Numerical representation of $P Q I$ interval orders.

An Ngo The, Alexis Tsoukiàs
LAMSADE - CNRS, Université Paris Dauphine, 75775 Paris Cedex 16, France
\{ngothe,tsoukias\}@lamsade.dauphine.fr

Abstract

We consider the problem of numerical representations of $P Q I$ interval orders. A preference structure on a finite set A with three relations P, Q, I standing for "strict preference", "weak preference" and "indifference" respectively, is defined as a $P Q I$ interval order iff there exists a representation of each element of A by an interval in such a way that, P holds when one interval is completely to the right of the other, I holds when one interval is included to the other and Q holds when one interval is to the right of the other, but they do have a non empty intersection (Q modelling the hesitation between P and I). Only recently, necessary and sufficient conditions for a $P Q I$ preference structure to be identified as a $P Q I$ interval order have been established. In this paper, we are interested in the problem of constructing a numerical representation of a $P Q I$ interval order and possibly a minimal one. We present two algorithms, the first one in $O\left(n^{2}\right)$ aimed to determine a general numerical representation, and the second one, in $O(n)$, aimed to minimise such a representation.

Keywords: Intervals, $P Q I$ Interval Orders, Numerical Representation, Minimal Representation.

1 Introduction

In preference modelling and decision support we often have to compare intervals instead of discrete values. This is due to the fact that the comparison of alternatives is usually realised through their evaluations on numerical scales, subject to the unavoidable lack of precision and certainty. The conventional structure adopted in order to compare two intervals, considers that " x is preferred to $y "(P(x, y))$ iff the interval associated to x is completely to the "right" (in the sense of the line representing the reals) of the interval associated to y. In all other cases " x is indifferent to y ". Such a model (where indifference is not transitive) may conceal the fact that " x being to the right of y " (the intersection being not empty) is a situation intuitively different from the case where one interval (let's say x) is included in the other (let's say y). The second case can be considered a "sure indifference" as much as can be considered a "sure preference" the case $P(x, y)$. Under such a perspective the first case is a situation of hesitation between preference and indifference, which merits to be considered separately (see Tsoukiàs and Vincke, 1997). We may denote such a situation as "weak preference" and represent it as $Q(x, y)$. We come up with a preference structure known as $P Q I$ interval order ($P Q I$-IO). For an intuitive representation of this concept see figure 1.

Figure 1: Relations P, Q and I

The PQI-IO has been discussed since 1988 by Vincke. The problem of characterising such a structure was left open until recently. Tsoukiàs and

Vincke (1999 and 2003) provided necessary and sufficient conditions for a $P Q I$ preference structure to be identified as a $P Q I$-IO. The operational problem of detecting if a given $P Q I$ preference structure satisfies such conditions was solved in Ngo The et al., 2000, through an algorithm which is demonstrated to run in polynomial time.

In this paper, we are interested in the problem of numerical representations of a $P Q I$-IO. For this purpose, our paper is dedicated to investigate some aspects of the representation of a $P Q I-I O$ (once detected). First we show the importance of considering what we call a "separated PQI-IO" (where indifference is separated in two partial orders, one the inverse of the other). Then we exploit well known results concerning conventional interval orders and extend them to the case of $P Q I$-IO. Practically we obtain a result enabling to order the endpoints of the intervals of a $P Q I$-IO. These theoretical results lead to two algorithms: the first one determines a general numerical representation and the second one a minimal one. On the notion of minimal representation the reader can see Pirlot and Vincke, 1997, chapter 4.

Our findings extend (partially) results obtained in the frame of the "Interval Satisfiability"(ISAT) problem (see Golumbic and Shamir, 1993, Pe'er and Shamir, 1997). In this case the question is to find a realisation (a numerical representation) for a set of "events" (possibly temporal ones, see also Allen, 1983) when a number of possible relations hold among them. This is a concept similar to ours. However, in the ISAT case only intersection and not intersection (possibly oriented) are distinguished, while in our work we distinguish oriented intersection from oriented inclusion. On the other hand our work considers that one and only one relation holds for a given pair of "events", while in the ISAT case several possibilities are allowed.

The paper is organised as follows. Section 2 provides the basic notations and definitions. In section 3 we recall some definitions and previous results concerning the numerical representation of interval orders. Section 4 is dedicated to $P Q I-\mathrm{IO}$. Section 5 gives the two algorithms constructing a general representation of a $P Q I$ interval order and a minimal one. Appendix A contains the (long) proofs of some theorems and propositions within the paper.

2 Basic notations, definitions and known results

Further on, if not indicated differently, all the relations under consideration are binary relations defined on a finite set A and denoted by P, Q, I, R, S, T.

The fact that $(x, y) \in S$ is denoted either by $S(x, y)$ or $x S y$. We adopt the following notation (cf. Roubens and Vincke, 1985).

$$
\begin{array}{ll}
S^{-1}=\{(x, y): S(y, x)\} & S^{c}=\neg S=\{(x, y): \neg S(x, y)\} \\
S^{d}=\neg S^{-1}=\{(x, y): \neg S(y, x)\} & S^{\sim}=A^{2} \backslash\left(S \cup S^{-1}\right) \\
S \subset T: \forall x, y, S(x, y) \Rightarrow T(x, y) & S^{+}(a)=\{x \in A: S(a, x)\} \\
S \cup T=\{(x, y): S(x, y) \vee T(x, y)\} & S \cap T=\{(x, y): S(x, y) \wedge T(x, y)\} \\
S^{\approx}=\{(x, y): \forall z, S(x, z) \Leftrightarrow S(y, z) \text { and } S(z, x) \Leftrightarrow S(z, y)\} \\
S . T=\{(x, y): \exists z, S(x, z) \wedge T(z, y)\}, S^{2}=S . S
\end{array}
$$

If S is an equivalence relation on A then the equivalence class containing $a \in A$ is denoted by $[a]_{S}$. When there is no ambiguity, we can use simply [a]. A binary relation S on a finite set $A=\left\{a_{1}, a_{2}, \ldots a_{n}\right\}$ can be represented by an $n \times n, \quad 0-1$ matrix M^{S} with $M_{i j}^{S}=1$ iff $\left(a_{i}, a_{j}\right) \in R$. Further on we use the following definitions (see Roubens and Vincke, 1985).

Definition 2.1 A binary relation S is:

- a partial order iff it is asymmetric and transitive;
- a weak order iff it is asymmetric and negatively transitive;
- a linear order iff it is irreflexive, complete and transitive;
- an equivalence relation iff it is reflexive, symmetric and transitive.

We have the two following fundamental results from Fishburn 1985:
Theorem 2.1 If S is a partial order then
i) $S \approx$ is an equivalence relation;
ii) $S=S . S \approx=S^{\approx} . S$;
iii) $S \approx(x, y) \Leftrightarrow\{z: S(x, z)\}=\{z: S(y, z)\}$ and $\{z: S(z, x)\}=\{z: S(z, y)\}$;
iv) $\left(A / S^{\approx}, S\right)$ is a partial order;

Theorem 2.2 If S is a partial order then the following are equivalent:
i) S is a weak order;
ii) S^{\sim} is transitive;
iii) $S^{\sim}=S^{\approx}$;
iv) $S=S . S^{\sim}=S^{\sim} . S$;
v) $\left(A / S^{\sim}, S\right)$ is a linear order;

In addition, S is a linear order iff S^{\sim} is the identity relation.
In this paper we will consider relations representing strict preference, indifference and possibly weak preference, respectively denoted as P, I, Q.

Relation Q is expected to represent a situation of hesitation between preference and indifference. The reason for which such a relation can be interesting will be discussed in section 4 . Such relations are expected to satisfy some "natural" properties: I is reflexive and symmetric; P and Q are asymmetric; $I \cup P \cup Q$ is complete; P, Q and I are mutually exclusive.

A useful tool to study the (possibly minimal) numerical representation of a preference structure is the potential function in a valued graph. Let $G=(A, U, v)$ be a valued graph on a finite set of nodes A; a real value $v(a, b)$ is attached to each $\operatorname{arc}(a, b)$ of U.

Definition 2.2 A potential function of the valued graph $G=(A, U, v)$ is a function $g: A \mapsto \mathcal{R}$ such that, $\forall(a, b) \in U, g(a) \geq g(b)+v(a, b)$.

It is easy to see that if g is a potential function whose minimal value is 0 , then $g(a)$ cannot be smaller than the maximal value of the paths starting from a. A fundamental result is the following (Roy 1969).

Theorem 2.3 A valued graph admits potential functions iff there is no circuit of strictly positive value in the graph. The smallest non-negative potential function assigns to each node the maximal value of the paths starting from the node.

3 Interval orders

Definition 3.1 $A\langle P, I\rangle$ preference structure on a finite set A is an interval order iff $\exists l, r: A \mapsto \mathcal{R}^{+}$such that, $\forall x, y \in A$:
i) $r(x) \geq l(x)$;
ii) $P(x, y) \Leftrightarrow l(x)>r(y)$;
iii) $I(x, y) \Leftrightarrow l(x) \leq r(y)$ and $l(y) \leq r(x)$.

Any couple (l, r) satisfying the above conditions is a general representation of the interval order. Since A is finite, given a general representation (l, r) of an interval order, there exists a positive constant $\epsilon=$ $\min _{(a, b) \in P}\{l(a)-r(b)\}$. The triple (l, r, ϵ) is called an ϵ-representation of the interval order. With an ϵ-representation, condition $i i$ of definition 3.1 can be rewritten as: $P(x, y) \Leftrightarrow l(x) \geq r(y)+\epsilon$. Among all the possible ϵ representations (with the same ϵ), the minimal one is of special interest. Naturally, it is defined as an ϵ-representation $\left(l^{*}, r^{*}, \epsilon\right)$ satisfying, for any other ϵ-representation $(l, r, \epsilon), \forall a \in A, l^{*}(a) \leq l(a)$ and $r^{*}(a) \leq r(a)$. The construction of the minimal representation is based on the following results.

Theorem 3.1 Let $\langle P, I\rangle$ be an interval order on a finite set A, and let $T_{l}=P . I, T_{r}=I . P$. Then
i) T_{l}, T_{r} are weak orders on A;
ii) $T_{l}^{\sim}, T_{r}^{\sim}$ are equivalence relations and T_{l}, T_{r} are linear orders on $A / T_{l}^{\sim}, A / T_{r}^{\sim}$;
iii) If $(a, b) \in T_{l}^{\sim} \cap T_{r}^{\sim}$ then there exists (l, r) s.t. $l(a)=l(b) \wedge r(a)=r(b)$.

Proof. See Fishburn, 1985 (Theorem 2, chapter 2, p. 22).
Let us now define two copies of A, say A_{l}, and A_{r}. We define T_{0} on $A_{l} \cup$ A_{r} as follows: $T_{0}\left(a_{l}, b_{l}\right) \Leftrightarrow T_{l}(a, b) ; T_{0}\left(a_{r}, b_{r}\right) \Leftrightarrow T_{r}(a, b) ; T_{0}\left(a_{l}, b_{r}\right) \Leftrightarrow P(a, b)$; $T_{0}\left(a_{r}, b_{l}\right) \Leftrightarrow I(a, b)$ or $P(a, b)$.

Theorem 3.2 Let $\langle P, I\rangle$ be an interval order on a finite set A, and let T_{l}, T_{r}, T_{0} defined as above. Then
i) T_{0} is a weak order on $\left(A_{l} \cup A_{r}\right)$;
ii) T_{0}^{\sim} is an equivalence relation and T_{0} is a linear order on $\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}$;
iii) $\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}=\left(A_{l} / T_{l}^{\sim}\right) \cup\left(A_{r} / T_{r}^{\sim}\right)$;
iv) $x \in A_{l} / T_{l}^{\sim} \Rightarrow T_{0}(y, x)$ for some $y \in A_{r} / T_{r}^{\sim}$,
$y \in A_{r} / T_{r}^{\sim} \Rightarrow T_{0}(y, x)$ for some $x \in A_{l} / T_{l}^{\sim}$,
$T_{0}\left(x_{1}, x_{2}\right), x_{1}, x_{2} \in A_{l} / T_{l}^{\sim} \Rightarrow x_{1} T_{0}$ y $T_{0} x_{2}$ for some $y \in A_{r} / T_{r}^{\sim}$,
$T_{0}\left(y_{1}, y_{2}\right), y_{1}, y_{2} \in A_{r} / T_{r}^{\sim} \Rightarrow y_{1} T_{0} x T_{0} y_{2}$ for some $x \in A_{l} / T_{l}^{\sim}$.
Proof. See Fishburn, 1985 (Theorem 3, chapter 2, p. 23).
$T_{l}\left(T_{r}\right)$ represents the order of the left (right) endpoints of the intervals associated to elements of A. Each equivalence class in $A / T_{l}^{\sim},\left(A / T_{r}^{\sim}\right)$ represents a group of elements whose left (right) endpoints can be identical. T_{0} represents the order of all such endpoints. Theorem 3.2 shows that after a class of left endpoints there is a class of right endpoints followed by a class of left endpoints and so on.

Theorem 3.3 Let $\langle P, I\rangle$ be an interval order on a finite set A, and T_{l}, T_{r}, T_{0} defined as above, then
i) A / T_{l}^{\sim} and A / T_{r}^{\sim} have the same cardinality, say m;
ii) If $A / T_{l}^{\sim}=\left\{A_{m} T_{0} A_{m-1} \ldots T_{0} A_{1}\right\}$ and $A / T_{r}^{\sim}=\left\{B_{m} T_{0} B_{m-1} \ldots T_{0} B_{1}\right\}$ then $\left(A_{l} \cup A_{r} / T_{0}^{\sim}\right)=\left\{B_{m}, A_{m}, \ldots, B_{1}, A_{1}\right\}$, and $B_{m} T_{0} A_{m} T_{0} B_{m-1} T_{0} A_{m-1} \ldots T_{0} B_{1} T_{0} A_{1}$
Proof. See Fishburn, 1985 (Theorem 5, chapter 2, p. 26).
The construction of the minimal ϵ-representation of an interval order is straightforward from theorems 2.3, 3.3. The number m is called magnitude of the interval order. With $\epsilon=1$, the minimal 1-representation is a representation on the smallest possible interval of the set of integer numbers.

$4 \quad P Q I$ interval orders ($P Q I$-IO)

As already discussed in Fishburn (1997), interval orders, such as presented in the above section, are not the only way to consider the comparison of objects represented by intervals. However, the alternatives considered in the literature (see Fishburn, 1997) are all based on the hypothesis that only strict preference and indifference can be considered. The different preference structures just consider different ways to separate the two relations.

The comparison of intervals, however, allows to consider a third relation, namely a relation representing hesitation between strict preference and indifference. Vincke (1988) discussed and characterised a preference structure with such a hypothesis. In this case the hesitation is due to the presence of two thresholds (intervals with an intermediate point). Another way to let appear such an hesitation is to consider that when two intervals have a non empty intersection, but one is "more to the right" (in the sense of the reals) there exist reasons for which a preference can be established (for a discussion on this point see also Tsoukiàs et al., 2001). Such a preference structure, called PQI-IO has been characterised by Tsoukiàs and Vincke, 1999 and 2003. Further on, Ngo The et al., 2000 showed that the satisfaction of the characteristic conditions of a $P Q I$-IO is polynomial.

The open problem is that such results do not tell us how to obtain a numerical representation (possibly a minimal one), under form of intervals, for the elements of a set A as soon as the theorem of existence of a $P Q I-\mathrm{IO}$ is demonstrated. Thus, we do not know if this is an "easy" problem or not. In this section we extend Fishburn's (1985) results in the case of PQI-IO. Practically we show that it is possible to organise the intervals (which have to exist) in such a way that classes of left endpoints are followed by classes of right endpoints and so on. With such a result it is possible to establish "easy" algorithms enabling to define the numerical representation (possibly minimal) for a given $P Q I$ interval order. First, we recall some definitions and fundamental results concerning $P Q I$-IO.

Definition 4.1 $A\langle P, Q, I\rangle$ preference structure on a finite set A is a $P Q I$ IO iff $\exists: l, r: A \mapsto \mathcal{R}^{+}$, such that $\forall x, y \in A$:
i) $r(x) \geq l(x)$;
ii) $P(x, y) \Leftrightarrow l(x)>r(y)$;
iii) $Q(x, y) \Leftrightarrow r(x)>r(y) \geq l(x)>l(y)$;
iv) $I(x, y) \Leftrightarrow r(x) \geq r(y) \geq l(y) \geq l(x)$ or $r(y) \geq r(x) \geq l(x) \geq l(y)$.

A couple (l, r) satisfying these conditions is a general representation of the PQI-IO.

Theorem 4.1 $A\langle P, Q, I\rangle$ preference structure on a finite set A is a $P Q I$ $I O$ iff there exists a partial order L such that:
i) $I=L \cup R \cup I_{d}$ where $I_{d}=\{(x, x), x \in A\}$ and $R=L^{-1}$;
ii) $(P \cup Q \cup L) . P \subset P$; iii) $P .(P \cup Q \cup R) \subset P$;
iv) $(P \cup Q \cup L) \cdot Q \subset P \cup Q \cup L ; \quad$ v) $Q \cdot(P \cup Q \cup R) \subset P \cup Q \cup R$.

Proof. See Tsoukiàs and Vincke, 2003.
An algorithm to detect a $P Q I$-IO, i.e. to construct L, was presented in Ngo The et al., 2000. Since A is finite, there exists

$$
\epsilon=\min \{|x-y|, x, y \in\{l(a), a \in A\} \cup\{r(a), a \in A\}\}
$$

The triple (l, r, ϵ) is called an ϵ-representation of the $P Q I-I O$. With an ϵ-representation, conditions ii, iii of definition 4.1 become: $P(x, y) \Leftrightarrow l(x) \geq$ $l(y)+\epsilon$ and $Q(x, y) \Leftrightarrow r(x) \geq r(y)+\epsilon$ and $r(y) \geq l(x) \geq l(y)+\epsilon$.

The problem to face now is the construction of a (possibly minimal) numerical representation of a $P Q I$-IO. Imagine the following situation: a decision maker comes up with some preferences expressed on a set of alternatives. Such preferences include situations of hesitation for some pairs of alternatives. A first task for the analyst could be to check whether the hesitation of the decision maker could be modelled associating intervals to the alternatives. For this purpose (s)he might use the results in Tsoukiàs and Vincke (1999 and 2003) and in Ngo The et al., 2000 and check if the conditions of existence of a $P Q I-I O$ are satisfied. Suppose it is the case. The problem now is to suggest to the decision maker the numerical representation of such intervals. Such a task does not has an intuitive answer and can represent several difficulties as can be seen from the following example.

Example 4.1 Consider the case of three alternatives and the following preferences expressed on them:

	a	b	c
a		Q	I
b			I
c			

It is easy to check that such preferences can be represented as a PQI-IO. However it is also easy to verify that there exist two completely different relations L satisfying the theorem 4.1 each one admitting a 1-representation:

	a	b	c
a		Q	L
b			L
c			

	a	b	c
a		Q	R
b			R
c			

	a	b	c
l_{1}	1	0	1
r_{1}	2	1	1

	a	b	c
l_{2}	1	0	0
r_{2}	2	1	2

If there is a minimal 1-representation l^{*}, r^{*} then $l^{*}(a) \leq \min \left\{l_{1}(a), l_{2}(a)\right\}=1$. Similarly, $l^{*}(b) \leq 0, l^{*}(c) \leq 0, r^{*}(a) \leq$ $2, r^{*}(b) \leq 1, r^{*}(c) \leq 1$. Furthermore, $a Q b \Rightarrow\left[\left(r^{*}(a) \geq r^{*}(b)+1\right) \wedge\left(r^{*}(b) \geq\right.\right.$ $\left.\left.l^{*}(a) \geq l^{*}(b)+1\right)\right] \Rightarrow\left(r^{*}(a) \geq 2\right) \wedge\left(l^{*}(a) \geq\right.$ $1) \wedge\left(r^{*}(b) \geq 1\right)$. We have then $l^{*}(a)=$ $1, r^{*}(a)=2, l^{*}(b)=0, r^{*}(b)=1, l^{*}(c)=$ $0, r^{*}(c) \leq 1$ and $r^{*}(c)$ must be either 0 or 1 ; neither of these values is acceptable.

This example shows that the notion of minimal representation does not make sense for a PQI-IO. Therefore, it is necessary to limit the question concerning the (possibly minimal) numerical representation to an instance of a $P Q I$-IO corresponding to a specific relation L. We call such an instance a "separated PQI-IO". The relations to consider in a separated PQI-IO are $P, Q, L, I d$. For the rest of the paper we are going to consider only such "separated $P Q I$-IO". The ϵ-representation (l, r, ϵ) of a separated $P Q I$-IO is defined in the same way as the one of a $P Q I-\mathrm{IO}{ }^{1}$.

Let us now begin with the following result presenting the $I O$ associated to a separated PQI-IO through the reduction of the relations $I d, L, Q$ into \hat{I}.

Theorem 4.2 If $\langle P, Q, L, I d\rangle$ is a separated PQI-IO and $\hat{I}=I d \cup L \cup L^{-1} \cup$ $Q \cup Q^{-1}$ then $\langle P, \hat{I}\rangle$ is an IO.
Proof. See Tsoukiàs and Vincke, 2003.
Let's define the following relations: $\hat{T}_{l}=P . \hat{I} ; \hat{T}_{r}=\hat{I} . P ;$
We introduce two copies of A, say A_{l} and A_{r} and we construct the relation

[^0]\hat{T}_{0} on $A_{l} \cup A_{r}$ as follows:
$\hat{T}_{0}\left(a_{l}, b_{l}\right) \Leftrightarrow \hat{T}_{l}(a, b), \hat{T}_{0}\left(a_{r}, b_{r}\right) \Leftrightarrow \hat{T}_{r}(a, b), \hat{T}_{0}\left(a_{l}, b_{r}\right) \Leftrightarrow P(a, b), \hat{T}_{0}\left(a_{r}, b_{l}\right) \Leftrightarrow \neg P(b, a)$. Since $\langle P, \hat{I}\rangle$ is an interval order, we can apply theorems 3.1, 3.2, and 3.3 for the relations $\hat{T}_{l}, \hat{T}_{r}, \hat{T}_{0}$. We obtain:
\[

$$
\begin{array}{ll}
m=\left|A_{l} / \hat{T}_{\hat{T}^{\sim}}^{\sim}\right|=\left|A_{r} / \hat{T}_{r}^{\sim}\right| \text { the magnitude of the interval order }\langle P, \hat{I}\rangle ; \\
\left(A_{l} \cup A_{r}\right) / \hat{T}_{0}^{\sim}=\left(A_{l} / \hat{T}_{l}^{\sim}\right) \cup\left(A_{r} / \hat{T}_{r}^{\sim}\right) ; & A_{l} / \hat{T}_{l}^{\sim}=\left\{A_{m} \hat{T}_{0} A_{m-1} \hat{T}_{0} \ldots A_{1}\right\} ; \\
A_{r} / \hat{T}_{r}^{\sim}=\left\{B_{m} \hat{T}_{0} B_{m-1} \hat{T}_{0} \ldots B_{1}\right\} ; & B_{m} \hat{T}_{0} A_{m} \hat{T}_{0} B_{m-1} \ldots \hat{T}_{0} B_{1} \hat{T}_{0} A_{1} .
\end{array}
$$
\]

Example 4.2 Consider the following table where the left part presents a separated $P Q I-I O$. The right part resumes the relations \hat{T}_{l}, \hat{T}_{r}. Since $a P b \Rightarrow a \hat{T}_{l} b \wedge a \hat{T}_{r} b$, there is no need to write \hat{T}_{l}, \hat{T}_{r} when P is the case.

	a	b	c	d	e	f	g	h	a	b	c	d	e	f	g	h
a		P		P												
b			Q	P	P	P	P	P			\hat{T}_{l}	P	P	P	P	P
c				Q	P	P	P	Q				\hat{T}_{r}	P	P	P	\hat{T}_{l}, \hat{T}_{r}
d					P	P	P	L					P	P	P	\hat{T}_{l}
e						Q	P	L						\hat{T}_{l}	P	$\hat{T}_{l}, \hat{T}_{r}^{-1}$
f							Q	L							\hat{T}_{r}	\hat{T}_{r}^{-1}
g								L								\hat{T}_{r}^{-1}
h																

The reader can check easily that b $\hat{l}_{l} c$ holds since bPhÎc holds and so on. Considering the interval order $\langle P, \hat{I}\rangle$ and applying the theorems of section 3 we have $m=5, A / \hat{T}_{l}^{\sim}=\left\{A_{1}=\left\{h_{l}, g_{l}, f_{l}\right\}, A_{2}=\left\{e_{l}\right\}, A_{3}=\left\{d_{l}, c_{l}\right\}, A_{4}=\right.$ $\left.\left\{b_{l}\right\}, A_{5}=\left\{a_{l}\right\}\right\}$ et $A / \hat{T}_{r}^{\sim}=\left\{B_{1}=\left\{g_{r}\right\}, B_{2}=\left\{f_{r}, e_{r}\right\}, B_{3}=\left\{d_{r}, h_{r}\right\}, B_{4}=\right.$ $\left.\left\{c_{r}, b_{r}\right\}, B_{5}=\left\{a_{r}\right\}\right\}$. Such a numerical representation is shown in figure 2.

$$
\begin{array}{llllllllll}
A_{1} & B_{1} & A_{2} & B_{2} & A_{3} & B_{3} & A_{4} & B_{4} & A_{5} & B_{5}
\end{array}
$$

Figure 2: The intervals associated to the interval order of example 4.2

We extend now the relations $\hat{T}_{l}, \hat{T}_{r}, \hat{T}_{0}$ into T_{l}, T_{r}, T_{0} as follows:
$Q_{l}=Q \cup L . Q \cup Q . L \cup L . Q . L ; Q_{r}=Q \cup R . Q \cup Q . R \cup R . Q . R ;$
$T_{l}=\hat{T}_{l} \cup Q_{l} ; T_{r}=\hat{T}_{r} \cup Q_{r} ;$
$T_{0}\left(a_{l}, b_{l}\right) \Leftrightarrow T_{l}(a, b), T_{0}\left(a_{r}, b_{r}\right) \Leftrightarrow T_{r}(a, b), T_{0}\left(a_{l}, b_{r}\right) \Leftrightarrow P(a, b), T_{0}\left(a_{r}, b_{l}\right) \Leftrightarrow \neg P(b, a)$. It is obvious that $\hat{T}_{0} \subset T_{0}$, as $\hat{T}_{l} \subset T_{l}$ and $\hat{T}_{r} \subset T_{r}$.
The idea behind the construction of $Q_{l}, Q_{r}, T_{l}, T_{r}$ and T_{0} is the following. The relations T_{l}, T_{r}, T_{0} play the same role as that of their counterparts in an IO. In fact, when $(a, b) \in I$ in an IO we cannot say whether $l(a), l(b)$ (the left endpoints of the intervals representing $a, b)$ can be unified $(l(a)=l(b))$. The role of the relation $T_{l}=P . I$ is to identify all the cases where $l(a) \neq l(b)$. The same approach is used in the case of a separated $P Q I-I O$. We use \hat{T}_{l} to identify cases where $l(a) \neq l(b)$ due to P (through the use of the associated IO). However, in the case of a $P Q I$-IO this is not sufficient. There might be cases where $l(a) \neq l(b)$ because of Q. For this purpose we use Q_{l}. The four components of Q_{l} are illustrated in figure 3. The relation T_{0} reflects the order of all the endpoints and its construction from T_{l}, T_{r} is the same in the two structures.

Figure 3: Cases of $l(a) \neq l(b)$ due to Q in a separated $P Q I$-IO
After having constructed the relations helping us to determine the arrangement of the endpoints, we try now to extend theorems 3.1, 3.2, 3.3 using T_{l}, T_{r}, T_{0}.

Proposition 4.1 Let $\langle P, Q, L, I d\rangle$ be a separated PQI-IO, then
i) $Q . L \subset Q \cup L$ and $R . Q \subset R \cup Q$;
ii) $P . L \subset P \cup Q \cup L$ and $R . P \subset P \cup Q \cup R$;
iii) $P . Q^{-1} \subset(P \cup Q \cup L)$ and $Q^{-1} . P \subset(P \cup Q \cup R)$;
iv) $Q_{l} \cap \hat{T}_{l}^{-1}=Q_{r} \cap \hat{T}_{r}^{-1}=\emptyset$;
v) $P \cup Q \subset T_{l} \subset L \cup P \cup Q$ and $P \cup Q \subset T_{r} \subset R \cup P \cup Q$;
vi) $\left(P^{-1} \cup Q^{-1} \cup R\right) \subset \neg T_{l} \subset\left(P^{-1} \cup Q^{-1} \cup L \cup R\right)$, and
$\left(P^{-1} \cup Q^{-1} \cup L\right) \subset \neg T_{r} \subset\left(P^{-1} \cup Q^{-1} \cup L \cup R\right)$.
vii) $T_{l} . P \subset P$ and $P . T_{r} \subset P$
viii) $P . T_{l} \subset T_{l}$ and $T_{r} . P \subset T_{r}$

Proof. See Appendix A
Theorem 4.3 Let $\langle P, Q, L, I d\rangle$ be a separated $P Q I-I O$, then
i) T_{l}, T_{r} are weak orders on A;
ii) $T_{l}^{\sim}, T_{r}^{\sim}$ are equivalence relations; T_{l}, T_{r} are linear orders on $A / T_{l}^{\sim}, A / T_{r}^{\sim}$; iii) If $(a, b) \in T_{l}^{\sim} \cap T_{r}^{\sim}$ then there exists (l, r) s.t. $l(a)=l(b) \wedge r(a)=r(b)$.
iv) $\forall a \in A:[a]_{T_{l}^{\sim}} \subset[a]_{\hat{T}_{l}^{\sim}}$ and $[a]_{T_{r}^{\sim}} \subset[a]_{\hat{T}_{r}^{\sim}}$.

Proof. See Appendix A.
This result is the generalisation of theorem 3.1 showing the grouping of all left (right) endpoints by $T_{l}\left(T_{r}\right)$. Condition iv) shows that $T_{l}\left(T_{r}\right)$ is an extension of $\hat{T}_{l}\left(\hat{T}_{r}\right)$ and, consequently, $T_{l}^{\sim}\left(T_{r}^{\sim}\right)$ is a refinement of $\hat{T}_{l}^{\sim}\left(\hat{T}_{r}^{\sim}\right)$.

Theorem 4.4 Let $\langle P, Q, L, I d\rangle$ be a separated PQI-IO, then
i) T_{0} is a weak order on $\left(A_{l} \cup A_{r}\right)$;
ii) T_{0}^{\sim} is an equivalence relation and T_{0} is a linear order on $\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}$; iii) $\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}=\left(A_{l} / T_{l}^{\sim}\right) \cup\left(A_{r} / T_{r}^{\sim}\right)$;

Proof. See Appendix A.
This result extends theorem 3.2. The only difference concerns property iv) of theorem 3.2. In an $I O$, two consecutive left (right) endpoints can always be unified (we can give them the same value). Therefore, all consecutive left (right) endpoints form a left (right) group. Thus, we obtain an alternation of left and right groups. This is not any more true if $l(a), l(b)$ are two consecutive left endpoints in a separated $P Q I-I O$. There might be several possible inequalities between a and b. For example, if $(a, b) \in Q_{l}=Q \cup L . Q \cup Q . L \cup L . Q . L$, then $l(a)$ must be $\geq l(b)+\epsilon$ and they cannot be unified. They belong to different groups (classes of equivalence of $\left.T_{l}^{\sim}\right)$. The following theorem shows how groups of left (right) endpoints can be defined.

Theorem 4.5 Let $\langle P, Q, I\rangle$ be a separated $P Q I-I O$, and $m=\left|A / \hat{T}_{l}^{\sim}\right|, l=$ $\left|A / T_{l}^{\sim}\right|, r=\left|A / T_{r}^{\sim}\right|, A / \hat{T}_{l}^{\sim}=\left\{A_{i}, i=1 . . m\right\}, A / \hat{T}_{r}^{\sim}=\left\{B_{i}, i=1 . . m\right\}$, then i) classes of $A_{l} / T_{l}^{\sim}, A_{r} / T_{r}^{\sim}$ can be arranged in such a way that $A_{l} / T_{l}^{\sim}=\{\underbrace{X_{l} T_{0} X_{l-1} T_{0} \ldots X_{l_{1}}}_{\mathrm{A}_{\mathrm{m}}} T_{0} \underbrace{X_{l_{1}-1} T_{0} X_{l_{1}-2} T_{0} \ldots X_{l_{2}}}_{\mathrm{A}_{\mathrm{m}-1}} \ldots$
$\underbrace{X_{l_{m-1}-1} T_{0} X_{l_{m-1}-2} T_{0} \ldots X_{1}}_{\mathrm{A}_{1}}\}$,
$A_{r} / T_{r}^{\sim}=\{\underbrace{Y_{r} \mathrm{~A}_{1} T_{0} Y_{r-1} T_{0} \ldots Y_{r_{1}}}_{\mathrm{B}_{\mathrm{m}}} T_{0} \underbrace{Y_{r_{1}-1} T_{0} Y_{r_{1}-2} T_{0} \ldots Y_{r_{2}}}_{\mathrm{B}_{\mathrm{m}-1}} \cdots$
$\underbrace{Y_{r_{m-1}-1} T_{0} Y_{r_{m-1}-2} T_{0} \ldots Y_{1}}_{\mathrm{B}_{1}}\} ;$
ii) with this arrangement, the linear order T_{0} on $\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}$ becomes:

Proof.

i) Immediate from $\forall a \in A,[a]_{T_{l}^{\sim}} \subset[a]_{\hat{T}_{l}^{\sim}}, T_{l} \cup T_{r} \subset T_{0}$.
ii) Immediate from i and theorem 3.3.

Like its counterpart (theorem 3.3), this result represents the grouping of the endpoints in classes of equivalence (of T_{0}^{\sim}) and their arrangement. There are two grouping levels. The first one is due to the $I O\{P, \hat{I}\}$ with m left groups $\left(A_{1}, A_{2}, \ldots, A_{m}\right)$ and m right groups $\left(B_{1}, B_{2}, \ldots, B_{m}\right)$. The second one, finer, is due to the extended relation T_{l}, T_{r}. Each group of endpoints at this level $\left(X_{k}\right.$ or $\left.Y_{l}\right)$ is a subset of a group $A_{i}\left(B_{j}\right)$. We can now arrange all the elements of $\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}$ according to the linear order T_{0} and then label them by Z_{i} where the index i is the rank of the group in T_{0}. We have then $Z_{l+r} T_{0} Z_{l+r-1} T_{0} \ldots Z_{1}$. In other terms in order to fix the intervals of a separated $P Q I-\mathrm{IO}$ we first separate relation P, thus obtaining a first group of endpoints and then we refine each of such groups using relation Q and L. $M=l+r-m$ is called the magnitude of the separated $P Q I-I O$. It is easy to verify that when $l=r=m$ then $Q=\emptyset$, the preference structure in question is an $I O$ with magnitude m.

Continuation of example 4.2

We have $l=7, r=7, M=l+r-m=9$. After the re-arrangement, we obtain the following groups (see the figure 4).

$$
\begin{aligned}
& Z_{1}=X_{1}=\left\{h_{l}, g_{l}\right\}, Z_{2}=X_{2}=\left\{f_{l}\right\}, Z_{3}=Y_{1}=\left\{g_{r}\right\}, Z_{4}=X_{3}=\left\{e_{l}\right\}, Z_{5}= \\
& Y_{2}=\left\{f_{r}\right\}, Z_{6}=Y_{3}=\left\{e_{r}\right\}, Z_{7}=X_{4}=\left\{d_{l}\right\}, Z_{8}=X_{5}=\left\{c_{l}\right\}, Z_{9}=Y_{4}= \\
& \left\{d_{r}, h_{r}\right\}, Z_{10}=X_{6}=\left\{b_{l}\right\}, Z_{11}=Y_{5}=\left\{c_{r}\right\}, Z_{12}=Y_{6}=\left\{b_{r}\right\}, Z_{13}=X_{7}= \\
& \left\{a_{l}\right\}, Z_{14}=Y_{7}=\left\{a_{r}\right\} \text { The two grouping levels are: } \\
& \underbrace{Z_{14}}_{B_{5}} T_{0} \underbrace{Z_{13}}_{A_{5}} T_{0} \underbrace{Z_{12} T_{0} Z_{11}}_{B_{4}} T_{0} \underbrace{Z_{10}}_{A_{4}} T_{0} \underbrace{Z_{9}}_{B_{3}} T_{0} \underbrace{Z_{8} T_{0} Z_{7}}_{A_{3}} \\
& T_{0} \underbrace{Z_{6} T_{0} Z_{5}}_{B_{2}} T_{0} \underbrace{Z_{4}}_{A_{2}} T_{0} \underbrace{Z_{3}}_{B_{1}} T_{0} \underbrace{Z_{2} T_{0} Z_{1}}_{A_{1}}
\end{aligned}
$$

The relation between T_{0} and any ϵ-representation is shown in the following proposition. This result is used for the construction of a minimal representation as can be seen from the following two results.

Figure 4: Separation of the intervals of example 4.2.

Proposition 4.2 Let (l, r, ϵ) be an ϵ-representation of a separated PQI-IO, then:

$$
\begin{array}{ll}
\text { i) } T_{0}\left(a_{l}, b_{l}\right) \Rightarrow l(a) \geq l(b)+\epsilon ; & \text { ii) } T_{0}\left(a_{r}, b_{r}\right) \Rightarrow r(a) \geq r(b)+\epsilon ; \\
\text { iii) } T_{0}\left(a_{l}, b_{r}\right) \Rightarrow l(a) \geq r(b)+\epsilon ; & \text { iv) } T_{0}\left(a_{r}, b_{l}\right) \Rightarrow r(a) \geq l(b) ;
\end{array}
$$

Proof. See Appendix A
Theorem 4.6 Given a separated $P Q I-I O$ and a positive constant ϵ, let define $l^{*}(a)=(i-j+1) \epsilon$ where $a_{l} \in Z_{i} \subset A_{j} ; r^{*}(a)=(i-j) \epsilon$ where $a_{r} \in Z_{i} \subset B_{j}$; where A_{j}, B_{j}, Z_{i} defined in theorem 4.5. Then $\left(l^{*}, r^{*}, \epsilon\right)$ is its minimal ϵ-representation (l^{*} and r^{*} are integral multiples of ϵ).
Proof. See Appendix A.

Continuation of Example 4.2

Applying theorem 4.6 we obtain the minimal 1-representation as following:

	l	Explication	r	Explication
a	8	$a_{l} \in Z_{13} \subset A_{5}(8=13-5)$	8	$a_{r} \in Z_{14} \subset B_{5}(8=14-5-1)$
b	6	$b_{l} \in Z_{10} \subset A_{4}(6=10-4)$	7	$b_{r} \in Z_{12} \subset B_{4}(7=12-4-1)$
c	5	$c_{l} \in Z_{8} \subset A_{3}(5=8-3)$	6	$c_{r} \in Z_{11} \subset B_{4}(6=11-4-1)$
d	4	$d_{l} \in Z_{7} \subset A_{3}(4=7-3)$	5	$d_{r} \in Z_{9} \subset B_{3}(5=9-3-1)$
e	2	$e_{l} \in Z_{4} \subset A_{2}(2=4-2)$	3	$e_{r} \in Z_{6} \subset B_{2}(3=6-2-1)$
f	1	$f_{l} \in Z_{2} \subset A_{1}(1=2-1)$	2	$f_{r} \in Z_{5} \subset B_{2}(2=5-2-1)$
g	0	$g_{l} \in Z_{1} \subset A_{1}(0=1-1)$	1	$g_{r} \in Z_{3} \subset B_{1}(1=3-1-1)$
h	0	$h_{l} \in Z_{1} \subset A_{1}(0=1-1)$	5	$h_{r} \in Z_{9} \subset B_{3}(5=9-3-1)$

Let's resume our findings. Proposition 4.1 and theorems 4.3, 4.4 show that it is possible, given a $P Q I$ interval order on a set A, to obtain two weak orders on A, named T_{l} and T_{r}, which represent the ordering of the left and right endpoints, respectively, of the intervals associated to each element of A. Moreover, using theorem 4.5, we show that it is possible to define a linear
order T_{0} by which left and right endpoints are grouped into classes which are ordered alternatively by T_{0}. Proposition 4.2 and theorem 4.6 show that, given a separated $P Q I$-IO, there always exists an ϵ-minimal representation, ϵ being a positive constant. Such results show that the intervals that can be associated to a $P Q I$-IO "behave" as the ones that can be associated to an IO. Thus, in order to obtain a numerical representation of a $P Q I$-IO we need to arrange elements in A in such a way to define a sequence of left-right endpoints each separated by at least an ϵ.

5 Algorithms

A straightforward application of the above results in order to determine a minimal ϵ-representation of a $P Q I-\mathrm{IO}$ is rather complicated as it requires the explicit determination of $\hat{T}_{l}, \hat{T}_{r}, T_{l}, T_{r}, T_{0},\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim} \ldots$. In this section, we present more results allowing to determine first a numerical representation and second a minimal ϵ-representation using two algorithms. The first algorithm (in $O\left(n^{2}\right)$) determines a representation where all endpoints are distinct. The endpoints which could be identical will be unified in the second algorithm (in $O(n)$) to obtain a minimal ϵ-representation.

Proposition 5.1 Let $\langle P, Q, L, I d\rangle$ be a separated $P Q I-I O,(l, r, \epsilon)$ be a representation in which all endpoints are distinct, $B=\{l(x), r(x), x \in A\}$ be the set of all values of the representation. Let's define the relation T on $\left(A_{l} \cup A_{r}\right)$ as: $T\left(a_{r}, a_{l}\right) ; T\left(a_{l}, b_{l}\right) \Leftrightarrow P(a, b) \quad$ or $\quad Q(a, b) \quad$ or $\quad L(a, b)$; $T\left(a_{r}, b_{r}\right) \Leftrightarrow P(a, b)$ or $Q(a, b)$ or $R(a, b) ; T\left(a_{l}, b_{r}\right) \Leftrightarrow P(a, b) ; T\left(a_{r}, b_{l}\right) \Leftrightarrow$ $\neg P(b, a)$. Then: i) $T_{0} \subset T$, i.e. T is an extension of T_{0}.
ii) $\left(A_{l} \cup A_{r}, T\right)$ is a linear order and an isomorphism of the order $(B,>)$.

Proof.

i) $(x, y) \in T_{0}$. If $x=a_{l}, y=b_{l}$ then $(a, b) \in T_{l} \subset P \cup Q \cup R$ then $T(x, y)$. The same argument for $x=a_{r}, y=b_{r}$. By construction of T and T_{0}, if $x=a_{l}, y=b_{r}$ or $x=a_{r}, y=b_{l}$ then $T(x, y)$.
ii) Obviously $(B,>)$ is a linear order as $l(x), r(x)$ have all distinct values. With the mapping $\phi: A_{l} \cup A_{r} \mapsto B$ defined as: $\phi\left(a_{l}\right)=l(a), \phi\left(a_{r}\right)=r(a)$, it is easy to check that ϕ is a bijection and $T(x, y) \Leftrightarrow \phi(x)>\phi(y)$.

We can consider now the valued graph $\left(A_{l} \cup A_{r}, T, v\right)$ where $v(x, y)=$ $\epsilon, \forall x, y \in A$. It is obvious that $\left(l(a)=\epsilon g\left(a_{l}\right), r(a)=\epsilon g\left(a_{r}\right), \epsilon\right)$, where $g(x)$ is the rank of x in the linear order T (starting with 0), is a minimal ϵ representation with distinct endpoints. From proposition 5.1, we have:

$$
\begin{aligned}
& \forall a_{l} \in A_{l}: T^{+}\left(a_{l}\right)=\left\{x_{l}, x_{r}: P(a, x), x \in A\right\} \cup\left\{x_{l}: Q(a, x), x \in A\right\} \cup\left\{x_{l}:\right. \\
& L(a, x), x \in A\} ; \\
& \forall a_{r} \in A_{r}: T^{+}\left(a_{r}\right)=\left\{a_{l}, x \in A\right\} \cup\left\{x_{l}, x_{r}: P(a, x), x \in A\right\} \cup\left\{x_{l}, x_{r}:\right. \\
& Q(a, x), x \in A\} \cup\left\{x_{l}: Q^{-1}(a, x), x \in A\right\} \cup\left\{x_{l}: L(a, x), x \in A\right\} \cup\left\{x_{l}, x_{r}:\right. \\
& R(a, x), x \in A\} ; \text { This result leads us to the following formula: } \\
& \forall a \in A, g\left(a_{l}\right)=\left|T^{+}\left(a_{l}\right)\right|=2\left|P^{+}(a)\right|+\left|Q^{+}(a)\right|+\left|L^{+}(a)\right|+1 ; \\
& g\left(a_{r}\right)=\left|T^{+}\left(a_{r}\right)\right|+1=1+2\left|P^{+}(a)\right|+2\left|Q^{+}(a)\right|+\left|Q^{-1+}\right|+\left|L^{+}(a)\right|+2\left|R^{+}(a)\right| .
\end{aligned}
$$

The function g can be implemented using the following algorithm $\left(O\left(n^{2}\right)\right)$:

```
n=|A|, fl[1..n],fr[1..n] /* g(al),g(ar) */
M[1..n,1..n]; /* matrix representing P,Q,L*/
procedure numerical_representation
forall i fl[i]=0, fr[i]=1
endfor
forall i, j, j > i, switch (M[i,j])
        case P:
                        fl[i]=fl[i]+2
            fr[i]=fr[i]+2
        case P}\mp@subsup{P}{}{-1}\mathrm{ :
            fl[j]=fl[j]+2
            fr[j]=fr[j]+2
        case Q:
            fl[i]=fl[i]+1
            fr[i]=fr[i]+2
            fr[j]=fr[j]+1
        case }\mp@subsup{Q}{}{-1}\mathrm{ :
            fl[j]=fl[j]+1
            fr[j]=fr[j]+2
            fr[i]=fr[i]+1
        case L:
            fl[i]=fl[i]+1
            fr[i]=fr[i]+1
            fr[j]=fr[j]+2
        case R:
            fl[j]=fl[j]+1
            fr[j]=fr[j]+1
            fr[i]=fr[i]+2
        endswitch
endfor
```


Continuation of example 4.2

We apply the algorithm to the data of our example and we verify that the result is compatible with figure 4.
$g\left(x_{l}\right)=2\left|P^{+}\right|+\left|Q^{+}\right|+\left|L^{+}\right|, g\left(x_{r}\right)=1+2\left|P^{+}\right|+2\left|Q^{+}\right|+\left|Q^{-1+}\right|+\left|L^{+}\right|+2\left|R^{+}\right|$

x	$g\left(x_{l}\right)$	$g\left(x_{r}\right)$
a	$14=2 * 7+0+0$	$15=1+2 * 7+2 * 0+0+0+2 * 0$
b	$11=2 * 5+1+0$	$13=1+2 * 5+2 * 1+0+0+2 * 0$
c	$8=2 * 3+2+0$	$12=1+2 * 3+2 * 2+1+0+2 * 0$
d	$7=2 * 3+0+1$	$9=1+2 * 3+2 * 0+1+1+2 * 0$
e	$4=2 * 1+1+1$	$6=1+2 * 1+2 * 1+0+1+2 * 0$
f	$2=2 * 0+1+1$	$5=1+2 * 0+2 * 1+1+1+2 * 0$
g	$1=2 * 0+0+1$	$3=1+2 * 0+2 * 0+1+1+2 * 0$
h	$0=2 * 0+0+0$	$10=1+2 * 0+2 * 0+1+0+2 * 4$

Let us work on the minimal representation. By definition, $T_{0} \subset T$, i.e., T is an extension of T_{0}, furthermore, this extension adds only pairs of either type $T\left(a_{l}, b_{l}\right)$ or $T\left(a_{r}, b_{r}\right)$ to T_{0}. We have seen in the previous section that the minimal ϵ-representation is based on T_{0}. The unification of endpoints is indeed a reduction from T to T_{0} : two consecutive left (right) end points (in $T)$ which are not related by T_{0} can be unified. Two consecutive endpoints $a_{r} T b_{l}$ can always be unified because $T_{0}\left(a_{r}, b_{l}\right)$ requires only $r(a) \geq l(b)$.

Proposition 5.2 Let $\langle P, Q, L, I d\rangle$ be a separated $P Q I-I O$, then:
i) if $a_{l} T b_{l}$ are two consecutive endpoints and $T_{0}\left(a_{l}, b_{l}\right)$ then $Q(a, b)$;
ii) if $a_{r} T b_{r}$ are two consecutive endpoints and $T_{0}\left(a_{r}, b_{r}\right)$ then $Q(a, b)$.

Proof.

i) If $\left(a_{l}, b_{l}\right) \in T_{0}$ then $(a, b) \in T_{l}=P . \hat{I} \cup Q \cup L . Q \cup Q . L \cup L . Q . L$. With the exception of Q, there is always at least an endpoint x such that $a_{l} T x T b_{l}$, i.e., a_{l}, b_{l} are not consecutive. For example, $(a, b) \in L . Q$ then $\exists c \in A, a L c Q b$, and we have $a_{l} T c_{l} T b_{l}$. The other cases are similar.
ii) Similar to i.

As a consequence, two consecutive endpoints $x T y$ can be unified if, $\exists a, b \in A$ such that one of the following conditions is satisfied:

1) $\left.x=a_{r}, y=b_{l} ; 2\right) x=a_{l}, y=b_{l}$ and $\left.L(a, b) ; 3\right) x=a_{r}, y=b_{r}$ and $R(a, b)$.

We obtain the following algorithm in $O(n)$ to unify endpoints:

```
Rank[1..2n]; /* 1..2n rank of element }x\in\mp@subsup{A}{l}{}\cup\mp@subsup{A}{r}{**/
Id[1..2n]; /* identification of element }x\inA*
LR[1..2n]; /* left endpoint, right endpoint*/
```

```
M[1..n,1..n]; /* matrix representing P, Q,L*/
X=0; /* number of unifications realised, to be subtracted
from the rank to obtain the minimal representation */
procedure minimal_numerical_representation
    for i=1..2n do
        Rank[i]=Rank[i]-X;
        if i=2n then stop endif;
        Rank[i]=Rank[i]-X;
        if [LR[i]=left and LR[i+1]=left and M[Id[i+1],Id[i]]= L]
        or [LR[i]=right and LR[i+1]=right and M[Id[i+1],Id[i]]= R]
        or [LR[i]=left and LR[i+1]=right] then
            X=X+1;
            endif;
    endfor;
```


Continuation of example 4.2

Applying the above algorithm to our example we obtain the following table. The reader may note that the algorithm treats the endpoints in the ascending order of their ranks, i.e. aTb means that the rank of a is superior to that of b, therefore b will appear before a.

Id	Rank	X	Rank $-X$	observation
h_{l}	0	0	0	$l, l, L(g, h)$
g_{l}	1	1	0	
f_{l}	2	-	1	l, r
g_{r}	3	2	1	
e_{l}	4	-	2	l, r
f_{r}	5	3	2	
e_{r}	6	-	3	
d_{l}	7	-	4	
c_{l}	8	-	5	l, r
d_{r}	9	4	5	$r, r, R(a, d)$
h_{r}	10	5	5	
b_{l}	11	-	6	l, r
c_{r}	12	6	6	
b_{r}	13	-	7	
a_{l}	14	-	8	l, r
a_{r}	15	7	8	

6 Conclusion

In this paper we try to extend some well known results concerning the numerical representation of interval orders in the case of $P Q I$-IO. Such preference structures appear when, while comparing intervals, it might be interesting to distinguish a situation of hesitation between "sure" preference (empty intersection of the two intervals) and "sure" indifference (one interval included in the other).

As we have shown that the problem of numerical representations of a $P Q I$-IO does not make sense, we have to study the problem through an instance of a $P Q I-\mathrm{IO}$, i.e. a separated $P Q I-\mathrm{IO}$. The aim of this effort is to study the foundations under which is possible to construct a numerical representation of a separated $P Q I-\mathrm{IO}$ as soon as it has been demonstrated that such a representation exists. Not surprisingly we are able to demonstrate that there exist two weak orders, one representing the order of the left endpoints and one representing the order of the right endpoints. On that basis is possible to construct a numerical representation.

In the paper we demonstrate the theorems which enable to show what the numerical representation of a separated $P Q I-\mathrm{IO}$ represents and how it is possible to obtain a "minimal" representation. With such results we define two algorithms, the first constructing a numerical representation for a given separated $P Q I-\mathrm{IO}$, the second minimising it. Both algorithms are shown to run in polynomial time $\left(O\left(n^{2}\right)\right.$ for the first and $O(n)$ for the second).

References

1. Allen J.F., "Maintaining knowledge about temporal intervals", Journal of the ACM, vol. 26, 832-843, 1983.
2. Fishburn P.C., Interval Orders and Interval Graphs, J. Wiley, New York, 1985.
3. Fishburn P.C., "Generalisations of Semiorders: a review note", Journal of Mathematical Psychology, vol. 41, 357-366, 1997.
4. Golumbic M.C., Shamir R., "Complexity and algorithms for reasoning about time. A graph theoretic approach", Journal of the ACM, vol. 40, 1108-1133, 1993.
5. Ngo The A., Tsoukiàs A., Vincke Ph., "A polynomial time algorithm to detect PQI interval orders", International Transactions of Operations

Research, 7, 609-623, 2000.
6. Pe'er I., Shamir R., "Satisfiability problems on intervals and unit intervals", Theoretical Computer Science, vol. 175, 349-372, 1997.
7. Pirlot M., Vincke Ph., Semi Orders, Kluwer Academic, Dordrecht, 1997.
8. Roubens M., Vincke Ph., Preference Modeling, Springer Verlag, Berlin, 1985.
9. Roy B., Algèbre moderne et théorie des graphes, Dunod, 1969.
10. Tsoukiàs A., Vincke Ph., "Extended preference structures in MCDA", in J. Clímaco (ed.), Multicriteria Analysis, Springer Verlag, Berlin, 37 - 50, 1997.
11. Tsoukiàs A., Vincke Ph., "A characterisation of PQI interval orders", Report SMG-IS 99/35, Institut de Statistique, Université Libre de Bruxelles, 1999, to appear in Discrete Applied Mathematics, 2003.
12. Tsoukiàs A., Perny P., Vincke Ph., "From Concordance/Discordance to the Modelling of Positive and Negative Reasons in Decision Aiding", in D. Bouyssou, E. Jacquet-Lagrèze, P. Perny, R. Słowiński, D. Vanderpooten, Ph. Vincke (eds.), Aiding Decisions with Multiple Criteria: Essays in Honor of Bernard Roy, Kluwer Academic, Dordrecht, 147-174, 2002.
13. Vincke Ph., "P,Q,I preference structures", in J. Kacprzyk, M. Roubens, eds., Non conventional preference relations in decision making, LNEMS 301, Springer Verlag, Berlin, 72-81, 1988.

Appendix A

Proof of proposition 4.1. We provide the proofs for L (those of R are similar). i) $a Q b L c \Rightarrow[(r(a)>r(b) \geq l(a)>l(b))$ and $(r(c) \geq r(b) \geq l(b) \geq l(c))] \Rightarrow r(c) \geq$ $l(a)>l(c) \Rightarrow(a, c) \in Q \cup L$.
ii) $a P b L c \Rightarrow[(l(a)>r(b))$ and $(r(c) \geq r(b) \geq l(b) \geq l(c))] \Rightarrow l(a)>l(c) \Rightarrow$ $(a, c) \in P \cup Q \cup L$.
iii) $a P b Q^{-1} c \Rightarrow[(l(a)>r(b))$ and $(r(c)>r(b) \geq l(c)>l(b))] \Rightarrow l(a)>l(c) \Rightarrow$ $(a, c) \in P \cup Q \cup L$.
iv) Otherwise, $\exists x,(x, x) \in(Q \cup L . Q \cup Q . L \cup L . Q . L) . \hat{T}_{l}$. By theorem 4.1 and $i, i i$ we have $(Q \cup L . Q \cup Q . L \cup L . Q . L) \subset(Q \cup P \cup L)$ and $(Q \cup P \cup L) . P \subset P$.

We have $(x, x) \in(Q \cup L . Q \cup Q . L \cup L . Q . L) . \hat{T}_{l} \subset(Q \cup P \cup L) . P . \hat{I} \subset P . \hat{I}=\hat{T}_{l}$, impossible as \hat{T}_{l} asymmetric.
v) As $P=P . I d \subset \hat{T}_{l} \subset T_{l}$ and $Q \subset T_{l}$ then $P \cup Q \subset T_{l}$.
$Q \cup L . Q \cup Q . L \cup L . Q . L \subset P \cup Q \cup L$ (theorem 4.1 and i).
$\hat{T}_{l}=P .\left(I \cup Q \cup Q^{-1}\right), P . I \subset P, P . Q \subset P$ and $P . Q^{-1} \subset P \cup Q \cup L$ (by iii). Therefore, $T_{l} \subset P \cup Q \cup L$.
vi) Direct consequence of v.
vii) $T_{l} . P \subset P$ and $P . T_{r} \subset P$
$T_{l} . P=P . \hat{I} . P \cup Q . P \cup L . Q . P \cup Q . L . P \cup L . Q . L . P \subset P($ as $L . P \subset P$ and $Q . P \subset P)$.
viii) $P . T_{l} \subset T_{l}$ and $T_{r} . P \subset T_{r}$
$P . T_{l}=P . P . \hat{I} \cup P . Q \cup P . L . Q \cup P . Q . L \cup P . L . Q . L \subset P . \hat{I} \cup P \cup P .(P \cup \hat{I}) \subset T_{l}$.

Proof of theorem 4.3 We consider only T_{l} (T_{r} is similar).
i) We show that T_{l} is asymmetric and negatively transitive.

Asymmetry. We recall that if R, S are two asymmetric relations and $R \cap$ $S^{-1}=\emptyset$ then $R \cup S$ is asymmetric. P, Q, L are asymmetric and mutually exclusive $\Rightarrow(P \cup Q \cup L)$ is asymmetric $\Rightarrow Q_{l} \subset(P \cup Q \cup L)$ is asymmetric too. As \hat{T}_{l} and Q_{l} are asymmetric, furthermore $Q_{l} \cap \hat{T}_{l}^{-1}=\emptyset$ (proposition 4.1.iv), T_{l} is asymmetric.

Negative transitivity. We have to prove that $\neg T_{l}(a, b) \wedge \neg T_{l}(b, c) \wedge T_{l}(a, c)$ implies a contradiction. Since $T_{l} \subset P \cup Q \cup L$ and $\neg T_{l} \subset P^{-1} \cup Q^{-1} \cup L \cup L^{-1}$, we can eliminate the most trivial cases using this kind of verification $P^{-1} \cdot P^{-1} \subset$ $P^{-1} \notin\{P, Q, L\}, \ldots$. The other cases are considered in the following table.

(a, b)	(b, c)	(a, c)	Eliminated by
$P^{-1} \cup Q^{-1}$	L	L	$b(P \cup Q) a L c \Rightarrow(b, c) \in(P . L \cup Q . L) \subset\left(\hat{T}_{l} \cup Q_{l}\right) \subset T_{l}$
L	Q^{-1}	L	$a L c Q b \Rightarrow(a, b) \in L . Q \subset Q_{l} \subset T_{l}$
L	R	$P \cup Q$	$a(P \cup Q) c L b \Rightarrow(a, b) \in(P . L \cup Q . L) \subset\left(\hat{T}_{l} \cup Q_{l}\right) \subset T_{l}$
R	L	Q	$b L a Q c \Rightarrow(b, c) \in L . Q \subset Q_{l} \subset T_{l}$
L	L	L	non-trivial
L	R	L	non-trivial
R	L	L	non-trivial

The three last cases can be resumed by $(a, c) \in T_{l} \cap L \wedge(a, b) \in(L \cup R) \backslash$ $T_{l} \wedge(b, c) \in(L \cup R) \backslash T_{l}$ with $(a, c) \in\left(T_{l} \cap L\right)=\left(\hat{T}_{l} \cup Q_{l}\right) \cap L=[P .(I d \cup Q \cup$ $\left.\left.Q^{-1} \cup L \cup L^{-1}\right) \cup(Q \cup L . Q \cup Q . L \cup L . Q . L)\right] \cap L=\left(P . Q^{-1} \cap L\right) \cup(P . L \cap L) \cup$ $(Q . L \cap L) \cup(L . Q . L \cap L)$.

- If $(a, c) \in\left(P . Q^{-1} \cup P . L\right) \cap L$ then $\exists x, a P x\left(Q^{-1} \cup L\right) c \wedge a L c$ i.e. $r(c) \geq r(a) \geq$ $l(a)>r(x)$. If $l(b)>r(x)$ then $b P x\left(Q^{-1} \cup L\right) c \Rightarrow(b, c) \in T_{l}$. Otherwise, $l(b) \leq$ $r(x) \Rightarrow x\left(Q^{-1} \cup L\right) b($ as $r(b) \geq l(a)>r(x))$. Then $a P x\left(Q^{-1} \cup L\right) b \Rightarrow(a, b) \in$ $\left(P . Q^{-1} \cup P . L\right) \subset \hat{T}_{l} \subset T_{l}$.
- If $(a, c) \in Q . L \cap L$ then $\exists x, a Q x L c \wedge a L c$ i.e. $r(c) \geq r(a)>r(x)>$ $l(a)>l(x)>l(c)$. If $l(b) \geq l(a)$ then $b L a(\operatorname{as}(a, b) \in(L \cup R))$ and
$b L a Q x L c \Rightarrow(b, c) \in T_{l}$. If $l(x)<l(b)<l(a)$ then $a L b \Rightarrow r(b)>r(a)>$ $r(x) \Rightarrow b Q x$ and $b Q x L c \Rightarrow b T_{l} c$. Otherwise, $l(b) \leq l(x)<l(a) \Rightarrow a L b \Rightarrow r(b)>$ $r(x) \Rightarrow x L b$. Then $a Q x L b \Rightarrow(a, b) \in Q . L \subset Q_{l} \subset T_{l}$.
- If $(a, c) \in L . Q \cap L$ then $\exists x, a L x Q c \wedge a L c$ i.e. $r(x)>r(c) \geq r(a) \geq l(a) \geq$ $l(x)>l(c)$. If $l(b) \geq l(x)$ then $b(P \cup Q \cup L) x Q c \Rightarrow b T_{l} c$. If $l(c)<l(b)<l(x)$ and $r(b)<r(x)$ then $a L x Q b \Rightarrow(a, b) \in T_{l}$. If $l(c)<l(b)<l(x)$ and $r(b) \geq r(x)$ then $b Q c$ (as $r(x)>r(c))$ and $b T_{l} c$. Otherwise, $l(b) \leq l(c) \Rightarrow a L . Q c(P \cup Q \cup$ $L) b \Rightarrow a T_{l} b$.
- If $(a, c) \in L . Q . L \cap L$ then $\exists x, y, a L x Q y L c \wedge a L c$ i.e. $l(a) \geq l(x)>l(y) \geq$ $l(c)$. If $l(b) \leq l(x) \Rightarrow b(P \cup Q \cup L) x Q y L c \Rightarrow b T_{l} c$. If $l(y)<l(b)<l(x)$ and $r(b)<r(x)$ then $a L x Q b \Rightarrow(a, b) \in T_{l}$. If $l(y)<l(b)<l(x)$ and $r(b) \geq r(x)$ then $r(b)>r(y)$ and $b Q y L c \Rightarrow(b, c) \in T_{l}$. Otherwise, if $l(b) \leq l(y)$ then $a L x Q y(P \cup Q \cup L) b \Rightarrow(a, b) \in T_{l}$.
ii) Immediate from theorems 2.1, 2.2 and i.
iii) $T_{l}^{\sim} \cap T_{r}^{\sim} \subset E$. If $(x, y) \in T_{l}^{\sim} \cap T_{r}^{\sim} \Rightarrow(x, y) \notin T_{l} \cup T_{l}^{-1} \cup T_{r} \cup T_{r}^{-1}$. Suppose that $(x, y) \notin E$ then $\exists z \in A, z R_{1} x$ and $z R_{2} y$ with $R_{1} \neq R_{2}$. Consider, for example, $R_{1}=P$, we have:
$z P^{-1} y \Rightarrow y P z P x \Rightarrow y T_{l} x$, impossible.
$z Q y \Rightarrow y Q^{-1} z P x \Rightarrow y \hat{I} . P x \Rightarrow y T_{r} x$, impossible.
$z Q^{-1} y \Rightarrow y Q z P x \Rightarrow y T_{l} x$, impossible.
The other cases are quite similar.
iv) Immediate from $\hat{T}_{l} \subset T_{l}$ and $\hat{T}_{r} \subset T_{r}$.

Proof of theorem 4.4

i) We first demonstrate that T_{0} is asymmetric and negatively transitive.

- Asymmetry.
$T_{0}=\left(T_{0} \cap A_{l} \times A_{l}\right) \cup\left(T_{0} \cap A_{r} \times A_{r}\right) \cup\left(\hat{T}_{0} \cap\left(A_{l} \times A_{r} \cup A_{r} \times A_{l}\right)\right)$, where $\left(T_{0} \cap A_{l} \times A_{l}\right)$ (resp. $\left.\left(T_{0} \cap A_{r} \times A_{r}\right)\right)$ is in fact isomorph to T_{l} (resp. T_{r}). As each component of T_{0} is asymmetric and belongs to, respectively, $A_{l} \times A_{l}, A_{r} \times A_{r}, A_{l} \times A_{r} \cup A_{r} \times A_{l}$ which are mutually exclusive, T_{0} is asymmetric.
- Negative transitivity.
$\neg T_{0}(x, y), \neg T_{0}(y, z) . x, y, z$ can be a_{l} or a_{r}, b_{l} or b_{r}, c_{l} or c_{l} respectively. There exist eight possible combinations, but four of them are the inverse of the other four. Thus, we only have to prove these four cases.
- Case 1: $a_{l} \neg T_{0} b_{l} \neg T_{0} c_{l} \Rightarrow a_{l} \neg T_{l} b_{l} \neg T_{l} c_{l}$ (by definition).
$\Rightarrow a_{l} \neg T_{l} c_{l},\left(T_{l}\right.$ is a weak order).
$\Rightarrow a_{l} \neg T_{0} c_{l}$, (by definition).
- Case 2: $a_{l} \neg T_{0} b_{l} \neg T_{0} c_{r} \Rightarrow a_{l} \neg T_{0} c_{r}$ i.e. $a \neg T_{l} b, \neg P(b, c) \Rightarrow \neg P(a, c)$
i.e. $P(a, c), \neg P(b, c) \Rightarrow T_{l}(a, b)$ where $\neg P=P^{-1} \cup Q \cup Q^{-1} \cup I=P^{-1} \cup \hat{I}$ $P(a, c), \neg P(b, c) \Rightarrow(a, b) \in P .(P \cup \hat{I}) \subset T_{l}$

$$
\text { - Case 3: } a_{l} \neg T_{0} b_{r} \neg T_{0} c_{l} \Rightarrow a_{l} \neg T_{0} c_{l} \text { i.e. } \neg P(a, b), P(c, b) \Rightarrow \neg T_{l}(a, c)
$$

$$
\text { i.e. } T_{l}(a, c), P(c, b) \Rightarrow P(a, b)
$$

$$
T_{l}(a, c), P(c, b) \Rightarrow(a, b) \in T_{l} . P \subset P, \text { (by proposition 4.1.vii). }
$$

$$
\text { - Case 4: } a_{l} \neg T_{0} b_{r} \neg T_{0} c_{r} \Rightarrow a_{l} \neg T_{0} c_{r} \text { i.e. } \neg P(a, b), \neg T_{r}(b, c) \Rightarrow \neg P(a, c)
$$ Similar to case 2.

ii) Immediate from theorems 2.1, 2.2 and i.
iii) Consider $[x]_{T_{0}^{\sim}}, x \in A_{l} \cup A_{r}$. We will demonstrate that "if $x=a_{l}\left(x=a_{r}\right)$ for some $a \in A$ then $[x]_{T_{0}^{\sim}}=\left[a_{l}\right]_{T_{l}^{\sim}}\left([x]_{T_{0}^{\sim}}=\left[a_{r}\right]_{T_{r}^{\sim}}\right)$ ". By construction of T_{0}, if $\neg T_{0}(x, y)$ and $\neg T(y, x)$ then $(x, y) \notin A_{l} \times A_{r} \cup A_{r} \times A_{l}$. Suppose that $x=a_{l}$, if $y \in[x]_{T_{0}^{\sim}}$ then $y=b_{l}$ for some $b \in A$, and $\neg T_{0}\left(a_{l}, b_{l}\right)$ and $\neg T_{0}\left(b_{l}, a_{l}\right)$ $\Leftrightarrow \neg T_{l}\left(a_{l}, b_{l}\right)$ and $\neg T_{l}\left(b_{l}, a_{l}\right) \Leftrightarrow b_{l} \in\left[a_{l}\right]_{T_{l}}$. The case $x=a_{r}$ is similar.

Proof of proposition 4.2

i) $T_{0}\left(a_{l}, b_{l}\right) \Rightarrow T_{l}(a, b) \Rightarrow(a, b) \in P \cup P . Q \cup P . Q^{-1} \cup P . L \cup P . R \cup Q \cup L . Q \cup Q . L \cup$
$L . Q . L \subset P \cup Q \cup P . L \cup L . Q \cup Q . L \cup L . Q . L$. If $a P b$ then $l(a) \geq r(b)+\epsilon \geq l(b)+\epsilon$. If $a Q b$ then $l(a) \geq l(b)+\epsilon$.
If $a P c L b$ then $l(a) \geq r(c)+\epsilon \geq l(c)+\epsilon \geq l(b)+\epsilon$.
If $a L c Q b$ then $l(a) \geq l(c) \geq l(b)+\epsilon$.
If $a Q c L b$ then $l(a) \geq l(c)+\epsilon \geq l(b)+\epsilon$.
If $a L c Q d L b$ then $l(a) \geq l(c) \geq l(d)+\epsilon \geq l(b)+\epsilon$.
ii) Similar to i.
iii) $T_{0}\left(a_{l}, b_{r}\right) \Leftrightarrow P(a, b) \Rightarrow l(a) \geq r(b)+\epsilon$.
iv) $T_{0}\left(a_{r}, b_{l}\right) \Leftrightarrow \neg P(b, a) \Rightarrow r(a) \geq l(b)$.

Proof of theorem 4.6

We consider the valued graph $G=\left(\left(A_{l} \cup A_{r}\right) / T_{0}^{\sim}, T_{0}, v\right)$ where:
$v(x, y)= \begin{cases}0 & \text { if } x=\left[a_{r}\right], y=\left[b_{l}\right] \text { for some } a, b \in A \\ \epsilon & \text { otherwise }\end{cases}$
T_{0} is a linear order \Rightarrow there is no circuit \Rightarrow a potential function exists (theorem 2.3).
We prove that the maximal value of the paths starting from a node $a_{l}\left(a_{r}\right)$ (being also the smallest potential function) is: $g\left(a_{l}\right)=l^{*}(a), g\left(a_{r}\right)=r^{*}(a)$. The nodes of G can be presented as $Z_{l+r} T_{0} Z_{l+r-1} T_{0} \ldots Z_{1}$. Remind that $Z_{i} T_{0} Z_{j}$ iff $i \geq j$ and all the arcs of G are either 0 or $\epsilon>0$. By proposition 4.2 and theorem 4.5, in two consecutive arcs, there is at least one arc with value ϵ. For each Z_{k}, consider the path $\Phi=Z_{k} T_{0} \ldots Z_{1}$ and denote $V(\Phi)$ its value. Any other path Φ^{\prime} starting from Z_{k} is obtained from Φ by applying (recursively) the following operation:

- drop out the last arc (x, y), obviously $V(\Phi) \geq V\left(\Phi^{\prime}\right)(v(x, y) \geq 0)$.
- replace a portion $\left(Z_{i}, Z_{i-1}, \ldots Z_{j}\right)$ by $\left(Z_{i}, Z_{j}\right)$. As $V\left(Z_{i}, Z_{j}\right) \leq \epsilon$ and $V\left(Z_{i}, Z_{i-1}, \ldots Z_{j}\right)$ $\geq \epsilon$ then $V(\Phi) \geq V\left(\Phi^{\prime}\right)$. Thus, Φ is the path with maximal value starting from Z_{k}. By theorem 4.5, along Φ, all the arcs are ϵ, but $\left(a_{r}, b_{l}\right)$ which are transitive arcs connecting B_{j} to A_{j}. If $Z_{i}=a_{l} \in A_{j}$, there exist $(j-1)$ transitive $\operatorname{arcs} \Rightarrow V(\Phi)=$ $(i-j+1) * \epsilon$. If $Z_{i}=a_{r} \in B_{j}$, there exist j transitive $\operatorname{arcs} \Rightarrow V(\Phi)=(i-j) * \epsilon$.

[^0]: ${ }^{1}$ There is one point we would like to make clear about our choice of "separated $P Q I$ IO" to deal with. The non-existence of the minimal representation is not the only reason. Suppose that the decision maker has a $P Q I$-IO and wants just one numerical representation, not necessarily the minimal one, can we provide an algorithm to provide such a representation directly from the three relations P, Q, I ? As far as we know, the answer is no. We can't determine a representation of a $P Q I-\mathrm{IO}$ without knowing a priori that this structure is a $P Q I$-IO. Therefore, the question makes sense only if there is an algorithm that can prove the existence of the relation L without explicitly constructing one, but the only way (we know) is to explicitly construct the relation L. With our current knowledge, we have to use the algorithm in Ngo The et al., 2000 to verify if the structure is an $P Q I$-IO. If the answer is yes, the algorithm provides L. With this relation L, we can use determine a numerical representation of the "separated $P Q I$ - IO'. This is also a representation of the original structure $P Q I-I O$

