
Efficient Discovery of Relevant
Maximal Behavioral Patterns from Event Logs

Mehdi Acheli1[0000−0001−9649−7127](�), Daniela Grigori1, and Matthias Weidlich2

1 Univ. Paris-Dauphine, CNRS UMR[7243], LAMSADE, 75016 Paris, France
mehdi.acheli@dauphine.fr

daniela.grigori@dauphine.fr
2 Humboldt-Universität zu Berlin, Germany

matthias.weidlich@hu-berlin.de

Abstract. Techniques for process discovery support the analysis of in-
formation systems by constructing process models from event logs that
are recorded during system execution. In recent years, various algorithms
to discover end-to-end process models have been proposed. Yet, they do
not cater for domains in which process execution is highly flexible, as the
unstructuredness of the resulting models renders them meaningless. It
has therefore been suggested to derive insights about flexible processes by
mining behavioral patterns, i.e., models of frequently recurring episodes of
a process’ behavior. However, existing algorithms to mine such patterns
suffer from imprecision and redundancy of the mined patterns and a
comparatively high computational effort. In this work, we overcome these
limitations with COBPAM, a combination-based algorithm for behav-
ioral pattern mining. It exploits a partial order on potential patterns to
discover only those that are maximal, i.e., most precise and relevant, i.e.
most informative. Moreover, COBPAM exploits that complex patterns
can be characterized as combinations of simpler patterns, which enables
pruning of the pattern search space. Efficiency is improved further by
evaluating potential patterns solely on parts of an event log. A case study
with real-world data demonstrates how COBPAM improves over the
state-of-the-art in behavioral pattern mining.

Keywords: Behavioral Patterns · Process Discovery · Pattern Mining.

1 Introduction

The research area of process mining connects the disciplines of data mining and
machine learning with process modeling and analysis [1]. Specifically, the analysis
of information systems may be supported by exploiting the event logs recorded
during their execution. Techniques for process discovery use such event logs as
a starting point and construct a model of the underlying end-to-end process.
Recently, a plethora of process discovery algorithms has been proposed [3]. These
algorithms impose varying assumptions on the event log used as input, e.g., in
terms of the event model [21]; adopt different target languages, e.g., Petri-nets [22],

2 M. Acheli et al.

Trace ID Event Sequence

1 U R Y G A K F B C
2 R U T H A C E D B
3 X Y T J A H C I B J
4 X T Y H A D C E K B
5 X Y U G J H K F T

(a)

seq

and

CB

A

(b)

Sequential Patterns

AB
AC

(c)

(d)

Fig. 1: (a) Event log; (b) behavioral pattern for the log; (c) 2-length sequen-
tial patterns extracted with PrefixSPAN [18]; (d) end-to-end model mined by
FHM [27].

process trees [15], or BPMN [8]; and differ in how they cope with noise and
incompleteness, e.g., avoiding over-fitting [28] or filtering noise [6].

Most existing discovery algorithms, however, aim to unify all the behavior
observed in the log into an end-to-end model. As such, they are not suited for
domains in which process execution is highly flexible, as the resulting models
are unstructured and are subject to over-generalization [1]. The reason being
that there is a large variability of the behavior of different process instances
and a model capturing all variations tends to be too complex. Against this
background, it was suggested to derive insights about flexible processes by mining
behavioral patterns [25,26]. These patterns are formalized as process models, yet
they capture only comparatively small episodes of a process’ behavior that occur
frequently. The basic idea behind behavioral patterns is illustrated in Fig. 1. For
the example log, given as a set of traces, i.e., sequences of events that denote
the executions of different activities, a traditional discovery algorithm such as
the Flexible Heuristics Miner (FHM) [27] would yield a very complex model.
However, one may observe that the traces show a specific behavioral pattern:
An execution of activity A is followed by B and C in parallel. Detecting such a
pattern provides a general understanding of the regularities in process execution.
Note though, that such a pattern cannot be detected using standard techniques
for sequential pattern mining, such as PrefixSPAN [18], as those would miss
complex behavioral dependencies such as concurrency and exclusive choices.

However, existing algorithms [25,26] to mine behavioral patterns suffer from
imprecision of the mined patterns, redundancy in the output and a comparatively
high computational effort. Here, imprecision means that mined patterns are not
maximal, i.e., while certain behavior is frequent, patterns that capture only a
part of some frequent behavior are discovered. For instance, in Fig. 1, the pattern
seq(a,b) is frequent. Arguably, this pattern does not lead to new insights on the
process if the pattern seq(a, and(b,c)) is known, so that it is sufficient to discover
the latter one. At the same time, existing mining algorithms suffer from high

Title Suppressed Due to Excessive Length 3

run-times that are due to the fact that pattern candidates are always evaluated
based on the complete event log.

In this paper, we overcome the above limitations with COBPAM, a novel
combination-based algorithm to mine behavioral patterns that are formalized
as process trees. It identifies all trees of which the behavior can be found in a
certain number of traces of the event log, which takes up the notion of support
proposed for patterns in sequence databases [10]. Moreover, we consider a notion
of language fitness to assess how strongly a tree materializes. Based thereon, the
contributions of COBPAM are threefold:
(1) It defines a partial order on potential patterns to discover only those that

are maximal and relevant, thereby improving the effectiveness of behavioral
pattern mining.

(2) It efficiently explores the pattern search space by pruning strategies, exploiting
that complex patterns are combinations of simpler patterns.

(3) It further improves efficiency by considering only a subset of traces, when
evaluating the support and language fitness of a potential pattern.

The paper is structured as follows. Section 2 reviews related work on process
discovery and mining of sequential and behavioral patterns. Preliminaries are
given in Section 3. We then define algebraic operations and structures on potential
behavioral patterns in Section 4, while quality metrics for them are presented
in Section 5. Our novel mining algorithm for behavioral patterns, COBPAM, is
introduced in Section 6. We evaluate the algorithm in a case study with real-world
event logs in Section 7, before we conclude and discuss future research directions
in Section 8.

2 Related Work

The discovery of behavioral patterns defined with respect to their frequency in a
log connects two research areas: sequential pattern mining and process mining. In
this section, we will mention the algorithms in the former area that inspired our
work and then proceed with an overview of process mining algorithms that aim
to derive insights for event logs that have been recorded for flexible processes.

GSP [24] is a sequential pattern mining algorithm that combines pairs of
sequential patterns of length k to obtain patterns of length k + 1. As will be
discussed later, we adopt this principle for COBPAM when generating behavioral
patterns. We also borrow the concept of a projected database in the form of
log projections from the PrefixSPAN algorithm [18] to evaluate the pattern
candidates on the minimal number of traces possible. Moreover, we adopt the
maximality principle as discussed for sequential patterns in [10].

Trace clustering is an active research area concerned with inferring insights
from logs of flexible processes [4, 5, 11, 23]. These techniques group traces into
homogeneous clusters such that process discovery techniques applied on each
cluster yield comparatively structured models. Such techniques are well-suited if
the absence of structure appears in the disparity between traces. Yet, they do

4 M. Acheli et al.

not cater for cases, where the flexibility in process execution is seen inside single
traces.

The Fuzzy miner [12] targets the domain of flexible processes and generates
simplified and abstracted process models describing only the most significant
behavior. It can be customized through different metrics and parameters to
control the level of aggregation and abstraction of events and relationships.
Nevertheless, it fails to mine certain behavioral structures, such as concurrence
and choices.

The Declare Miner [16] discovers a set of rules that are satisfied by a certain
share of traces. These rules come in the form of relationships between activities,
such as two activities being always executed together in a trace, potentially in a
fixed order. These rules relate to the presence or the absence of behavior. Each
rule, however, is limited to a relationship between at most two activities, while
our approach considers patterns with an arbitrary number of activities.

The Episode Miner [14] is another algorithm that discovers frequent pat-
terns with partial order constructs. It consists of sets of activities linked by
follows relationships. The method, however, does not support loops and choices
constructs.

Our work is inspired by the discovery of Local Process Models (LPMs) [26].
Specifically, we also adopt the model of process trees to represent behavioral
patterns that are observed in event logs recorded in unstructured domains.
However, we note that the existing algorithms for LPM discovery limit the size
of the patterns and are not grounded in the traditional definition of support
and traces, as known from sequence databases. Rather, when mining LPMs, a
trace does not only represent an instance of a specified process, but potentially
encompasses several executions. Moreover, the algorithm of [26] follows a generate-
and-test approach, where only frequent trees are expanded by replacing an activity
with a small behavior. This way, the same tree can be evaluated multiple times and
infrequent trees that may become frequent when joined by a choice operator are
completely discarded. In addition, choice involving trees generated following the
method are considered irrelevant in our algorithm since any frequent tree added to
another behavior is frequent. On the other hand, the method performs alignments
over the entire log which reveals to be computationally heavy. Compared to the
mining of LPMs, COBPAM adopts a well-established definition of support and
introduces number of improvements such us advanced pruning, enhanced output
and targeted evaluations on subsets of the log. Note that the initial approach
to discover LPMs [26] has been extended to include goal-driven strategies to
mine patterns based on their utility and constraints satisfaction [25]. Yet, these
extensions are orthogonal to our work.

3 Preliminaries

This section presents basic definitions. We begin with the notion of event log.

Definition 1. Considering a set of events (activities) A, an event log L is a
multiset of traces where each trace is a finite sequence of events e ∈ A. A∗ denotes

Title Suppressed Due to Excessive Length 5

the set of all sequences over A and a trace σ ∈ A∗ can be noted 〈e1e2...en〉. |L|
denotes the size of the event log, meaning the number of traces it contains.

Process discovery techniques take as input event logs and output process models
in a certain representational language. One of these languages is process trees [7].
They have the particularity of modeling only sound process models and can be
converted to many other notations : Petri nets [19], BPMN [17], EPC [20], UML
activity diagrams [13] or UML statechart diagrams [13].

Definition 2. A process tree is an ordered tree structure such that leaf nodes
represent activities and non-leaf nodes represent operators. Considering a set
of activities A, a set of operators Ω = {seq, and, loop, xor}, a process tree is
recursively defined as follows:

– a ∈ A is a process tree.
– considering an operator x ∈ Ω and two process trees P1, P2, x(P1, P2) is a

process tree having x as root, P1 as left child and P2 as right child.

The language of a process tree Σ(P) is the set of traces it generates. In other
words, it’s the behavior it models. The semantics of each operator are presented
below :

– seq(P1, P2) whose behavior is the behavior of P1 followed by the behavior of
P2. For example, considering two activities a, b ∈ A, Σ(seq(a, b)) = {〈a, b〉}.

– and(P1, P2) whose behavior is the behavior of P1 in parallel with the behavior
of P2. This operator is symmetrical; meaning : Σ(and(a, b)) = Σ(and(b, a)) =
{〈a, b〉, 〈b, a〉}.

– xor(P1, P2) whose behavior is either the behavior of P1 or that of P2. This
operator is also symmetrical. Σ(xor(a, b)) = Σ(xor(b, a)) = {〈a〉, 〈b〉}.

– loop(P1, P2) is applied to two children processes. A do part P1 and a redo part
P2. The behavior of the process starts by P1 and then loops back and forth
from P2 to P1. Σ(loop(a, b)) = {〈a〉, 〈aba〉, 〈ababa〉...}. It should be noted that
the do part "a" is part of the language even without the looping over the redo
part "b". On another hand, since the language associated to a loop operator
is infinite, we define the n-language of a tree Σn(P) as the set of language
traces where each loop is traversed n times, e.g., Σ1(loop(a, b)) = {〈a〉, 〈aba〉}

4 Algebraic Operations and Structures on Process Trees

Now that we defined our process modeling language, we devise a method for
constructing process trees incrementally. We propose to combine two process
trees composed of n activities to get process trees of n+1 activities. The process
trees combined must be identical in every way except at the level of one leaf. We
impose conditions on these leaves as follows:

Definition 3. Given a process tree P of depth i, a leaf a of depth d is called
potential combination leaf if and only if d ≥ i− 1 and there is no leaf b of depth
d′ on the left of a such that d′ > d.

6 M. Acheli et al.

Two process trees that can be combined are called seeds.

Definition 4. P1 and P2 are called seeds if they contain two potential combi-
nation leaves (a in P1 and a′ in P2) such that by replacing a in P1 with a′, we
obtain P2. In other words, they are identical in every way except at the level of
the leaves a and a′. For instance, seq(a, b) and seq(a, c) are seeds.

The algebraic operation of combination resulting in new process trees is
defined formally as:

Definition 5. A combination of two seeds P1 and P2 through an operator x is
an operation generating two process trees. Starting from P1, the combination leaf
a is replaced by the operator x whose children are set to a and a′. a is left child in
one resulting tree and right child in the other. a and a′ are called the combination
leaves and x is called the combination operator. The Fig. 2a shows an example of
a combination of two process trees seq(a, b) and seq(a, c) through the concurrence
operator resulting in the two trees : seq(a, and(b,c)) and seq(a, and(c,b)).

Fig. 2: (a) a combination operation of two process trees (b) the construction tree
of the process tree seq(a, and(b,c))

Thanks to the conditions characterizing the potential combination leaves, the
following theorem holds:

Theorem 1. Considering a process tree P of depth i ≥ 1, there is a unique pair
of seeds P1 and P2 whose combination through a certain operator x results in P .
P1 and P2 are called "the" seeds of P and x is called the defining operator of P .

Title Suppressed Due to Excessive Length 7

Proof. Let’s consider a process tree P of depth i. It will contain at least two
leaves of depth i since all operators have two children. Let 2n (n ≥ 1) be the
number of leaves of depth i in P . We will consider two cases:

n = 1: P has only two leaves aj and ak of depth i that are children nodes of
some operator x. In parallel, let us consider two process trees P1 and P2 which
are the same as P except that the node x is replaced with the activity aj in P1

and with ak in P2 leaving thus P1, P2, aj and ak with depth i− 1. Now, since
there are no deeper leaves on the left of aj (resp. ak) in P1 (resp. P2), P can
be obtained by applying the combination operation on P1 and P2 through the
operator x.

Moreover, there is only a unique couple of seeds whose combination results
in P . To prove that, we suppose that there exists another couple P ′1, P ′2 that
can produce P when combined. This means that P ′1, P ′2 are similar except for a
single leaf (a′j in P ′1 and a′k in P ′2). The two leaves appear in P under a certain
operator x′ which corresponds to the combination operator. Besides, considering
how the combination is realized, any other branch in P appears both in P ′1 and
P ′2 which means the depth of these two processes is i since the branches in P
leading to aj and ak are of depth i.

However, the combination being performed means that, in P ′1 and P ′2, a′j and
a′k are of at least depth i− 1. This leaves two cases:
– a′j and a′k are of depth i− 1 in P ′1 and P ′2 meaning their depth in P after the

combination is i which contradicts the hypothesis that there exists only two
leaves aj and ak of depth i in P .

– a′j and a′k are of depth i in P ′1 and P ′2 meaning their depth in P after the
combination is i+ 1 which contradicts the hypothesis that P is of depth i.

We conclude that P ′1 and P ′2 cannot exist and that P1 and P2 are the unique
seeds that produce P .

n > 1: In this case, P has at least four leaves of depth i. Let aj be the leftmost
deepest leaf, x its parent operator and ak the other child of x. We then consider
two process trees P1 and P2 that are the same as P except that x is replaced
with aj in P1 and with ak in P2. These process models are of depth i and contain
2(n− 1) leaves of the same depth. Moreover, by construction, there are no deeper
leaves on the left of aj (resp. ak) in P1 (resp. P2) and aj (resp. ak) is of depth
i− 1 in P1 (resp. P2). That means P1 and P2 can be combined resulting in P .

In addition, these two processes are the unique pair whose combination
outputs P . Again, to prove this, we will consider another pair P ′1 and P ′2 which,
when combined results in P . This means, the only difference between them is a
single leaf (a′j in P ′1 and a′k in P2). These two leaves appear in P under a certain
operator x′ which corresponds to the combination operator between P ′1 and P ′2.
Besides, any branch leading to a leaf different than a′j and a′k present in P also
appears in P ′1 and P ′2. Hence, the depth of the two fragments is also i and the
leaves a′j and a′k are of at least depth i− 1 in P ′1 and P ′2. We will separate the
cases :
– a′j and a′k are of depth i− 1 in P ′1 and P ′2 meaning their depth in P is i and

since aj is the leftmost deeper leaf, then it’s on the left of a′j and a′k in P .

8 M. Acheli et al.

Thus, there exists a deeper leaf (of depth i) on the left of a′j (resp. a′k) in
P ′1 (resp P ′2) which means P ′1 and P ′2 are not seeds and that contradicts the
combination conditions.

– a′j and a′k are of depth i in P ′1 and P ′2 meaning their depth in P is i+1 which
contradicts the hypothesis that P is of depth i.

We conclude that P ′1 and P ′2 can’t exist and that P1 and P2 are the unique
couple of process trees that produce P . In conclusion, any process tree of depth
i ≥ 1 is the result of a combination of two unique seeds. ut

Since every process tree of depth superior to zero results from the combination
of two unique seeds, we can introduce an additional structure.

Definition 6. Given a certain process tree P of depth i ≥ 1, we define its unique
construction tree whose nodes are process trees. The root is P , the leaves are trees
with single activity nodes and each node has for children its seeds. The leaves are
in fact, the activities that appear in P . The Fig. 2b shows the construction tree
of the process tree seq(a, and(b,c)).

Moreover, a more complex graph structure can be defined.

Definition 7. Let A be a set of activities. We define the construction graph over
A. An infinite oriented acyclic graph whose nodes are all possible process trees.
An edge links a node n1 to another n2 if and only if n1 is seed of n2. We say
that n2 contains n1 through the defining operator of n2.

To identify each tree, COBPAM uses the concept of representative word.

Definition 8. We assign to each process tree P a unique identifier RW (P).
It’s a sequence of characters called representative word. We construct it through
the pre-order traversal of its nodes while outputting the name of activities and
operators. For example, the representative word of P = seq(a, and(b, c)) is "(a (b
c and) seq)".

5 Quality Metrics

In this section, we formally define the quality metrics. In order to calculate them,
we call out for the conformance checking side of process mining. Basically, we
need a boolean function ε(σ, P) that returns true if the trace σ fits the process
tree P , false otherwise. We use alignments [2] that try to align a process tree i.e.
the modeled behavior with the log i.e. the observed behavior. For that matter,
we convert the tree P to a Petri net and try to replay the trace on it. We set two
tokens, one at the start position of the Petri net and another at the start of the
trace. The goal is to move synchronously on the log and on the model. This is
not always possible. If a behavior is recorded on the log but shouldn’t happen
according to the process model, a move on log is stored in the alignment and the
token ignores the recorded action. On the contrary, if a behavior is modeled and
should appear in the log at a certain place but doesn’t, we register a move on

Title Suppressed Due to Excessive Length 9

model and the token ignores the modeled behavior. Each of these operations are
unwanted as they represent deviations between the log and the Petri net under
evaluation. The goal is thus to find an optimal alignment that minimizes the
number of these operations while advancing the tokens to the end positions of
both the Petri net and the trace. In fact, as in [26], we only allow moves on log. If
the other type of moves is applied too, a trace would be said to fit the Petri net
and by extension the process tree while it fits only a part of its behavior. Besides,
thanks to the alignments, the exact behavior exhibited by the trace among all
the behaviors allowed by the model is identified. We suppose it’s the result of
a function υ(σ, P). For example, in Fig. 1, the behavior exhibited by the trace
(1) is 〈ABC〉 while the one exhibited by trace (2) is 〈ACB〉. Both behaviors are
part of the language of the pattern discovered.

We employ these functions to define the concept of projection and the quality
metrics manipulated by COBPAM.

Definition 9. A projection is a subset of a log associated to a process tree P
that contains the traces it can be aligned with. In other words, it’s the set of traces
that exhibit its behavior.

proj(P) = {σ ∈ L|ε(σ, P) = 1}

Definition 10. Given a log L, the frequency of a process tree P is the number
of traces that exhibit its behavior. Meaning, it’s the size of its projection:

frequency(P) =
∑
σ∈L

ε(σ, P) = |proj(P)|

Its support, on the other hand, is the frequency over the size of the log:

support(P) =
frequency(P)

|L|
Definition 11. Given a log L, the language fitness of a process tree P is the
ratio between the behavior seen in the log and all the behavior allowed by the
model :

language_fitness(P) =
|{υ(σ, P)|σ ∈ L ∧ ε(σ, P) = 1}|

|Σ(P)|

If P contains loop operators, its language will be infinite and so its language
fitness will tend to zero. In this case, we use the n-language of P :

language_fitness(P) =
|{υ(σ, P)|σ ∈ L ∧ ε(σ, P) = 1}|

|Σn(P)|

6 COBPAM, Mining Behavioral Patterns through
Combinations

In this section, we present a new algorithm to mine process trees that depict
frequent behaviors observed in a log. The main idea is to explore the construction

10 M. Acheli et al.

graph starting from single activities. Each process tree is evaluated against a
portion of the log that may exhibit its behavior in order to calculate its quality
metrics. We also use what we call projection and pruning rules to limit the
number of evaluated process trees and the number of traces they are tested upon.
Furthermore, we only output relevant maximal process trees.

In Section 6.1, we bring attention to the notion of equivalence between process
trees. We then state a monotonocity property characterizing the search in Section
6.2. We continue with the definition of what we consider relevant and maximal
process trees in Section 6.3 and introduce next the projection rules in Section
6.4. In Section 6.5, a detailed view of the algorithm is given.

6.1 Equivalence between Process Trees

Since potential patterns are represented as trees, we define two types of equiva-
lence:

– Behavioral equivalence: two trees are behaviorally equivalent if their
languages are equal. In other words, the set of traces they generate are the
same. For example, seq(seq(a,b),c) is behaviorally equivalent to seq(a,seq(b,c)).

– Syntactical equivalence: This equivalence appears as a direct result to
the existence of symmetrical operators in the process trees. Due to the
interchangeability of the children of such operators, many similar versions of
a process tree can exist. Ex: seq(a, and(b,c)) and seq(a, and(c,b)). In fact,
syntactically equivalent trees are also behaviorally equivalent.

Spotting behaviorally equivalent process trees reveals to be computationally
heavy since some of them have infinite languages. However, outputting syntacti-
cally equivalent trees may be avoided by forcing an order on the children of each
symmetrical operator. We adopt the lexicographical order of the leaves so that
the left child must be inferior to the right child. In the case where either or both
children are sub-trees, the comparison is performed according to what we call
representative leaves. The representative leaf of a sub-tree is the lowest leaf in
the lexicographical order among all the leaves it contains. As a result, the form
seq(a, and(c,b)) is not valid and we would output only seq(a, and(b,c)).

6.2 Monotonicity Property

The combination operation replaces a potential combination leaf with a sub-
tree representing a portion of behavior that either extends the tree behavior
when using the choice operator or constraints it when using a sequence, loop
or concurrence operator. When evaluating a tree whose defining operator is a
sequence, a loop or a concurrence operator, we essentially want that the trace
exhibits all the behavior of its seeds except at the position of the combination leaf.
There we want an additional behavior replacing the appearance of an activity in
the trace. The shared behavior between a process tree and its seeds represents
a context to which the additional behavior is joined. In consequence, if a trace

Title Suppressed Due to Excessive Length 11

doesn’t exhibit the context, there is no need to evaluate the added behavior.
We can thus infer that if one of the seeds isn’t frequent, meaning there isn’t
enough traces that exhibit the context, there is no need to evaluate the tree
which will not be frequent too. This is a monotonicity property on the support
metric. If considering two seeds, one isn’t frequent then any process tree resulting
from their combination through the constraining operators (sequence, loop and
concurrence) isn’t frequent. In other words, the seeds of a frequent process tree
obtained through the constraining operators are both frequent. Thanks to this
property, we can specify a first pruning rule. If a seed is infrequent, it won’t
be used in a combination operation using the sequence, loop or concurrence
operator.

6.3 Relevant and Maximal Process Trees

Relevant process trees are ones that bring insight to the analyst. In our method,
we discard three types of irrelevant process trees:

– the ones that have the choice operator for root. Indeed, a choice at that level
makes the behavior of the model a union of completely separate behaviors.
However, the union of a certain number of behaviors is bound to add up
and make the model frequent. Thus, a model constructed this way is of little
interest and is comparable to a trace model.

– the ones resulting from a combination through a choice operator and one
of the seeds is frequent. Actually, if a tree is frequent, combining it with
any other tree through the choice operator results in a frequent process tree.
Hence, we can define a second pruning rule : when performing a combination
using the choice operator, both seeds must be infrequent.

– the ones displaying a loop operator applied to two children: loop(P1, P2) such
that only the do part P1 appears in the log. Indeed, since the language of
the loop operator allows for the do part to appear without looping over the
redo part, the appearance of the behavior of P1 is an instance of the behavior
of loop(P1, P2) and an instance of loop(loop(P1, P2), P3) and so on. To be
relevant, a loop behavior is not validated until the redo part appears at least
once.

On another hand, since the monotonicity property states that a frequent
process tree P whose defining operator is a constraining operator has both its
seeds as frequent, we can output only P as its seeds can be simply derived and
are known to be frequent. In other words, we could say that P is representative
of its seeds. Furthermore, by transitivity, P is representative of the paths in
the construction tree composed solely of trees defined by constraining operators.
More generally, in the context where we search for frequent behavioral patterns
of at most depth i, we output frequent process trees that are not contained
through a constraining operator in another frequent process tree of depth inferior
to i. Those are maximal behavioral patterns. In the example of Fig. 1, the trees
seq(a,b) and seq(a,c) are frequent but not maximal since they are contained in

12 M. Acheli et al.

seq(a,and(b,c)) as shown through the construction tree in Fig. 2b. Behaviorally,
maximal process trees represent the most complex behavior that includes different
behaviors of lesser complexity. They are the most interesting to the analyst since
they give a comprehensive accurate view.

6.4 Projection Rules

We recall that the goal of the method is to retrieve frequent process trees. Its speed
depends on the size of the construction graph which increases in an exponential
manner when the number of activities increases and on the size of the log on which
the trees are evaluated. A few rules can help accelerate the patterns extraction
by limiting the evaluation of the trees to portions of the log. The following rules
involving projections are used to assess the frequency of a process tree against
the minimum number of traces :

– When performing a combination through a constraining operator, the be-
havior associated with the resulting process trees may only appear in the
intersection of the projections of the seeds. As a result, we only consider the
said intersection in order to calculate the quality metrics. Moreover, the size
of the intersection of the seeds projections represents an upper bound for the
frequency of the resulting trees. Therefore, if the upper bound is less than
the frequency threshold, the combination is canceled. This represents a third
pruning rule.

– When performing a combination using the choice operator, the projection
associated with the resulting process trees is the union of the projections of
the seeds (the idea is that either one of the combination leaves has to be in
a trace since it’s a choice based decision). Moreover, the frequency of the
resulting trees can be precisely derived and corresponds to the size of the
union of the seeds projections. On another hand, the language seen of the
new trees is the union of the languages seen of the seeds and their language
is the union of the languages of the seeds. This allows us to calculate the
language fitness without resorting to the alignments.

6.5 COBPAM Algorithm

COBPAM is an algorithm that prioritizes computation speed. As such, we employ
a heuristic that further prunes the construction graph by limiting the search to a
portion more dense in terms of frequent trees. Indeed, instead of generating the
process trees starting from all the activities, we construct a restricted set ∆. In
it, we only consider frequent activities. We also consider frequent combinations
of two infrequent activities through the choice operator. Each combination will
be named and considered as a single activity in the rest of the algorithm.

In fact, by providing frequent activities as the initial seeds of the generation,
we insure a higher probability of constructing frequent process trees or more
precisely, we direct the search to a region dense with behavioral patterns. Since
we take into consideration a majority of three constraining operators out of

Title Suppressed Due to Excessive Length 13

four, involving infrequent activities will render infrequent any early combination
through these operators. By eliminating them, we prune a major portion of
infrequent trees in the search space.

However, any pruning has a drawback. Due to the existence of the choice
operator, once infrequent trees can be combined to reintroduce frequent ones.
So eliminating trees from the search on the basis that they are infrequent
will eliminate any frequent tree that would be constructed out of them. In
conclusion, pruning makes the method miss some behavioral patterns involving
the choice operator. We keep it however because without it, we would be forced
to evaluate the support of trees that we know are infrequent and this evaluation
is computationally heavy since it involves calculating alignments. Besides, three
out of four operators benefit from the pruning and that makes it a majority.
Indeed, the number of missed frequent process trees is small compared to the
number of infrequent pruned trees that make the method gain in computation
time.

Concerning the algorithm, we build incrementally sets of process trees. In
order to respect the pruning rules, we consider sets containing only frequent
trees and others only infrequent ones. The former type will serve to perform
combinations through the constraining operators while the latter will serve for
choice based combinations. Inside the same set, all trees are identical except at
the level of one leaf. In fact, any two trees are seeds. In other words, they can
be combined. Moreover, since the difference between two seeds is a unique leaf,
we associate to each set an identifier in the form of a representative word. It’s
a mask that applies to any of the representative words of the process trees it
contains. Take for example the tree seq(a,b). Its representative word is (a b seq).
This process tree can be added to the set defined by (a _ seq). The underscore
indicates that any activity can be inserted at that position. In other words, any
other tree, take seq(a,c), can be added to the set by replacing the underscore
with an activity; here, c. The underscore is always at the position of a potential
combination leaf. This way, any two trees inside the set can be combined.

The algorithm revolves around three functions: evaluate(P, sublog) which
calculates the quality metrics of P over the portion of the log supposed to
contain its behavior sublog, addFreq(P, Γ) that adds the process tree P to a set
Γ containing only frequent trees and addInfreq(P, γ) that adds P to a set γ
containing only infrequent ones. We denote Θ the set of frequent relevant maximal
trees. It represents the set to be outputted, so the trees in it must satisfy a certain
language fitness threshold. Moreover, since it contains only maximal trees, each
time a frequent tree defined by a constraining operator is added to it, part of its
construction tree is deleted. Let’s start by introducing evaluate(P, sublog):

1. use alignments to calculate the quality metrics of P .
2. save the traces where the behavior of P appears as proj(P).

We also define addFreq(P, Γ) as :

1. for each process tree P ′ in Γ , make combinations between P and P ′ through
the operators and, loop and seq while respecting the pruning rules.

14 M. Acheli et al.

2. for each process obtained from the combinations R:
(a) evaluate R on the subset of the log corresponding to proj(P) ∩ proj(P ′).

(evaluate(R, proj(P) ∩ proj(P ′))
– if R is frequent:

i. add R to Θ if it satisfies the language fitness threshold. Delete
the trees on the paths defined by solely constraining operators in
the construction tree of R from Θ.

ii. for each potential combination leaf a in R:
A. create a representative word RW by replacing a with "_" in
RW (R)

B. if the set containing frequent trees identified by RW , RWΓ
doesn’t exist, create it.

C. call addFreq(R,RWΓ)

– else:
i. for each potential combination leaf a in R:

A. create a representative word RW by replacing a with "_" in
RW (R)

B. if the set containing infrequent trees identified by RW , RWγ
doesn’t exist, create it.

C. call addInfreq(R,RWγ)

3. add P to Γ

Finally, we define addInfreq(P, γ) :

1. for each process tree P ′ in γ, make combinations between P and P ′ through
the choice operator.

2. for each process obtained from the combinations R:
(a) set the projection of R as proj(P) ∪ proj(P ′) and its frequency as the

size of the union. Caluclate its language fitness.
– if R is frequent :

i. add R to Θ if it satisfies the language fitness threshold.
ii. for each potential combination leaf a in R:

A. construct a representative word RW by replacing a with "_"
in RW (R)

B. if the set containing frequent trees identified by RW , RWΓ
doesn’t exist, create it.

C. call addFreq(R,RWΓ)

– else:
i. for each potential combination leaf a in R:

A. construct a representative word RW by replacing a with "_"
in RW (R)

B. if the set containing infrequent trees identified by RW , RWγ
doesn’t exist, create it.

C. call addInfreq(R,RWγ)

3. add P to γ

Title Suppressed Due to Excessive Length 15

The algorithm starts by creating the set of frequent process trees identified
by the word "_"; meaning any frequent tree with a single activity can be added
to it. We call the function addFreq on this set for each activity in ∆. Thanks to
the recursive calls in and between addFreq and addInfreq, each time we add
an activity, all frequent trees composed of the activities in _Γ are found. We
can use a maximum recursion depth d and therefore a maximum depth for the
found trees to force termination. Finally, we find in Θ maximal relevant patterns
defined in the context of the depth d.

7 Case Study

COBPAM has been implemented as a plugin in the ProM framework [9]. We
used our method to extract insights for a log representing the treatment process
for Sepsis cases in a hospital. It contains 1050 cases and a total number of 15214
events recorded for 16 different activities. Fig. 3 depicts the end-to-end Petri net
model characterizing the log obtained with the FHM algorithm. The analysis of
this model shows that the domain is unstructured with intertwined execution
paths and a high number of choice constructs, loops and edges.

Fig. 3: The Petri net resulting from applying the FHM algorithm on the Sepsis
cases log

We ran the algorithm for LPM discovery [26] on a machine with an i5-1.8 Ghz
processor. We leave the default parameters. Note that the number of discovered
trees can’t be more than 500. In this case, exactly 500 were discovered. We show
some of them that exceed a frequency threshold of 0.7 and a language fitness
threshold of 0.7 in Fig. 4. We also executed COBPAM on the same machine.
The maximal depth was 2 and 386 maximal relevant patterns were found with a
frequency threshold of 0.7 and a language fitness threshold of the same value.
We select a few in Fig. 5. We notice the difference in the trees derived by the
two algorithms. For instance, the tree (12) was not extracted by COBPAM,
because it is not maximal. In fact, it is contained in another frequent tree which
is (17). Knowing that (17) is frequent gives the knowledge that the behavior: "ER
Registration" followed by "CRP" followed by "Leucocytes" is frequent and as
such the behavior "CRP" followed by "Leucocytes" depicted in (12) is frequent
too. Other trees that are not discovered by COBPAM include loops over one
activity since it is an unary operator.

16 M. Acheli et al.

Fig. 4: Behavioral patterns mined with LPM discovery algorithm

Fig. 5: Behavioral patterns mined with COBPAM using a threshold of 0.7

The trees (14), (15) and (16) are not discovered by COBPAM either since
they are deemed irrelevant. Trees (14) and (15) can be obtained from (12) when
replacing the activity "CRP" by a choice including the same activity. Since it’s
a choice between "CRP" and another behavior knowing that the tree (12) is
frequent then the trees (14) and (15) are surely frequent. They don’t give any
new information and we don’t know if the path seq(ER Registration, Leucocytes)
is frequent in (14). The same with the tree (16) that can be constructed out of
(13). The construction and evaluation (computation of support and language
fitness) of such irrelevant trees is a time wasted that can be used to mine more
complex process trees such as the pattern (18) presented by COBPAM. A pattern
that brings new information and confirms that the path seq(ER Registration,
Leucocytes) along with other paths is frequent. When analyzing patterns generated
with COBPAM, any path traversing a xor operator is known to be infrequent
which is a piece of information itself.

In order to compare run-times, we executed the LPM discovery algorithm and
COBPAM with the same parameters on two other logs of unstructured processes 3.
A first of a real life dutch hospital containing 1143 traces, 150291 events and
624 activities and a second of an information system managing road traffic fines
containing 150370 traces, 561470 events and 11 activities. The execution times
are given in Table 1. They depend on the size of the log, the number of activities

Title Suppressed Due to Excessive Length 17

and events and the complexity of the behavioral patterns existing in the log.
Globally, COBPAM performs better.

Table 1: Execution time of LPM Discovery and COBPAM on different logs
Sepsis Cases Traffic Fines Hospital

COBPAM 22m 28m 6h
LPM discovery 88m 68m >48h

8 Conclusion and future works

In this paper, we proposed COBPAM, an efficient algorithm for behavioral pattern
mining. Potential patterns are obtained by combining simpler patterns using
algebraic operations on process trees. Compared with an exhaustive search, the
efficiency of the algorithm is improved by pruning the search space, evaluating
the candidates solely on parts of the event log (using projections) and exploiting
calculations already done for smaller trees. Moreover, the algorithm exploits
a partial order on potential patterns to discover only those that are maximal.
A case study with real-world data containing logs of unstructured processes
demonstrated how COBPAM improves over the state-of-the-art in behavioral
pattern mining in terms of execution time and relevance of extracted patterns.

In future works, we plan to investigate the relationship between operators.
For instance, if and(a,b) is infrequent then seq(a,b) is surely infrequent. That
is because the behavior of the sequence operator is included in that of the
concurrence operator. On another hand, while the current implementation of the
algorithm is able to extract small patterns (3-4 activities) in reasonable time, in
order to be able to handle huge volume of logs and output maximal patterns of
any size, we will investigate using parallel computing frameworks.

References

1. Van der Aalst, W.: Process mining: Data science in action. Springer Berlin Heidel-
berg, Berlin, Heidelberg (2016)

2. Adriansyah, A.: Aligning Observed and Modeled Behavior. Ph.D. thesis (2014)
3. Augusto, A., Conforti, R., Dumas, M., La Rosa, M., Maggi, F.M., Marrella, A.,

Mecella, M., Soo, A.: Automated Discovery of Process Models from Event Logs:
Review and Benchmark (2018)

4. Bose, R.P.J.C., van der Aalst, W.M.: Context Aware Trace Clustering: Towards
Improving Process Mining Results. In: Proceedings of the 2009 SIAM International
Conference on Data Mining (2009)

5. Bose, R.P.C., Van Der Aalst, W.M.: Trace clustering based on conserved patterns:
Towards achieving better process models. In: Lecture Notes in Business Information
Processing (2010)

18 M. Acheli et al.

6. vanden Broucke, S.K., De Weerdt, J.: Fodina: A robust and flexible heuristic process
discovery technique. Decision Support Systems 100, 109–118 (8 2017)

7. Buijs, J.C., Van Dongen, B.F., Van Der Aalst, W.M.: A genetic algorithm for
discovering process trees. In: 2012 IEEE Congress on Evolutionary Computation,
CEC 2012. pp. 1–8. IEEE (6 2012)

8. Conforti, R., Dumas, M., García-Bañuelos, L., La Rosa, M.: BPMN Miner: Auto-
mated discovery of BPMN process models with hierarchical structure. Information
Systems 56, 284–303 (3 2016)

9. van Dongen, B.F., de Medeiros, A.K.A., Verbeek, H.M.W., Weijters, A.J.M.M.,
van der Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool
Support. pp. 444–454. Springer, Berlin, Heidelberg (2005)

10. Fournier-Viger, P., Chun, J., Lin, W., Kiran, R.U., Koh, Y.S., Thomas, R.: A
Survey of Sequential Pattern Mining. Ubiquitous International 1(1), 54–77 (2017)

11. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Transactions on Knowledge and Data Engineering
(2006)

12. Günther, C.W., van der Aalst, W.M.P.: Fuzzy Mining – Adaptive Process Simplifica-
tion Based on Multi-perspective Metrics. pp. 328–343. Springer, Berlin, Heidelberg
(2007)

13. ISO: ISO/IEC 19505-1: 2012 Information technology — Object Management Group
Unified Modeling Language (OMG UML) — Part 1: Infrastructure (2012), https:
//www.iso.org/standard/52854.html

14. Leemans, M., van der Aalst, W.M.: Discovery of frequent episodes in event logs.
In: Lecture Notes in Business Information Processing. vol. 237, pp. 1–31. Springer,
Cham (11 2015)

15. Leemans, S.J.J., Fahland, D., Van Der Aalst, W.M.P.: LNCS 7927 - Discovering
Block-Structured Process Models from Event Logs - A Constructive Approach pp.
311–329 (2013)

16. Maggi, F.M., Mooij, A.J., Van Der Aalst, W.M.: User-guided discovery of declar-
ative process models. In: IEEE SSCI 2011: Symposium Series on Computational
Intelligence - CIDM 2011: 2011 IEEE Symposium on Computational Intelligence
and Data Mining. pp. 192–199. IEEE (4 2011)

17. Object Management Group: Notation (BPMN) version 2.0. OMG Specification
https://www.omg.org/spec/BPMN/2.0/About-BPMN/

18. Pei, J., Han, J., Mortazavi-Asl, B., Wang, J., Pinto, H., Chen, Q., Dayal, U., Hsu,
M.C.: Mining sequential patterns by pattern-growth: The prefixspan approach.
IEEE Transactions on Knowledge and Data Engineering (2004)

19. Reisig, W., Wolfgang: Petri nets : an introduction. Springer Berlin Heidelberg
(1985)

20. Scheer, A.W., Thomas, O., Adam, O.: Process Modeling using Event-Driven Process
Chains. In: Process-Aware Information Systems: Bridging People and Software
through Process Technology (2005)

21. Senderovich, A., Weidlich, M., Gal, A.: Temporal Network Representation of Event
Logs for Improved Performance Modelling in Business Processes. BPM 1, 3–21
(2017)

22. Solé, M., Carmona, J.: Process mining from a basis of state regions. In: Lecture Notes
in Computer Science (including subseries Lecture Notes in Artificial Intelligence and
Lecture Notes in Bioinformatics). vol. 6128 LNCS, pp. 226–245. Springer, Berlin,
Heidelberg (2010)

23. Song, M., Günther, C.W., Van Der Aalst, W.M.: Trace clustering in process mining.
In: Lecture Notes in Business Information Processing (2009)

https://www.iso.org/standard/52854.html
https://www.iso.org/standard/52854.html
https://www.omg.org/spec/BPMN/2.0/About-BPMN/

Title Suppressed Due to Excessive Length 19

24. Srikant, R., Agrawal, R.: Mining sequential patterns: Generalizations and perfor-
mance improvements. pp. 1–17. Springer, Berlin, Heidelberg (1996)

25. Tax, N., Dalmas, B., Sidorova, N., van der Aalst, W.M., Norre, S.: Interest-driven
discovery of local process models. Information Systems 77, 105–117 (9 2018)

26. Tax, N., Sidorova, N., Haakma, R., van der Aalst, W.M.: Mining local process
models. Journal of Innovation in Digital Ecosystems 3(2), 183–196 (2016)

27. Weijters, A.J.M.M., Ribeiro, J.T.S.: Flexible heuristics miner (FHM). In: IEEE
SSCI 2011: Symposium Series on Computational Intelligence - CIDM 2011: 2011
IEEE Symposium on Computational Intelligence and Data Mining. pp. 310–317
(2011)

28. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding Over-Fitting in
ILP-Based Process Discovery. pp. 163–171. Springer, Cham (2015)

	Efficient Discovery of Relevant Maximal Behavioral Patterns from Event Logs

