr are linear orders on A/T∼l , A/T∼r ;
iii) If (a, b) ∈ T∼l ∩ T∼r then there exists (l, r) s.t. l(a) = l(b)∧r(a) = r(b).
Proof. See Fishburn, 1985 (Theorem 2, chapter 2, p. 22).

Let us now define two copies of A, say Al, and Ar. We define T0 on Al ∪
Ar as follows: T0(al, bl)⇔Tl(a, b); T0(ar, br)⇔Tr(a, b); T0(al, br)⇔P (a, b);
T0(ar, bl)⇔I(a, b) or P (a, b).

Theorem 3.2 Let 〈P, I〉 be an interval order on a finite set A, and let
Tl, Tr, T0 defined as above. Then
i) T0 is a weak order on (Al ∪Ar) ;
ii) T∼0 is an equivalence relation and T0 is a linear order on (Al ∪Ar)/T∼0 ;
iii) (Al ∪Ar)/T∼0 = (Al/T∼l ) ∪ (Ar/T∼r );
iv) x ∈ Al/T∼l ⇒ T0(y, x) for some y ∈ Ar/T∼r ,
y ∈ Ar/T∼r ⇒ T0(y, x) for some x ∈ Al/T∼l ,
T0(x1, x2), x1, x2 ∈ Al/T∼l ⇒ x1 T0 y T0 x2 for some y ∈ Ar/T∼r ,
T0(y1, y2), y1, y2 ∈ Ar/T∼r ⇒ y1 T0 x T0 y2 for some x ∈ Al/T∼l .
Proof. See Fishburn, 1985 (Theorem 3, chapter 2, p. 23).

Tl (Tr) represents the order of the left (right) endpoints of the intervals
associated to elements of A. Each equivalence class in A/T∼l , (A/T∼r ) rep-
resents a group of elements whose left (right) endpoints can be identical. T0

represents the order of all such endpoints. Theorem 3.2 shows that after a
class of left endpoints there is a class of right endpoints followed by a class
of left endpoints and so on.

Theorem 3.3 Let 〈P, I〉 be an interval order on a finite set A, and Tl, Tr, T0

defined as above, then
i) A/T∼l and A/T∼r have the same cardinality, say m;
ii) If A/T∼l = {Am T0 Am−1... T0 A1} and A/T∼r = {Bm T0 Bm−1... T0 B1}
then (Al ∪Ar/T∼0 ) = {Bm, Am, ..., B1, A1}, and
Bm T0 Am T0 Bm−1 T0 Am−1... T0 B1 T0 A1

Proof. See Fishburn, 1985 (Theorem 5, chapter 2, p. 26).

The construction of the minimal ε-representation of an interval order is
straightforward from theorems 2.3, 3.3. The number m is called magni-
tude of the interval order. With ε = 1, the minimal 1-representation is a
representation on the smallest possible interval of the set of integer numbers.
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4 PQI interval orders (PQI-IO)

As already discussed in Fishburn (1997), interval orders, such as presented
in the above section, are not the only way to consider the comparison of
objects represented by intervals. However, the alternatives considered in
the literature (see Fishburn, 1997) are all based on the hypothesis that only
strict preference and indifference can be considered. The different preference
structures just consider different ways to separate the two relations.

The comparison of intervals, however, allows to consider a third relation,
namely a relation representing hesitation between strict preference and in-
difference. Vincke (1988) discussed and characterised a preference structure
with such a hypothesis. In this case the hesitation is due to the presence of
two thresholds (intervals with an intermediate point). Another way to let
appear such an hesitation is to consider that when two intervals have a non
empty intersection, but one is “more to the right” (in the sense of the reals)
there exist reasons for which a preference can be established (for a discussion
on this point see also Tsoukiàs et al., 2001). Such a preference structure,
called PQI-IO has been characterised by Tsoukiàs and Vincke, 1999 and
2003. Further on, Ngo The et al., 2000 showed that the satisfaction of the
characteristic conditions of a PQI-IO is polynomial.

The open problem is that such results do not tell us how to obtain a
numerical representation (possibly a minimal one), under form of intervals,
for the elements of a set A as soon as the theorem of existence of a PQI-IO
is demonstrated. Thus, we do not know if this is an “easy” problem or not.
In this section we extend Fishburn’s (1985) results in the case of PQI-IO.
Practically we show that it is possible to organise the intervals (which have
to exist) in such a way that classes of left endpoints are followed by classes
of right endpoints and so on. With such a result it is possible to establish
“easy” algorithms enabling to define the numerical representation (possibly
minimal) for a given PQI interval order. First, we recall some definitions
and fundamental results concerning PQI-IO.

Definition 4.1 A 〈P,Q, I〉 preference structure on a finite set A is a PQI-
IO iff ∃ : l, r : A 7→ R+, such that ∀ x, y ∈ A:
i) r(x) ≥ l(x);
ii) P (x, y)⇔l(x) > r(y);
iii) Q(x, y)⇔r(x) > r(y) ≥ l(x) > l(y);
iv) I(x, y)⇔r(x) ≥ r(y) ≥ l(y) ≥ l(x) or r(y) ≥ r(x) ≥ l(x) ≥ l(y).
A couple (l, r) satisfying these conditions is a general representation of the
PQI-IO.
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Theorem 4.1 A 〈P,Q, I〉 preference structure on a finite set A is a PQI-
IO iff there exists a partial order L such that:
i) I = L ∪R ∪ Id where Id = {(x, x), x ∈ A} and R = L−1;
ii) (P ∪Q ∪ L).P ⊂ P ; iii) P.(P ∪Q ∪R) ⊂ P ;
iv) (P ∪Q ∪ L).Q ⊂ P ∪Q ∪ L ; v) Q.(P ∪Q ∪R) ⊂ P ∪Q ∪R.

Proof. See Tsoukiàs and Vincke, 2003.

An algorithm to detect a PQI-IO, i.e. to construct L, was presented in Ngo
The et al., 2000. Since A is finite, there exists

ε = min {|x− y|, x, y ∈ {l(a), a ∈ A} ∪ {r(a), a ∈ A}}

The triple (l, r, ε) is called an ε-representation of the PQI − IO. With an
ε-representation, conditions ii, iii of definition 4.1 become: P (x, y)⇔l(x) ≥
l(y) + ε and Q(x, y)⇔r(x) ≥ r(y) + ε and r(y) ≥ l(x) ≥ l(y) + ε.

The problem to face now is the construction of a (possibly minimal)
numerical representation of a PQI-IO. Imagine the following situation: a
decision maker comes up with some preferences expressed on a set of al-
ternatives. Such preferences include situations of hesitation for some pairs
of alternatives. A first task for the analyst could be to check whether the
hesitation of the decision maker could be modelled associating intervals to
the alternatives. For this purpose (s)he might use the results in Tsoukiàs
and Vincke (1999 and 2003) and in Ngo The et al., 2000 and check if the
conditions of existence of a PQI-IO are satisfied. Suppose it is the case.
The problem now is to suggest to the decision maker the numerical repre-
sentation of such intervals. Such a task does not has an intuitive answer and
can represent several difficulties as can be seen from the following example.

Example 4.1 Consider the case of three alternatives and the following pref-
erences expressed on them:

a b c

a Q I

b I

c

It is easy to check that such preferences can be represented as
a PQI-IO. However it is also easy to verify that there exist
two completely different relations L satisfying the theorem
4.1 each one admitting a 1-representation:
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a b c

a Q L

b L

c

a b c

a Q R

b R

c

a b c

l1 1 0 1
r1 2 1 1

a b c

l2 1 0 0
r2 2 1 2

If there is a minimal 1-representation
l∗, r∗ then l∗(a) ≤ min {l1(a), l2(a)} = 1.
Similarly, l∗(b) ≤ 0, l∗(c) ≤ 0, r∗(a) ≤
2, r∗(b) ≤ 1, r∗(c) ≤ 1. Furthermore,
aQb⇒[(r∗(a) ≥ r∗(b) + 1)∧(r∗(b) ≥
l∗(a) ≥ l∗(b) + 1)] ⇒ (r∗(a) ≥ 2)∧(l∗(a) ≥
1)∧(r∗(b) ≥ 1). We have then l∗(a) =
1, r∗(a) = 2, l∗(b) = 0, r∗(b) = 1, l∗(c) =
0, r∗(c) ≤ 1 and r∗(c) must be either 0 or
1; neither of these values is acceptable.

This example shows that the notion of minimal representation does not
make sense for a PQI-IO. Therefore, it is necessary to limit the question
concerning the (possibly minimal) numerical representation to an instance of
a PQI-IO corresponding to a specific relation L. We call such an instance a
“separated PQI-IO”. The relations to consider in a separated PQI-IO are
P,Q,L, Id. For the rest of the paper we are going to consider only such
“separated PQI-IO”. The ε-representation (l, r, ε) of a separated PQI-IO is
defined in the same way as the one of a PQI-IO 1.
.
Let us now begin with the following result presenting the IO associated to
a separated PQI-IO through the reduction of the relations Id, L,Q into Î.

Theorem 4.2 If 〈P,Q,L, Id〉 is a separated PQI-IO and Î = Id∪L∪L−1∪
Q ∪Q−1 then 〈P, Î〉 is an IO.
Proof. See Tsoukiàs and Vincke, 2003.

Let’s define the following relations: T̂l = P.Î; T̂r = Î .P ;
We introduce two copies of A, say Al and Ar and we construct the relation

1There is one point we would like to make clear about our choice of “separated PQI-
IO” to deal with. The non-existence of the minimal representation is not the only reason.
Suppose that the decision maker has a PQI-IO and wants just one numerical represen-
tation, not necessarily the minimal one, can we provide an algorithm to provide such a
representation directly from the three relations P, Q, I ? As far as we know, the answer
is no. We can’t determine a representation of a PQI-IO without knowing a priori that
this structure is a PQI-IO. Therefore, the question makes sense only if there is an algo-
rithm that can prove the existence of the relation L without explicitly constructing one,
but the only way (we know) is to explicitly construct the relation L. With our current
knowledge, we have to use the algorithm in Ngo The et al., 2000 to verify if the structure
is an PQI-IO. If the answer is yes, the algorithm provides L. With this relation L, we
can use determine a numerical representation of the “separated PQI-IO’. This is also a
representation of the original structure PQI-IO
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T̂0 on Al ∪Ar as follows:
T̂0(al, bl)⇔T̂l(a, b), T̂0(ar, br)⇔T̂r(a, b), T̂0(al, br)⇔P (a, b), T̂0(ar, bl)⇔¬P (b, a).
Since 〈P, Î〉 is an interval order, we can apply theorems 3.1, 3.2, and 3.3 for
the relations T̂l, T̂r, T̂0. We obtain:
m = |Al/T̂∼l | = |Ar/T̂∼r | the magnitude of the interval order 〈P, Î〉;
(Al ∪Ar)/T̂∼0 = (Al/T̂∼l ) ∪ (Ar/T̂∼r ); Al/T̂∼l = {Am T̂0 Am−1 T̂0 ...A1};
Ar/T̂∼r = {Bm T̂0 Bm−1 T̂0 ...B1}; Bm T̂0 Am T̂0 Bm−1... T̂0 B1 T̂0 A1.

Example 4.2 Consider the following table where the left part presents a
separated PQI − IO. The right part resumes the relations T̂l, T̂r. Since
aPb⇒aT̂lb ∧ aT̂rb, there is no need to write T̂l, T̂r when P is the case.

a b c d e f g h a b c d e f g h

a P P P P P P P P P P P P P P

b Q P P P P P T̂l P P P P P

c Q P P P Q T̂r P P P T̂l, T̂r

d P P P L P P P T̂l

e Q P L T̂l P T̂l, T̂
−1
r

f Q L T̂r T̂−1
r

g L T̂−1
r

h

The reader can check easily that bT̂lc holds since bPhÎc holds and so on.
Considering the interval order 〈P, Î〉 and applying the theorems of section 3
we have m = 5, A/T̂∼l = {A1 = {hl, gl, fl}, A2 = {el}, A3 = {dl, cl}, A4 =
{bl}, A5 = {al}} et A/T̂∼r = {B1 = {gr}, B2 = {fr, er}, B3 = {dr, hr}, B4 =
{cr, br}, B5 = {ar}}. Such a numerical representation is shown in figure 2.

A1

(hl, gl, fl)

B1

gr

A2

el

B2

(fr, er)

A3

(dl, cl)

B3

dr, hr

A4

bl

B4

(cr, br)

A5

al

B5

ar

h

f c

g d be a

Figure 2: The intervals associated to the interval order of example 4.2

We extend now the relations T̂l, T̂r, T̂0 into Tl, Tr, T0 as follows:
Ql = Q ∪ L.Q ∪Q.L ∪ L.Q.L; Qr = Q ∪R.Q ∪Q.R ∪R.Q.R;
Tl = T̂l ∪Ql; Tr = T̂r ∪Qr;

10



T0(al, bl)⇔Tl(a, b), T0(ar, br)⇔Tr(a, b), T0(al, br)⇔P (a, b), T0(ar, bl)⇔¬P (b, a).
It is obvious that T̂0 ⊂ T0, as T̂l ⊂ Tl and T̂r ⊂ Tr.
The idea behind the construction of Ql, Qr, Tl, Tr and T0 is the following.
The relations Tl, Tr, T0 play the same role as that of their counterparts in an
IO. In fact, when (a, b) ∈ I in an IO we cannot say whether l(a), l(b) (the
left endpoints of the intervals representing a, b) can be unified (l(a) = l(b)).
The role of the relation Tl = P.I is to identify all the cases where l(a) 6= l(b).
The same approach is used in the case of a separated PQI-IO. We use T̂l to
identify cases where l(a) 6= l(b) due to P (through the use of the associated
IO). However, in the case of a PQI-IO this is not sufficient. There might
be cases where l(a) 6= l(b) because of Q. For this purpose we use Ql. The
four components of Ql are illustrated in figure 3. The relation T0 reflects
the order of all the endpoints and its construction from Tl, Tr is the same in
the two structures.

aQb

b

a≥ ε
-�

aQcLb

b

a≥ ε
-�

c

aLbQc

b

a

≥ ε
-�

c

aLcQdLb

d

c≥ ε
-�

b

a

Figure 3: Cases of l(a) 6= l(b) due to Q in a separated PQI-IO

After having constructed the relations helping us to determine the arrange-
ment of the endpoints, we try now to extend theorems 3.1, 3.2, 3.3 using
Tl, Tr, T0.

Proposition 4.1 Let 〈P,Q,L, Id〉 be a separated PQI-IO, then
i) Q.L ⊂ Q ∪ L and R.Q ⊂ R ∪Q;
ii) P.L ⊂ P ∪Q ∪ L and R.P ⊂ P ∪Q ∪R;
iii) P.Q−1 ⊂ (P ∪Q ∪ L) and Q−1.P ⊂ (P ∪Q ∪R);
iv) Ql ∩ T̂−1

l = Qr ∩ T̂−1
r = ∅;

v) P ∪Q ⊂ Tl ⊂ L ∪ P ∪Q and P ∪Q ⊂ Tr ⊂ R ∪ P ∪Q;
vi) (P−1 ∪Q−1 ∪R) ⊂ ¬Tl ⊂ (P−1 ∪Q−1 ∪ L ∪R), and
(P−1 ∪Q−1 ∪ L) ⊂ ¬Tr ⊂ (P−1 ∪Q−1 ∪ L ∪R).
vii) Tl.P ⊂ P and P.Tr ⊂ P
viii) P.Tl ⊂ Tl and Tr.P ⊂ Tr

Proof. See Appendix A

Theorem 4.3 Let 〈P,Q,L, Id〉 be a separated PQI-IO, then
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i) Tl, Tr are weak orders on A;
ii) T∼l , T∼r are equivalence relations; Tl, Tr are linear orders on A/T∼l , A/T∼r ;
iii) If (a, b) ∈ T∼l ∩ T∼r then there exists (l, r) s.t. l(a) = l(b) ∧ r(a) = r(b).
iv) ∀a ∈ A : [a]T∼

l
⊂ [a]T̂∼

l
and [a]T∼r ⊂ [a]T̂∼r .

Proof. See Appendix A.

This result is the generalisation of theorem 3.1 showing the grouping of
all left (right) endpoints by Tl (Tr). Condition iv) shows that Tl (Tr) is an
extension of T̂l (T̂r) and, consequently, T∼l (T∼r ) is a refinement of T̂∼l (T̂∼r ).

Theorem 4.4 Let 〈P,Q,L, Id〉 be a separated PQI-IO, then
i) T0 is a weak order on (Al ∪Ar);
ii) T∼0 is an equivalence relation and T0 is a linear order on (Al ∪Ar)/T∼0 ;
iii) (Al ∪Ar)/T∼0 = (Al/T∼l ) ∪ (Ar/T∼r );
Proof. See Appendix A.

This result extends theorem 3.2. The only difference concerns prop-
erty iv) of theorem 3.2. In an IO, two consecutive left (right) endpoints
can always be unified (we can give them the same value). Therefore, all
consecutive left (right) endpoints form a left (right) group. Thus, we ob-
tain an alternation of left and right groups. This is not any more true if
l(a), l(b) are two consecutive left endpoints in a separated PQI−IO. There
might be several possible inequalities between a and b. For example, if
(a, b) ∈ Ql = Q∪L.Q∪Q.L∪L.Q.L, then l(a) must be ≥ l(b) + ε and they
cannot be unified. They belong to different groups (classes of equivalence of
T∼l ). The following theorem shows how groups of left (right) endpoints can
be defined.

Theorem 4.5 Let 〈P,Q, I〉 be a separated PQI-IO, and m = |A/T̂∼l |, l =
|A/T∼l |, r = |A/T∼r |, A/T̂∼l = {Ai, i = 1..m}, A/T̂∼r = {Bi, i = 1..m}, then
i) classes of Al/T∼l , Ar/T∼r can be arranged in such a way that
Al/T∼l = {Xl T0 Xl−1 T0 ...Xl1︸ ︷︷ ︸

Am

T0 Xl1−1 T0 Xl1−2 T0 ...Xl2︸ ︷︷ ︸
Am−1

...

Xlm−1−1 T0 Xlm−1−2 T0 ...X1︸ ︷︷ ︸
A1

},

Ar/T∼r = {Yr T0 Yr−1 T0 ...Yr1︸ ︷︷ ︸
Bm

T0 Yr1−1 T0 Yr1−2 T0 ...Yr2︸ ︷︷ ︸
Bm−1

...

Yrm−1−1 T0 Yrm−1−2 T0 ...Y1︸ ︷︷ ︸
B1

};

ii) with this arrangement, the linear order T0 on (Al ∪Ar)/T∼0 becomes:
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Yr T0 Yr−1...Yr1︸ ︷︷ ︸
Bm

T0 Xl T0 Xl−1 T0 ...Xl1︸ ︷︷ ︸
Am

T0 ...

Yrm−1−1 T0 Yrm−1−2 T0 ...Y1︸ ︷︷ ︸
B1

T0 Xlm−1−1 T0 Xlm−1−2 T0 ...X1︸ ︷︷ ︸
A1

.

Proof.
i) Immediate from ∀a ∈ A, [a]T∼

l
⊂ [a]T̂∼

l
, Tl ∪ Tr ⊂ T0.

ii) Immediate from i and theorem 3.3.

Like its counterpart (theorem 3.3), this result represents the grouping
of the endpoints in classes of equivalence (of T∼0 ) and their arrangement.
There are two grouping levels. The first one is due to the IO {P, Î} with m
left groups (A1, A2, ..., Am) and m right groups (B1, B2, ..., Bm). The second
one, finer, is due to the extended relation Tl, Tr. Each group of endpoints
at this level (Xk or Yl) is a subset of a group Ai (Bj). We can now arrange
all the elements of (Al ∪ Ar)/T∼0 according to the linear order T0 and then
label them by Zi where the index i is the rank of the group in T0. We have
then Zl+r T0 Zl+r−1 T0 ...Z1. In other terms in order to fix the intervals of a
separated PQI-IO we first separate relation P , thus obtaining a first group
of endpoints and then we refine each of such groups using relation Q and L.
M = l + r − m is called the magnitude of the separated PQI − IO. It is
easy to verify that when l = r = m then Q = ∅, the preference structure in
question is an IO with magnitude m.

Continuation of example 4.2
We have l = 7, r = 7,M = l + r − m = 9. After the re-arrangement, we

obtain the following groups (see the figure 4).
Z1 = X1 = {hl, gl}, Z2 = X2 = {fl}, Z3 = Y1 = {gr}, Z4 = X3 = {el}, Z5 =

Y2 = {fr}, Z6 = Y3 = {er}, Z7 = X4 = {dl}, Z8 = X5 = {cl}, Z9 = Y4 =
{dr, hr}, Z10 = X6 = {bl}, Z11 = Y5 = {cr}, Z12 = Y6 = {br}, Z13 = X7 =
{al}, Z14 = Y7 = {ar} The two grouping levels are:
Z14︸︷︷︸
B5

T0 Z13︸︷︷︸
A5

T0 Z12T0Z11︸ ︷︷ ︸
B4

T0 Z10︸︷︷︸
A4

T0 Z9︸︷︷︸
B3

T0 Z8 T0 Z7︸ ︷︷ ︸
A3

T0 Z6 T0 Z5︸ ︷︷ ︸
B2

T0 Z4︸︷︷︸
A2

T0 Z3︸︷︷︸
B1

T0 Z2 T0 Z1︸ ︷︷ ︸
A1

The relation between T0 and any ε-representation is shown in the fol-
lowing proposition. This result is used for the construction of a minimal
representation as can be seen from the following two results.
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Figure 4: Separation of the intervals of example 4.2.

Proposition 4.2 Let (l, r, ε) be an ε-representation of a separated PQI-IO,
then:
i) T0(al, bl)⇒l(a) ≥ l(b) + ε; ii) T0(ar, br)⇒r(a) ≥ r(b) + ε;
iii) T0(al, br)⇒l(a) ≥ r(b) + ε; iv) T0(ar, bl)⇒r(a) ≥ l(b);

Proof. See Appendix A

Theorem 4.6 Given a separated PQI − IO and a positive constant ε, let
define l∗(a) = (i − j + 1)ε where al ∈ Zi ⊂ Aj; r∗(a) = (i − j)ε where
ar ∈ Zi ⊂ Bj; where Aj , Bj , Zi defined in theorem 4.5. Then (l∗, r∗, ε) is its
minimal ε-representation (l∗ and r∗ are integral multiples of ε).
Proof. See Appendix A.

Continuation of Example 4.2
Applying theorem 4.6 we obtain the minimal 1-representation as following:

l Explication r Explication
a 8 al ∈ Z13 ⊂ A5(8 = 13− 5) 8 ar ∈ Z14 ⊂ B5(8 = 14− 5− 1)
b 6 bl ∈ Z10 ⊂ A4(6 = 10− 4) 7 br ∈ Z12 ⊂ B4(7 = 12− 4− 1)
c 5 cl ∈ Z8 ⊂ A3(5 = 8− 3) 6 cr ∈ Z11 ⊂ B4(6 = 11− 4− 1)
d 4 dl ∈ Z7 ⊂ A3(4 = 7− 3) 5 dr ∈ Z9 ⊂ B3(5 = 9− 3− 1)
e 2 el ∈ Z4 ⊂ A2(2 = 4− 2) 3 er ∈ Z6 ⊂ B2(3 = 6− 2− 1)
f 1 fl ∈ Z2 ⊂ A1(1 = 2− 1) 2 fr ∈ Z5 ⊂ B2(2 = 5− 2− 1)
g 0 gl ∈ Z1 ⊂ A1(0 = 1− 1) 1 gr ∈ Z3 ⊂ B1(1 = 3− 1− 1)
h 0 hl ∈ Z1 ⊂ A1(0 = 1− 1) 5 hr ∈ Z9 ⊂ B3(5 = 9− 3− 1)

Let’s resume our findings. Proposition 4.1 and theorems 4.3, 4.4 show
that it is possible, given a PQI interval order on a set A, to obtain two weak
orders on A, named Tl and Tr, which represent the ordering of the left and
right endpoints, respectively, of the intervals associated to each element of
A. Moreover, using theorem 4.5, we show that it is possible to define a linear
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order T0 by which left and right endpoints are grouped into classes which
are ordered alternatively by T0. Proposition 4.2 and theorem 4.6 show that,
given a separated PQI-IO, there always exists an ε-minimal representation,
ε being a positive constant. Such results show that the intervals that can
be associated to a PQI-IO “behave” as the ones that can be associated to
an IO. Thus, in order to obtain a numerical representation of a PQI-IO we
need to arrange elements in A in such a way to define a sequence of left-right
endpoints each separated by at least an ε.

5 Algorithms

A straightforward application of the above results in order to determine a
minimal ε-representation of a PQI-IO is rather complicated as it requires the
explicit determination of T̂l, T̂r, Tl, Tr, T0, (Al ∪ Ar)/T∼0 .... In this section,
we present more results allowing to determine first a numerical represen-
tation and second a minimal ε-representation using two algorithms. The
first algorithm (in O(n2)) determines a representation where all endpoints
are distinct. The endpoints which could be identical will be unified in the
second algorithm (in O(n)) to obtain a minimal ε-representation.

Proposition 5.1 Let 〈P,Q,L, Id〉 be a separated PQI-IO, (l, r, ε) be a rep-
resentation in which all endpoints are distinct, B = {l(x), r(x), x ∈ A}
be the set of all values of the representation. Let’s define the relation T
on (Al ∪ Ar) as: T (ar, al); T (al, bl)⇔P (a, b) or Q(a, b) or L(a, b);
T (ar, br) ⇔ P (a, b) or Q(a, b) or R(a, b); T (al, br) ⇔ P (a, b); T (ar, bl) ⇔
¬P (b, a). Then: i) T0 ⊂ T , i.e. T is an extension of T0.
ii) (Al ∪Ar, T ) is a linear order and an isomorphism of the order (B,>).

Proof.
i) (x, y) ∈ T0. If x = al, y = bl then (a, b) ∈ Tl ⊂ P ∪ Q ∪ R then T (x, y).
The same argument for x = ar, y = br. By construction of T and T0, if
x = al, y = br or x = ar, y = bl then T (x, y).
ii) Obviously (B,>) is a linear order as l(x), r(x) have all distinct values.
With the mapping φ : Al ∪ Ar 7→ B defined as: φ(al) = l(a), φ(ar) = r(a),
it is easy to check that φ is a bijection and T (x, y) ⇔ φ(x) > φ(y).

We can consider now the valued graph (Al ∪ Ar, T, v) where v(x, y) =
ε,∀x, y ∈ A. It is obvious that (l(a) = εg(al), r(a) = εg(ar), ε), where g(x)
is the rank of x in the linear order T (starting with 0), is a minimal ε-
representation with distinct endpoints. From proposition 5.1, we have:
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∀al ∈ Al : T+(al) = {xl, xr : P (a, x), x ∈ A} ∪ {xl : Q(a, x), x ∈ A} ∪ {xl :
L(a, x), x ∈ A};
∀ar ∈ Ar : T+(ar) = {al, x ∈ A} ∪ {xl, xr : P (a, x), x ∈ A} ∪ {xl, xr :
Q(a, x), x ∈ A} ∪ {xl : Q−1(a, x), x ∈ A} ∪ {xl : L(a, x), x ∈ A} ∪ {xl, xr :
R(a, x), x ∈ A}; This result leads us to the following formula:
∀a ∈ A, g(al) = |T+(al)| = 2|P+(a)|+ |Q+(a)|+ |L+(a)|+ 1;
g(ar) = |T+(ar)|+1 = 1+2|P+(a)|+2|Q+(a)|+|Q−1+|+|L+(a)|+2|R+(a)|.
The function g can be implemented using the following algorithm (O(n2)):

n=|A|, fl[1..n],fr[1..n] /* g(al), g(ar) */
M[1..n,1..n]; /* matrix representing P,Q,L*/
procedure numerical representation

forall i fl[i]=0, fr[i]=1
endfor
forall i, j, j > i, switch (M[i,j])

case P:
fl[i]=fl[i]+2
fr[i]=fr[i]+2

case P−1:
fl[j]=fl[j]+2
fr[j]=fr[j]+2

case Q:
fl[i]=fl[i]+1
fr[i]=fr[i]+2
fr[j]=fr[j]+1

case Q−1:
fl[j]=fl[j]+1
fr[j]=fr[j]+2
fr[i]=fr[i]+1

case L:
fl[i]=fl[i]+1
fr[i]=fr[i]+1
fr[j]=fr[j]+2

case R:
fl[j]=fl[j]+1
fr[j]=fr[j]+1
fr[i]=fr[i]+2

endswitch
endfor
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Continuation of example 4.2
We apply the algorithm to the data of our example and we verify that the
result is compatible with figure 4.
g(xl) = 2|P+|+|Q+|+|L+|, g(xr) = 1+2|P+|+2|Q+|+|Q−1+|+|L+|+2|R+|

x g(xl) g(xr)
a 14 = 2 ∗ 7 + 0 + 0 15 = 1 + 2 ∗ 7 + 2 ∗ 0 + 0 + 0 + 2 ∗ 0
b 11 = 2 ∗ 5 + 1 + 0 13 = 1 + 2 ∗ 5 + 2 ∗ 1 + 0 + 0 + 2 ∗ 0
c 8 = 2 ∗ 3 + 2 + 0 12 = 1 + 2 ∗ 3 + 2 ∗ 2 + 1 + 0 + 2 ∗ 0
d 7 = 2 ∗ 3 + 0 + 1 9 = 1 + 2 ∗ 3 + 2 ∗ 0 + 1 + 1 + 2 ∗ 0
e 4 = 2 ∗ 1 + 1 + 1 6 = 1 + 2 ∗ 1 + 2 ∗ 1 + 0 + 1 + 2 ∗ 0
f 2 = 2 ∗ 0 + 1 + 1 5 = 1 + 2 ∗ 0 + 2 ∗ 1 + 1 + 1 + 2 ∗ 0
g 1 = 2 ∗ 0 + 0 + 1 3 = 1 + 2 ∗ 0 + 2 ∗ 0 + 1 + 1 + 2 ∗ 0
h 0 = 2 ∗ 0 + 0 + 0 10 = 1 + 2 ∗ 0 + 2 ∗ 0 + 1 + 0 + 2 ∗ 4

Let us work on the minimal representation. By definition, T0 ⊂ T , i.e., T
is an extension of T0, furthermore, this extension adds only pairs of either
type T (al, bl) or T (ar, br) to T0. We have seen in the previous section that
the minimal ε-representation is based on T0. The unification of endpoints is
indeed a reduction from T to T0: two consecutive left (right) end points (in
T ) which are not related by T0 can be unified. Two consecutive endpoints
arTbl can always be unified because T0(ar, bl) requires only r(a) ≥ l(b).

Proposition 5.2 Let 〈P,Q,L, Id〉 be a separated PQI-IO, then:
i) if alTbl are two consecutive endpoints and T0(al, bl) then Q(a, b);
ii) if arTbr are two consecutive endpoints and T0(ar, br) then Q(a, b).

Proof.
i) If (al, bl) ∈ T0 then (a, b) ∈ Tl = P.Î ∪Q ∪ L.Q ∪Q.L ∪ L.Q.L. With the
exception of Q, there is always at least an endpoint x such that alTxTbl, i.e.,
al, bl are not consecutive. For example, (a, b) ∈ L.Q then ∃c ∈ A, aLcQb,
and we have alTclTbl. The other cases are similar.
ii) Similar to i.

As a consequence, two consecutive endpoints xTy can be unified if,
∃a, b ∈ A such that one of the following conditions is satisfied:
1) x = ar, y = bl; 2) x = al, y = bl and L(a, b); 3) x = ar, y = br and R(a, b).

We obtain the following algorithm in O(n) to unify endpoints:

Rank[1..2n]; /* 1..2n rank of element x ∈ Al ∪Ar*/
Id[1..2n]; /* identification of element x ∈ A*/
LR[1..2n]; /* left endpoint, right endpoint*/
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M[1..n,1..n]; /* matrix representing P,Q,L*/
X=0; /* number of unifications realised, to be subtracted
from the rank to obtain the minimal representation */
procedure minimal numerical representation

for i=1..2n do
Rank[i]=Rank[i]-X;
if i=2n then stop endif;
Rank[i]=Rank[i]-X;
if [LR[i]=left and LR[i+1]=left and M[Id[i+1],Id[i]]= L]
or [LR[i]=right and LR[i+1]=right and M[Id[i+1],Id[i]]= R]
or [LR[i]=left and LR[i+1]=right] then
X=X+1;
endif;

endfor;

Continuation of example 4.2
Applying the above algorithm to our example we obtain the following table.
The reader may note that the algorithm treats the endpoints in the ascending
order of their ranks, i.e. aTb means that the rank of a is superior to that of
b, therefore b will appear before a.

Id Rank X Rank −X observation

hl 0 0 0 l, l, L(g, h)
gl 1 1 0
fl 2 − 1 l, r
gr 3 2 1
el 4 − 2 l, r
fr 5 3 2
er 6 − 3
dl 7 − 4
cl 8 − 5 l, r
dr 9 4 5 r, r, R(a, d)
hr 10 5 5
bl 11 − 6 l, r
cr 12 6 6
br 13 − 7
al 14 − 8 l, r
ar 15 7 8

18



6 Conclusion

In this paper we try to extend some well known results concerning the numer-
ical representation of interval orders in the case of PQI-IO. Such preference
structures appear when, while comparing intervals, it might be interesting
to distinguish a situation of hesitation between “sure” preference (empty in-
tersection of the two intervals) and “sure” indifference (one interval included
in the other).

As we have shown that the problem of numerical representations of a
PQI-IO does not make sense, we have to study the problem through an
instance of a PQI-IO, i.e. a separated PQI-IO. The aim of this effort is
to study the foundations under which is possible to construct a numerical
representation of a separated PQI-IO as soon as it has been demonstrated
that such a representation exists. Not surprisingly we are able to demon-
strate that there exist two weak orders, one representing the order of the left
endpoints and one representing the order of the right endpoints. On that
basis is possible to construct a numerical representation.

In the paper we demonstrate the theorems which enable to show what
the numerical representation of a separated PQI-IO represents and how it is
possible to obtain a “minimal” representation. With such results we define
two algorithms, the first constructing a numerical representation for a given
separated PQI-IO, the second minimising it. Both algorithms are shown to
run in polynomial time (O(n2) for the first and O(n) for the second).
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Appendix A

Proof of proposition 4.1. We provide the proofs for L (those of R are similar).
i) aQbLc ⇒ [(r(a) > r(b) ≥ l(a) > l(b)) and (r(c) ≥ r(b) ≥ l(b) ≥ l(c))] ⇒ r(c) ≥
l(a) > l(c) ⇒ (a, c) ∈ Q ∪ L.
ii) aPbLc ⇒ [(l(a) > r(b)) and (r(c) ≥ r(b) ≥ l(b) ≥ l(c))] ⇒ l(a) > l(c) ⇒
(a, c) ∈ P ∪Q ∪ L.
iii) aPbQ−1c ⇒ [(l(a) > r(b)) and (r(c) > r(b) ≥ l(c) > l(b))] ⇒ l(a) > l(c) ⇒
(a, c) ∈ P ∪Q ∪ L.
iv) Otherwise, ∃x, (x, x) ∈ (Q∪L.Q∪Q.L∪L.Q.L).T̂l. By theorem 4.1 and i, ii we
have (Q ∪ L.Q ∪Q.L ∪ L.Q.L) ⊂ (Q ∪ P ∪ L) and (Q ∪ P ∪ L).P ⊂ P .
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We have (x, x) ∈ (Q ∪ L.Q ∪ Q.L ∪ L.Q.L).T̂l ⊂ (Q ∪ P ∪ L).P.Î ⊂ P.Î = T̂l,
impossible as T̂l asymmetric.
v) As P = P.Id ⊂ T̂l ⊂ Tl and Q ⊂ Tl then P ∪Q ⊂ Tl.
Q ∪ L.Q ∪Q.L ∪ L.Q.L ⊂ P ∪Q ∪ L (theorem 4.1 and i).
T̂l = P.(I∪Q∪Q−1), P.I ⊂ P, P.Q ⊂ P and P.Q−1 ⊂ P ∪Q∪L (by iii). Therefore,
Tl ⊂ P ∪Q ∪ L.
vi) Direct consequence of v.
vii) Tl.P ⊂ P and P.Tr ⊂ P
Tl.P = P.Î.P ∪Q.P ∪L.Q.P ∪Q.L.P ∪L.Q.L.P ⊂ P (as L.P ⊂ P and Q.P ⊂ P ).
viii) P.Tl ⊂ Tl and Tr.P ⊂ Tr

P.Tl = P.P.Î ∪ P.Q ∪ P.L.Q ∪ P.Q.L ∪ P.L.Q.L ⊂ P.Î ∪ P ∪ P.(P ∪ Î) ⊂ Tl.

Proof of theorem 4.3 We consider only Tl (Tr is similar).

i) We show that Tl is asymmetric and negatively transitive.
Asymmetry. We recall that if R,S are two asymmetric relations and R ∩
S−1 = ∅ then R ∪ S is asymmetric. P,Q,L are asymmetric and mutually
exclusive ⇒ (P ∪ Q ∪ L) is asymmetric ⇒ Ql ⊂ (P ∪ Q ∪ L) is asymmetric
too. As T̂l and Ql are asymmetric, furthermore Ql ∩ T̂−1

l = ∅ (proposition
4.1.iv), Tl is asymmetric.
Negative transitivity. We have to prove that ¬Tl(a, b)∧¬Tl(b, c)∧Tl(a, c) im-
plies a contradiction. Since Tl ⊂ P ∪Q∪L and ¬Tl ⊂ P−1∪Q−1∪L∪L−1, we
can eliminate the most trivial cases using this kind of verification P−1.P−1 ⊂
P−1 6∈ {P,Q,L}, .... The other cases are considered in the following table.

(a, b) (b, c) (a, c) Eliminated by
P−1 ∪Q−1 L L b(P ∪Q)aLc⇒(b, c) ∈ (P.L ∪Q.L) ⊂ (T̂l ∪Ql) ⊂ Tl

L Q−1 L aLcQb⇒(a, b) ∈ L.Q ⊂ Ql ⊂ Tl

L R P ∪Q a(P ∪Q)cLb⇒(a, b) ∈ (P.L ∪Q.L) ⊂ (T̂l ∪Ql) ⊂ Tl

R L Q bLaQc⇒(b, c) ∈ L.Q ⊂ Ql ⊂ Tl

L L L non-trivial
L R L non-trivial
R L L non-trivial

The three last cases can be resumed by (a, c) ∈ Tl ∩ L∧(a, b) ∈ (L ∪ R) \
Tl∧(b, c) ∈ (L ∪R) \ Tl with (a, c) ∈ (Tl ∩ L) = (T̂l ∪Ql) ∩ L = [P.(Id ∪Q ∪
Q−1 ∪L∪L−1)∪ (Q∪L.Q∪Q.L∪L.Q.L)]∩L = (P.Q−1 ∩L)∪ (P.L∩L)∪
(Q.L ∩ L) ∪ (L.Q.L ∩ L).
- If (a, c) ∈ (P.Q−1∪P.L)∩L then ∃x, aPx(Q−1∪L)c∧aLc i.e. r(c) ≥ r(a) ≥
l(a) > r(x). If l(b) > r(x) then bPx(Q−1∪L)c⇒(b, c) ∈ Tl. Otherwise, l(b) ≤
r(x)⇒x(Q−1 ∪ L)b (as r(b) ≥ l(a) > r(x)). Then aPx(Q−1 ∪ L)b⇒(a, b) ∈
(P.Q−1 ∪ P.L) ⊂ T̂l ⊂ Tl.
- If (a, c) ∈ Q.L ∩ L then ∃x, aQxLc∧aLc i.e. r(c) ≥ r(a) > r(x) >
l(a) > l(x) > l(c). If l(b) ≥ l(a) then bLa (as (a, b) ∈ (L ∪ R)) and
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bLaQxLc⇒(b, c) ∈ Tl. If l(x) < l(b) < l(a) then aLb⇒r(b) > r(a) >
r(x)⇒bQx and bQxLc⇒bTlc. Otherwise, l(b) ≤ l(x) < l(a)⇒aLb⇒r(b) >
r(x)⇒xLb. Then aQxLb⇒(a, b) ∈ Q.L ⊂ Ql ⊂ Tl.
- If (a, c) ∈ L.Q ∩ L then ∃x, aLxQc∧aLc i.e. r(x) > r(c) ≥ r(a) ≥ l(a) ≥
l(x) > l(c). If l(b) ≥ l(x) then b(P∪Q∪L)xQc⇒bTlc. If l(c) < l(b) < l(x) and
r(b) < r(x) then aLxQb⇒(a, b) ∈ Tl. If l(c) < l(b) < l(x) and r(b) ≥ r(x)
then bQc (as r(x) > r(c)) and bTlc. Otherwise, l(b) ≤ l(c)⇒aL.Qc(P ∪Q ∪
L)b⇒aTlb.
- If (a, c) ∈ L.Q.L ∩ L then ∃x, y, aLxQyLc∧aLc i.e. l(a) ≥ l(x) > l(y) ≥
l(c). If l(b) ≤ l(x)⇒b(P ∪ Q ∪ L)xQyLc⇒bTlc. If l(y) < l(b) < l(x) and
r(b) < r(x) then aLxQb⇒(a, b) ∈ Tl. If l(y) < l(b) < l(x) and r(b) ≥ r(x)
then r(b) > r(y) and bQyLc⇒(b, c) ∈ Tl. Otherwise, if l(b) ≤ l(y) then
aLxQy(P ∪Q ∪ L)b⇒(a, b) ∈ Tl.

ii) Immediate from theorems 2.1, 2.2 and i.

iii) T∼
l ∩ T∼

r ⊂ E. If (x, y) ∈ T∼
l ∩ T∼

r ⇒ (x, y) 6∈ Tl ∪ T−1
l ∪ Tr ∪ T−1

r . Suppose
that (x, y) 6∈ E then ∃z ∈ A, zR1x and zR2y with R1 6= R2. Consider, for
example, R1 = P , we have:
zP−1y ⇒ yPzPx ⇒ yTlx, impossible.
zQy ⇒ yQ−1zPx ⇒ yÎ.Px ⇒ yTrx, impossible.
zQ−1y ⇒ yQzPx ⇒ yTlx, impossible.
The other cases are quite similar.

iv) Immediate from T̂l ⊂ Tl and T̂r ⊂ Tr.

Proof of theorem 4.4

i) We first demonstrate that T0 is asymmetric and negatively transitive.

– Asymmetry.
T0 = (T0 ∩Al×Al)∪ (T0 ∩Ar ×Ar)∪ (T̂0 ∩ (Al×Ar ∪Ar ×Al)), where
(T0∩Al×Al) (resp. (T0∩Ar×Ar)) is in fact isomorph to Tl (resp. Tr).
As each component of T0 is asymmetric and belongs to, respectively,
Al ×Al, Ar ×Ar, Al ×Ar ∪Ar ×Al which are mutually exclusive, T0 is
asymmetric.

– Negative transitivity.
¬T0(x, y),¬T0(y, z). x, y, z can be al or ar, bl or br, cl or cl respectively.
There exist eight possible combinations, but four of them are the inverse
of the other four. Thus, we only have to prove these four cases.
- Case 1: al¬T0bl¬T0cl ⇒ al¬Tlbl¬Tlcl (by definition).
⇒ al¬Tlcl, (Tl is a weak order).
⇒ al¬T0cl, (by definition).
- Case 2: al¬T0bl¬T0cr ⇒ al¬T0cr i.e. a¬Tlb,¬P (b, c) ⇒ ¬P (a, c)
i.e. P (a, c),¬P (b, c) ⇒ Tl(a, b) where ¬P = P−1∪Q∪Q−1∪I = P−1∪Î
P (a, c),¬P (b, c) ⇒ (a, b) ∈ P.(P ∪ Î) ⊂ Tl
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- Case 3: al¬T0br¬T0cl ⇒ al¬T0cl i.e. ¬P (a, b), P (c, b) ⇒ ¬Tl(a, c)
i.e. Tl(a, c), P (c, b) ⇒ P (a, b)
Tl(a, c), P (c, b) ⇒ (a, b) ∈ Tl.P ⊂ P , (by proposition 4.1.vii).
- Case 4: al¬T0br¬T0cr ⇒ al¬T0cr i.e. ¬P (a, b),¬Tr(b, c) ⇒ ¬P (a, c)
Similar to case 2.

ii) Immediate from theorems 2.1, 2.2 and i.

iii) Consider [x]T∼0 , x ∈ Al ∪Ar. We will demonstrate that “if x = al(x = ar) for
some a ∈ A then [x]T∼0 = [al]T∼

l
([x]T∼0 = [ar]T∼r )”. By construction of T0, if

¬T0(x, y) and ¬T (y, x) then (x, y) 6∈ Al×Ar ∪Ar×Al. Suppose that x = al,
if y ∈ [x]T∼0 then y = bl for some b ∈ A, and ¬T0(al, bl) and ¬T0(bl, al)
⇔ ¬Tl(al, bl) and ¬Tl(bl, al) ⇔ bl ∈ [al]T∼

l
. The case x = ar is similar.

Proof of proposition 4.2
i) T0(al, bl) ⇒ Tl(a, b) ⇒ (a, b) ∈ P ∪ P.Q ∪ P.Q−1 ∪ P.L ∪ P.R ∪Q ∪ L.Q ∪Q.L ∪
L.Q.L ⊂ P ∪Q ∪ P.L ∪ L.Q ∪Q.L ∪ L.Q.L. If aPb then l(a) ≥ r(b) + ε ≥ l(b) + ε.
If aQb then l(a) ≥ l(b) + ε.
If aPcLb then l(a) ≥ r(c) + ε ≥ l(c) + ε ≥ l(b) + ε.
If aLcQb then l(a) ≥ l(c) ≥ l(b) + ε.
If aQcLb then l(a) ≥ l(c) + ε ≥ l(b) + ε.
If aLcQdLb then l(a) ≥ l(c) ≥ l(d) + ε ≥ l(b) + ε.
ii) Similar to i.
iii) T0(al, br) ⇔ P (a, b) ⇒ l(a) ≥ r(b) + ε.
iv) T0(ar, bl) ⇔ ¬P (b, a) ⇒ r(a) ≥ l(b).

Proof of theorem 4.6
We consider the valued graph G = ((Al ∪Ar)/T∼

0 , T0, v) where:

v(x, y) =
{

0 if x = [ar], y = [bl] for some a, b ∈ A
ε otherwise

T0 is a linear order ⇒ there is no circuit ⇒ a potential function exists (theorem 2.3).
We prove that the maximal value of the paths starting from a node al (ar) (being
also the smallest potential function) is: g(al) = l∗(a), g(ar) = r∗(a). The nodes of
G can be presented as Zl+r T0 Zl+r−1 T0 ...Z1. Remind that ZiT0Zj iff i ≥ j and
all the arcs of G are either 0 or ε > 0. By proposition 4.2 and theorem 4.5, in two
consecutive arcs, there is at least one arc with value ε. For each Zk, consider the
path Φ = ZkT0...Z1 and denote V (Φ) its value. Any other path Φ′ starting from
Zk is obtained from Φ by applying (recursively) the following operation:
- drop out the last arc (x, y), obviously V (Φ) ≥ V (Φ′) (v(x, y) ≥ 0).
- replace a portion (Zi, Zi−1, ...Zj) by (Zi, Zj). As V (Zi, Zj) ≤ ε and V (Zi, Zi−1, ...Zj)
≥ ε then V (Φ) ≥ V (Φ′). Thus, Φ is the path with maximal value starting from Zk.
By theorem 4.5, along Φ, all the arcs are ε, but (ar, bl) which are transitive arcs
connecting Bj to Aj . If Zi = al ∈ Aj , there exist (j − 1) transitive arcs ⇒ V (Φ) =
(i− j + 1) ∗ ε. If Zi = ar ∈ Bj , there exist j transitive arcs ⇒ V (Φ) = (i− j) ∗ ε.
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