Preference Handling

Alexis Tsoukiàs¹ and Paolo Viappiani²

 LAMSADE - CNRS, Université Paris-Dauphine www.lamsade.dauphine.fr/~tsoukias
 LIP6 - CNRS, Université Pierre et Marie Curie www-desir.lip6.fr/~viappianip/

ACM RecSys Conference, Hong Kong

October 13, 2013

3 Learning Preferences

Aims of the Tutorial

- Introducing the general field that deals with techniques for representing, learning and reasoning with preferences
- Community that studies preference from a formal algorithmic point of view: Algorithmic Decision Theory
- The tutorial will introduce both the formalisms more widely used to model and represent preferences as well as the procedures aimed at learning preferences and at producing a recommendation for an end-user (decision-maker)

Preference Handling Systems are Everywhere

- Not only recommender systems
- Computational advertisement
- Intelligent user interfaces
- Cognitive assistants
- Personalized medecine
- Personal Robots

What the theory has to say about preferences?

General Models Numbers More numbers

Outline

- General
- Models
- Numbers
- More numbers
- 2 Using Preferences
- 3 Learning Preferences

General Models Numbers More numbers

What are Preferences?

- Preferences are "rational" desires.
- Preferences are at the basis of any decision aiding activity.
- There are no decisions without preferences.
- Values, Likelihoods, Opinions, ...
- ... but also Objectives, Desires, Utilities, Beliefs,...

General Models Numbers More numbers

Preference Statements

- I like red shoes.
- I do not like brown sugar.
- I prefer Obama to McCain.
- I do not want tea with milk.
- Cost is more important than safety.
- I prefer flying to Athens than having a suite at Istanbul.

General Models Numbers More numbers

Preference Statements

- I like red shoes.
- I do not like brown sugar.
- I prefer Obama to McCain.
- I do not want tea with milk.
- Cost is more important than safety.
- I prefer flying to Athens than having a suite at Istanbul.

Three issues:

- Relative vs. Absolute assessments
- Single vs Multi-attribute assessments
- Positive vs Negative assessments

General Models Numbers More numbers

Binary relations

Preference Relation

 $\succeq \subseteq A \times A \quad \text{or} \quad \succeq \subseteq A \times P \cup P \times A \\ x \succeq y \text{ stands for } x \text{ is at least as good as } y$

A is the set on which we express our preferences P is the set (if necessary) of norms, standards, references to which we may compare elements of AAt this stage we do not care if A or P are described under multiple attributes.

General Models Numbers More numbers

Symmetry and Asymmetry

 \succeq can be decomposed into an asymmetric and a symmetric part

Asymmetric part

• Strict preference $\succ: x \succeq y \land \neg(y \succeq x)$

Symmetric part

- Indifference \sim_1 : $x \succeq y \land y \succeq x$
- Incomparability \sim_2 : $\neg(x \succeq y) \land \neg(y \succeq x)$

General Models Numbers More numbers

Binary relations properties

Binary relations have specific properties such as:

- Irreflexive: $\forall x \neg (x \succ x);$
- Asymmetric: $\forall x, y \ x \succ y \rightarrow \neg(y \succ x);$
- Transitive: $\forall x, y, z \ x \succ y \land y \succ z \rightarrow x \succ z$;
- Ferrers; $\forall x, y, z, w \ x \succ y \land z \succ w \rightarrow x \succ w \lor z \succ y$;

General Models Numbers More numbers

\sim_1, \sim_2, \succ Preference Structures

If \succeq is a weak order then:

 \succ is a strict partial order, \sim_1 is an equivalence relation and \sim_2 is empty.

General Models Numbers More numbers

\sim_1, \sim_2, \succ Preference Structures

If \succeq is a weak order then:

 \succ is a strict partial order, \sim_1 is an equivalence relation and \sim_2 is empty.

If \succeq is an interval order then:

 \succ is a partial order of dimension two, \sim_1 is not transitive and \sim_2 is empty.

General Models Numbers More numbers

What characterises such structures?

Characteristic Properties

Weak Orders are complete and transitive relations. Interval Orders are complete and Ferrers relations.

General Models Numbers More numbers

What characterises such structures?

Characteristic Properties

Weak Orders are complete and transitive relations. Interval Orders are complete and Ferrers relations.

Why this is important?

Because it allows to establish *representation theorems* which tell us under which conditions these preference structures have a numerical representation.

General Models Numbers More numbers

Numerical Representations

Weak Orders

If \succeq is a w.o. $\Leftrightarrow \exists f : A \mapsto \mathbb{R} : x \succeq y \leftrightarrow f(x) \ge f(y)$

General Models Numbers More numbers

Numerical Representations

Weak Orders

If
$$\succeq$$
 is a w.o. $\Leftrightarrow \exists f : A \mapsto \mathbb{R} : x \succeq y \leftrightarrow f(x) \ge f(y)$

Interval Orders

$$\begin{array}{l} \text{If } \succeq \text{ is an i.o.} \\ \Leftrightarrow \quad \exists f,g: A \mapsto \mathbb{R}: \ f(x) > g(x); x \succeq y \ \leftrightarrow \ f(x) \geq g(y) \end{array} \end{array}$$

General Models Numbers More numbers

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

General Models Numbers More numbers

What if A is multi-attribute described?

$$x = \langle x_1 \cdots x_n \rangle \quad y = \langle y_1 \cdots y_n \rangle$$

$x \succeq y \quad \Leftrightarrow \quad \Phi([u_1(x_1) \cdots u_n(n)], [u_1(y_1) \cdots u_n(y_n)] \ge 0$

General Models Numbers More numbers

Example

Suppose you have 4 projects x, y, z, w of urban rehabilitation and an assessment dimension named "land use". You have:

- $d_l(x) = 100$ sqm;
- $d_l(y) = 50$ sqm;
- $d_l(z) = 1000$ sqm;
- $d_l(w) = 500$ sqm;

Preferences expressed could be for instance (suppose the decision maker dislikes land use):

 $d_l(y) \succ d_l(x) \succ d_l(w) \succ d_l(z)$

A possible numerical representation could thus be:

$$h_l(y) = 4$$
, $h_l(x) = 3$, $h_l(w) = 2$ $h_l(z) = 1$, but also:

 $h_l(y) = 50, h_l(x) = 100, h_l(w) = 500, h_l(z) = 1000$

General Models Numbers More numbers

Is this sufficient?

NOT always!

Alexis Tsoukiàs, Paolo Viappiani Preference Handling

General Models Numbers More numbers

Is this sufficient?

NOT always!

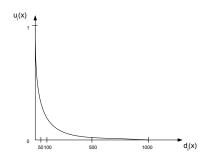
We may need something more rich. We may need to know, when we compare x to y (and we prefer x) if this preference is "stronger" to the one expressed when comparing (on the same dimension) z fo w.

We need to compare differences of preferences

16/71

General Models Numbers More numbers

A Value function



For instance, if the above function represents the value of "land use" it is clear that the difference between 50sqm and 100sqm is far more important from the one between 500sqm and 1000sqm.

General Models Numbers More numbers

Is all that sufficient?

NOT always! If *A* is described on multiple attributes

General Models Numbers More numbers

Is all that sufficient?

NOT always! If *A* is described on multiple attributes

- The problem is that we need to be able to compare the differences of preferences on one dimension to the differences of preferences on another one (let's say differences of preferences on land use with differences of preferences on esthetics.
- At the same time we need to take into account the intuitive idea that for a given decision maker certain dimensions are more "important" than other ones.

General Models Numbers More numbers

- The different dimensions are separable.
- Preferences on each dimension are independent.
- Preferences on each dimension are measurable in terms of differences.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Outline

2

Using Preferences

- Problem Statements
- Preference Aggregation
- The Logic of Preferences
- Rules
- Recommendations

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

What is a decision problem?

Consider a set A established as any among the following:

- an enumeration of objects;
- a set of combinations of binary variables (possibly the whole space of combinations);
- a set of profiles within a multi-attribute space (possibly the whole space);
- a vector space in \mathbb{R}^n .

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

What is a decision problem?

Consider a set A established as any among the following:

- an enumeration of objects;
- a set of combinations of binary variables (possibly the whole space of combinations);
- a set of profiles within a multi-attribute space (possibly the whole space);
- a vector space in \mathbb{R}^n .

Technically:

A Decision Problem is a partitioning of *A* under some desired properties.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Partitioning? For what?

Practically we partition A in n classes. These can be:

Pre-defined wrt Defined only through some external norm relative comparisons

Ordered

Not Ordered

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Partitioning? For what?

Practically we partition *A* in *n* classes. These can be:

	Pre-defined wrt	Defined only through
	some external norm	relative comparisons
Ordered	Rating	Ranking
Not Ordered	Assigning	Clustering

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Partitioning? For what?

Practically we partition *A* in *n* classes. These can be:

	Pre-defined wrt	Defined only through
	some external norm	relative comparisons
Ordered	Rating	Ranking
Not Ordered	Assigning	Clustering

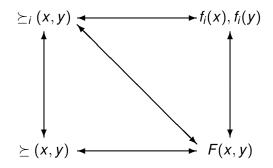
Two special cases:

- there are only two classes (thus complementary);
- the size (cardinality) of the classes is also predefined.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

The Problem

Suppose we have *n* ordering relations $\succeq_1 \cdots \succeq_n$ on the set *A*. We are looking for an overall ordering relation \succeq on *A* "representing" the different orders.



Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

How do we do that?

The Borda path

Give a value to the rank of each element of $x \in A$ and then sum the ranks. Then compare the sum of the ranks.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

How do we do that?

The Borda path

Give a value to the rank of each element of $x \in A$ and then sum the ranks. Then compare the sum of the ranks.

The Condorcet path

Compare each $x \in A$ to all other elements $y \in A$, then use majority to establish who is better among x and y.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Generalising Borda

 $x \succeq y \Leftrightarrow \mathcal{F}(u_i(x), r_i(y)) \ge 0$

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Generalising Borda

 $x \succeq y \Leftrightarrow \mathcal{F}(u_j(x), r_j(y)) \ge 0$

Special case:

$$x \succeq y \Leftrightarrow \sum_{j} u_{j}(x), \geq \sum_{j} u_{j}(y)$$

What do we need to know?

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Generalising Borda

 $x \succeq y \Leftrightarrow \mathcal{F}(u_j(x), r_j(y)) \ge 0$

Special case:

$$x \succeq y \Leftrightarrow \sum_{j} u_{j}(x), \geq \sum_{j} u_{j}(y)$$

What do we need to know?

the primitives: $\succeq_j \subseteq A \times A$ Differences of preferences:

 $(xy)_1 \succcurlyeq (zw)_1$

$$(xy)_1 \succcurlyeq (zw)_2$$

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Generalising Condorcet

$$x \succeq y \Leftrightarrow H_{xy} \ge H_{yx}$$

What do we need to know?

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Generalising Condorcet

$$x \succeq y \Leftrightarrow H_{xy} \ge H_{yx}$$

What do we need to know?

the primitives: $\succeq_j \subseteq A \times A$ An ordering relation on 2^{\succeq_j}

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Advantages and drawbacks

The Borda path

You have values. If correctly adopted, you have real values (meaningful measures of differences of preferences. Easy to bias. Easy to use it making big mistakes ... Too much axioms to satisfy.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Advantages and drawbacks

The Borda path

You have values. If correctly adopted, you have real values (meaningful measures of differences of preferences. Easy to bias. Easy to use it making big mistakes ... Too much axioms to satisfy.

The Condorcet path

You only need the ordinal pairwise comparisons. No need to measure quantitatively the differences of preferences. Less axioms to satisfy. The drawback is that you need further steps to become operational

Problem Statements Preference Aggregation **The Logic of Preferences** Rules Recommendations

Representation Problem

Often impossible to state explicitly the preference relation (\succeq), especially when A has a combinatorial structure:

"I prefer flying than driving to Paris" could then be:

$$p \land f \land \neg d \succ p \land \neg f \land d$$

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Representation Problem

Often impossible to state explicitly the preference relation (\succeq), especially when A has a combinatorial structure:

"I prefer flying than driving to Paris" could then be:

$$p \land f \land \neg d \succ p \land \neg f \land d$$

What is the advantage?

You can use SAT and more generally constraint satisfaction algorithms in order to "solve" the preference aggregation problem including complex conditional preference statements

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Different tools

Logical Languages

- Weighted Logics
- Conditional Logics
- ...

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Different tools

Logical Languages

- Weighted Logics
- Conditional Logics
- ...

Graphical Languages

- Conditional Preference networks (CP nets)
- Conditional Preference networks with trade-offs
- Generalised Additive Independence networks

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Association and dominance

Association rules

$$\langle \mathbf{x}_1 = \kappa, \mathbf{x}_2 = \mu \cdots \mathbf{x}_n = \lambda \rangle \ \rightarrow \ \mathbf{x} \in K_I$$
$$\langle \mathbf{x}_1 \ge \kappa, \mathbf{x}_2 \ge \mu \cdots \mathbf{x}_n \ge \lambda \rangle \ \rightarrow \ \mathbf{x} \in K_I$$

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Association and dominance

Association rules

$$\langle \mathbf{x}_1 = \kappa, \mathbf{x}_2 = \mu \cdots \mathbf{x}_n = \lambda \rangle \ \rightarrow \ \mathbf{x} \in K_I$$
$$\langle \mathbf{x}_1 \ge \kappa, \mathbf{x}_2 \ge \mu \cdots \mathbf{x}_n \ge \lambda \rangle \ \rightarrow \ \mathbf{x} \in K_I$$

Dominance rules

$$\langle x_1 \succeq^{\kappa} y_1, x_2 \succeq^{\mu} y_2 \cdots x_n \succeq^{\lambda} y_n \rangle \rightarrow x \succeq^k y$$

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Advantages and drawbacks

- Rules fit well for rating and assignment problems, less for other ones.
- Asymmetric models are easier to work with.
- Any logical or rule based model has an equivalent conjoint measurement model leading either to the Borda or the Condorcet path.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Preference relations do not automatically lead to operational recommendations

The Borda path is more likely to do it, but is expensive and manipulable

The Condorcet path is more likely to need further elaborations, but is less expensive and more robust

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Lessons learned

- There is no universal preference aggregation procedure and there will never exist one.
- The choice of an aggregation procedure is part of the modelling activity and need to be justified.
- Knowing the axiomatics behind aggregation allows to make reasoned choices.

Problem Statements Preference Aggregation The Logic of Preferences Rules Recommendations

Choosing is framed!

The properties of the set *A*, the type of problem statement, the holding or not of preferential independence, the explicit use of differences of preferences, the explicit use of negative preference statements, are the necessary and sufficient features for choosing, designing, justifying and axiomatically characterising any decision problem and the associated resolution methods and algorithms.

2 Using Preferences

Learning Preferences

- For doing what?
- What?
- How?

For doing what? What? How?

Why do we want to learn?

- Explaining
- Understanding
- Justifying
- Prescribing, Recommending

For doing what? What? How?

What are we trying to learn?

- Preferences (*x* is better than *y*);
- Second Order Preferences (cost is more important than mass);
- Models (observed decision behaviours);
- Parameters (of a fixed decision model)

For doing what? What? How?

- Learn if $x \succeq y$.
- Test if \succeq satisfies any nice properties.
- Test of \succeq has a numerical representation and construct it.
- What is the minimal number of questions, given a set A?

For doing what? What? How?

Second Order Preferences

Example

If $x \succeq_1 y$ and $y \succeq_2 x$ and $x \succeq y$, then $\succeq_1 \rhd \succeq_2$ (this applies for values, opinions and likelihoods).

For doing what? What? How?

Second Order Preferences

Example

If $x \succeq_1 y$ and $y \succeq_2 x$ and $x \succeq y$, then $\succeq_1 \rhd \succeq_2$ (this applies for values, opinions and likelihoods).

Weights ...

Weights are everywhere, but they do not exist ... they are powers of coalitions, trade-offs, etc..

40/71

For doing what? What? How?

Examples

Standard weighting parameters (weights attached to criteria)

• Weighted sum :
$$u(\mathbf{x}; \boldsymbol{\omega}) = \sum_{i=1}^{n} \omega_i x_i$$

• Weighted Tchebycheff :
$$u(\mathbf{x}; \omega) = \max_{i \in [1:n]} \{ \omega_i \frac{x_i^* - x_i}{x_i^* - x_{*i}} \}$$

Rank-dependent weighting parameters (weights attached to ranks)

• **OWA** :
$$u(\mathbf{x}; \mathbf{w}) = \sum_{i=1}^{n} \mathbf{w}_i x_{(i)}$$

• Choquet :
$$u(\mathbf{x}; \mathbf{v}) = \sum_{i=1}^{n} [x_{(i)} - x_{(i-1)}] \mathbf{v}(X_{(i)})$$

For doing what? What? How?

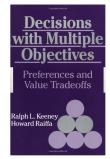
How do we learn preferences?

- Directly (asking...)
- Indirectly
 - Examples, Cases
 - Global Preference Statements
 - Observing user's clicking behavior

For doing what? What? How?

Classic Approaches for Utility Elicitation

- Assessment of multi attribute utility functions
 - Typically long list of questions
 - Focus on high risk decision
 - Goal: learn utility parameters (weights) up to a small error
- Which queries?
 - Local: focus on attributes in isolation
 - Global: compare complete outcomes
- Standard Gamble Queries
 - Choose between option x_0 for sure or a gamble $< x^{\top}, I, x_{\perp}, 1-I >$ (best option x^{\top} with probability *I*, worst option x_{\perp} with probability 1-I)



For doing what? What? How?

Standard Elicitation: Additive Models

- Consider an attribute (for example, color)
 - Ask for the best value (say, red)
 - Ask for worst value (gray)
 - Ask *local standard gamble* for each remaining color to assess it local utility value (*value function*)
- Refine intervals on local utility values
 - Bound queries
- Scaling factors
 - Define reference outcome
 - Ask global queries in order to assess the difference in utility occurring when, starting from the reference outcome, "moving" a particular attribute to the best / worst

For doing what? What? How?

Automated Elicitation vs Classic Elicitation

Problems with the classic view

- Standard gamble queries (and similar queries) are difficult to respond
- Large number of parameters to assess
- Unreasonable precision required
- Cognitive or computational cost may outweigh benefit

Automated Elicitation and Recommendation

Important points:

- Cognitively plausible forms of interaction
- Incremental elicitation until a decision is possible
- We can often make optimal decisions without full utility information
- Generalization across users

For doing what? What? How?

Adaptive Utility Elicitation

Utility-based Interactive Recommender System:

- Bel: the system's "belief" about the user's utility function u
- Opt(Bel): optimal decision given incomplete beliefs about u

Algorithm: Adaptive Utility Elicitation

Repeat until Bel meets some termination condition

- Ask user some query
- Observe user response r
- Opdate Bel given r

Recommend Opt(Bel)

Types of Beliefs

- Probabilistic Uncertainty: distribution of parameters, updated using Bayes
- Strict Uncertainty: feasible region (if linear constraints: convex polytope)

For doing what? What? How?

Minimax Regret

Intuition

Adversarial game; the recommender selects the item reducing the "regret" wrt the "best" item when the uniknown parameters are chosen by the adversary

- Robust criterion for decision making under uncertainty [Savage; Kouvelis]
- Effective for decision and elicitation under utility uncertainty [Boutilier et al., 2006]

Advantages

- Easy to update our knowledge about the user: whenever a new preferences is added, we just restrict more the feasible region (polytope)
- No "prior" assumption required
- MMR computation suggests queries to ask to the user

Limitations

- No account for noisy responses
- Formulation of the optimization depends on the assumption about the utility

For doing what? What? How?

Minimax Regret

Assumption: a set of feasible utility functions W is given

The pairwise max regret

 $PMR(\mathbf{x}, \mathbf{y}; W) = \max_{w \in W} u(\mathbf{y}; w) - u(\mathbf{x}; w)$

The max regret

 $MR(\mathbf{x}; W) = \max_{\mathbf{y} \in \mathbf{X}} PMR(\mathbf{x}, \mathbf{y}; W)$

The minimax regret

MMR(W) of W and the minimax optimal item \mathbf{x}_{W}^{*} :

$$MMR(W) = \min_{\mathbf{x}\in\mathbf{X}} MR(\mathbf{x}, W)$$

$$\mathbf{x}_{W}^{*} = \arg\min_{\mathbf{x}\in\mathbf{X}} MR(\mathbf{x}, W)$$

For doing what' What? How?

Example

item	feature1	feature2		
а	10	14		
b	8	12		
С	7	16		
d	14	9		
е	15	6		
f	16	0		

Linear utility model with normalized utility weights $(w_1 + w_2 = 1);$ $u(x; w) = (1 - w_2)x_1 + w_2x_2 = (x_2 - x_1)w_2 + x_1$

Notice: it is a 1 dimensional problem

Initially, we only know that $w_2 \in [0, 1]$

 $PMR(a, f; w_2) = \max_{w_2} u(f; w_2) - u(a; w_2)$ = $\max_{w_2} 6(1 - w_2) - 14w_2 = \max_{w_2} 6 - 20w_2$ = 6 (for $w_2 = 0$)

 $PMR(a, b; w_2) = \max_{w_2} u(b; w_2) - u(a; w_2) < 0$ (a dominates b; there can't be regret in choosing a instead of b!)

$$PMR(a, c; w_2) = \max_{w_2} -3(1-w_2) - 2w_2 = 2$$

(for $w_2 = 1$)

. . . .

For doing what? What? How?

Example (continued)

item	feature1	feature2		
а	10	14		
b	8	12		
С	7	16		
d	14	9		
е	15	6		
f	16	0		

Computation of the pairwise regret table.

$PMR(\cdot, \cdot)$	а	b	С	d	е	f	MR
a	0	-2	2	4	5	6	6
b	2	0	4	6	7	8	8
С	3	1	0	7	8	9	9
d	5	3	7	0	1	2	7
e	8	6	10	3	0	1	10
f	14	12	16	9	6	0	16

The MMR-optimal solution is a, adversarial choice is f, and minimax regret value is 6.

In reality no need to compute the full table (tree search methods) [Braziunas, PhD Thesis, 2011]

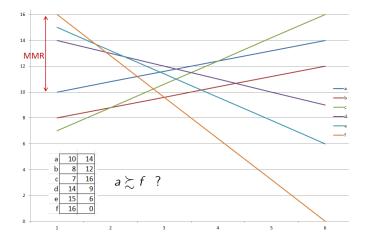
Now, we want to ask a new query to improve the decision. A very successful strategy (thought generally not optimal!) is the *current solution strategy*: ask user to compare *a* and *f*

Linear utility model with normalized utility weights $(w_1 + w_2 = 1);$ $u(x; w) = (1 - w_2)x_1 + w_2x_2 = (x_2 - x_1)w_2 + x_1$

Notice: it is a 1 dimensional problem

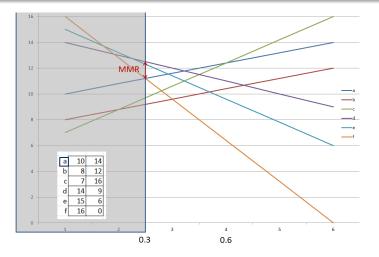
For doing what? What? How?

A graphical illustration for linear utility model (1/3)



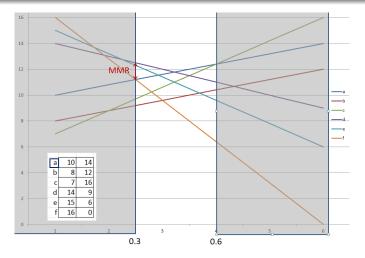
For doing what? What? How?

A graphical illustration for linear utility model (2/3)



For doing what' What? How?

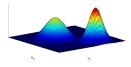
A graphical illustration for linear utility model (3/3)



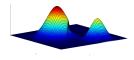
For doing what? What? How?

Bayesian Framework for Recommendation and Elicitation

- Let's assume utility u(x; w) parametric in w for a given structure, for example u(x; w) = w · x
- *P*(*w*) probability distribution over utility function
- Expected utility of a given item x $EU(x) = \int u(x) P(w) dw$
- Current expected utility of best recommendation x^{*} EU^{*} = max_{x∈A} EU(x); x^{*} = arg max_{x∈A} EU(x)
- When a new preference is known (for instance, user prefers apples over orange), the distribution is updated according to Bayes (Monte Carlo methods, Expectation Propagation)



(possible prior distribution)



(distribution updated after user feedback)

Algorithmics Argumentation Research Readings

- 3 Learning Preferences
- A little bit further
 - Algorithmics
 - Argumentation
 - Research
 - Readings

Algorithmics Argumentation Research Readings

How easy is to represent preferences?

- Explicit representation of binary relations can be impossible in combinatorial domains.
- Logical representations are more compact, but only special cases allow to easy algorithmic solutions.
- Implicit representations (value functions) are easier to handle, but need much more careful and expensive modelling.

Algorithmics Argumentation Research Readings

How easy is to aggregate preferences?

- Only simple additive value functions are really easy to handle.
- Non linear value functions often require an exponential number of parameters to learn and may lead to non linear optimisation algorithms.
- Direct aggregation of binary relations through majority rules require careful hierarchical modelling in order to avoid combinatorial explosion.

Algorithmics Argumentation Research Readings

How easy is to learn preferences?

Generally speaking is complicated ...

- Direct protocols are cognitively complex.
- Indirect protocols are cognitively simple, but most of the times require complex (NP hard) algorithms or heuristics.
- Parameter estimation works fine only for linear models.

Algorithmics Argumentation Research Readings

How easy is to design learning protocols?

- Minimal number of questions.
- Cognitive burden for the client.
- Accuracy vs. constructive learning.

Algorithmics Argumentation Research Readings

Response Models

Model the user's cognitive ability of answering correctly to a preference query

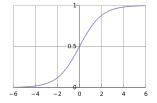
- Noiseless responses (unrealistic but often assumed in research papers!)
- Constant error (can model distraction, e.g. clicking on the wrong icon)
- Logistic error (Boltzmann distribution), a commonly used probabilistic response model for comparison/choice queries: "Among options in set S, which one do you prefer?"

probability of response "x is my preferred item in S"

$$P_r(S \to x) = rac{e^{\gamma u(x)}}{\sum_{y \in S} e^{\gamma u(y)}}$$

 γ is a temperature parameter (how "noisy" is the user).

For comparison queries ("Is item1 better than item2?") P(selecting 1st item) as a function of the difference in utility



Algorithmics Argumentation Research Readings

What Query to Ask Next?

- The problem can be modeled as a POMDP [Boutilier, AAAI 2002], however impractical to solve for non trivial cases
- Idea: ask query with highest "value", a posteriori improvement in decision quality
- In a Bayesian approach, (Myopic) Expected Value of Information

$$EVOI_{ heta}(q) = \sum_{r \in R} P_{ heta}(r) EU^*_{ heta|r} - EU^*_{ heta}$$

where *R* is the set of possible responses (answers); θ is the current belief distribution and $\theta | r$ the posterior and $P_{\theta}(r)$ the prior probability of a given response.

- Ask query $q^* = \arg \max EVOI_{\theta}(q)$ with highest EVOI
- In non-Bayesian setting, one can use non probabilistic measures of decision improvement (for example, worst-case regret reduction, ...)

Algorithmics Argumentation Research Readings

Argumentation Theory

Argumentation framework

An argumentation framework AF is a tuple (Ar, \mathcal{R}) , where Ar is a set of arguments and \mathcal{R} is a binary relation on Ar (i.e., $\mathcal{R} \subseteq Ar \times Ar$). An argument A attacks an argument B iff $(A, B) \in \mathcal{R}$.

Conflict-free Extension

Let (Ar, \mathcal{R}) be an argumentation framework. The set $S \subseteq Ar$ is *conflict-free* if and only if there are no $A, B \in S$ such that $(A, B) \in \mathcal{R}$. We also say that *S* defends *A* (or, the argument *A* is *acceptable with respect to S*) if, $\forall B \in Ar$ such that $(B, A) \in \mathcal{R}, \exists C \in S$ such that $(C, B) \in \mathcal{R}$.

Algorithmics Argumentation Research Readings

Semantics

Acceptability semantics

Let (Ar, \mathcal{R}) be an argumentation framework and set $S \subseteq Ar$.

- *S* is an *admissible* extension if and only if it is conflict-free and defends all its elements.
- S is a *complete* extension if and only if it is conflict-free and contains precisely all the elements it defends, i.e., S = {A | S defends A}.
- *S* is a *grounded* extension if and only if *S* is the smallest (w.r.t. set inclusion) complete extension of *AF*.
- *S* is a *preferred* extension if and only if *S* is maximal (w.r.t. set inclusion) among admissible extensions of *AF*.
- *S* is a *stable* extension if and only if *S* is conflict-free and $\forall B \notin S, \exists A \in S$ such that $(A, B) \in \mathcal{R}$.

Algorithmics Argumentation Research Readings

Why do we need that?

- Why $x \succeq y$?
- Why x has been chosen?
- Why y has not been chosen?

Deep reasons

Not only factual justifications, but also methodological ones.

Algorithmics Argumentation Research Readings

EURO WG Preference Handling

http://preferencehandling.free.fr/

Established in 2007 (but practically operating since 2004), coordinated by Ulrich Jünker, it organises an annual MPREF workshop (associated to major AI, DB or OR conferences) and maintains an active site full of information, tutorials, news etc..

EURO The Association of European

Operational Research Societies

Algorithmics Argumentation Research Readings

Algorithmic Decision Theory

http://www.algodec.org

- Formally initiated as a COST ACTION (http://www.cost-ic0602.org) started in 2007 and ended in 2011.
- Evolved as an international community addressing issues related to computational aspects of decision theory.
- Organised the 1st (Venice, IT, 2009) and 2nd (Rutgers, NJ, USA) International Conferences on Algorithmic Decision Theory.
- Organising 3rd International Conference in Brussels, BE, the 13-15/11/2013 (http://www.adt2013.org).
- Proceedings available within the Springer-Verlag LNAI series (volumes 5783, 6992, 8176).

Algorithmics Argumentation Research Readings

Computational Social Choice

http://www.illc.uva.nl/COMSOC/

- Is an international community concerned by issues related to computational aspects of social choice theory and how it can be used in settings others than voting and collectively deciding.
- It is also a COST Action (http://www.illc.uva.nl/COST-IC1205/, started in 2012.
- Organising a series of International Workshops (Amsterdam, 2006;, Liverpool, 2008; Düsseldorf, 2010; Krakow, 2012).
- The next COMSOC International Workshop will take place at CMU, Pittsburgh the 23-25/06/2014 (http://www.cs.cmu.edu/~arielpro/comsoc-14/).

Algorithmics Argumentation Research Readings

References 1 (Fundamentals: Preference Modeling)

- Roberts F.S, Measurement theory, with applications to Decision Making, Utility and the Social Sciences, Addison-Wesley, Boston, 1979.
- Roubens M., Vincke Ph., *Preference Modeling*, Springer Verlag, Berlin, 1985.
- Fishburn P.C., Interval Orders and Interval Graphs, J. Wiley, New York, 1985.
- Fodor J., Roubens M., Fuzzy preference modelling and multicriteria decision support, Kluwer Academic, Dordrecht, 1994.
- Pirlot M., Vincke Ph., Semi Orders, Kluwer Academic, Dordrecht, 1997.
- Fishburn P.C., "Preference structures and their numerical representations", *Theoretical Computer Science*, vol. 217, 359-383, 1999.
- Öztürk M., Tsoukiàs A., Vincke Ph., "Preference Modelling", in M. Ehrgott, S. Greco, J. Figueira (eds.), State of the Art in Multiple Criteria Decision Analysis, Springer Verlag, Berlin, 27 - 72, 2005.

Algorithmics Argumentation Research Readings

References 2 (Preference Aggregation and Learning)

- Arrow K.J., Social choice and individual values", J. Wiley, 1951.
- Sen A.K., Collective Choice and Social Welfare, North Holland, 1970.
- Keeney R.L., Raiffa H., Decisions with multiple objectives: Preferences and value tradeoffs, J. Wiley, 1976.
- Arrow K.J., Raynaud H., Social choice and multicriterion decision-making, MIT Press, 1986.
- Wakker, P.P., Additive Representations of Preferences: A new Foundation of Decision Analysis, Kluwer Academic, 1989.
- Tanguiane, A.S., Aggregation and Representation of Preferences, Springer-Verlag, 1991.
- Kahneman D., Tversky A., *Choice, Values, Frames*, The Cambridge University Press, 2000.

Algorithmics Argumentation Research Readings

References 3 (More ...)

- von Wright G.H. *The logic of preference*, Edinburgh University Press, 1963.
- Pawlak Z., Rough Sets Theoretical Aspects of Reasoning about Data", Kluwer Academic, 1991.
- Boutilier C., Brafman R.I., Domshlak C., Hoos H.H., Poole D., "CP-nets: A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements", *Journal of Artificial Intelligence Research*, vol. 21, 135-191, 2004.
- Lang J., "Logical representation of preferences", in D. Bouyssou, D. Dubois, M. Pirlot and H. Prade (eds.), *Decision-Making Process: Concepts and Methods*, J. Wiley, 321-363, 2009.
- Janowitz M.F., Ordinal and Relational Clustering, World Scientific, 2010.
- Füurnkranz J., Hüllermeier E., *Preference Learning*, Springer Verlag, 2010.
- Modgil S., Prakken H., "A general account of argumentation with preferences', *Artificial Intelligence*, vol. 195, 361-397, 2013.

Algorithmics Argumentation Research Readings

The Authors

- Alexis Tsoukiàs is a research director at CNRS and the director of the Laboratoire d'Analyse et Modélisation de Systèmes pour l'Aide à la DEcision (LAMSADE) of Paris Dauphine University.
- Paolo Viappiani is a researcher at CNRS working at the computer science lab of the University Pierre et Marie Curie in Paris (UPMC).