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Abstract and give real-life examples of such paradoxes, including si-
multaneous referenda on related issues. They argue that the
only way of avoiding the paradox would consist in “voting
for combinations [of values]”, but they stress its practical dif-
ficulty without giving any hint for a practical solution.

Because the preference structure of each voter in such a
case cannot reasonably be expressed by listing all candidates,
what is needed is a compagteference representation lan-
guage Such preference representation languages have been
developed within the Artificial Intelligence community so as
to escape the combinatorial blow up of the explicit represen-
tation. Such languages allow a much msuecinctrepresen-
tation than explicit representations. Many of these languages
(including CP-nets and their extensions) graphicat pref-
erences are expressed locally (on small subsets of variables).
The common feature of these languages is that they allow
for a concise representation of the preference structure, while
) preserving a good readability (and hence a proximity with the
1 Introduction way agents express their preferences in natural language).

Researchers in social choice have extensively studied the Thus, Al gives a first answer to the problem pointed in
properties of voting rules and aggregation functions, up tdBramset al, 1994. However, another problem then arises:
an important detail: candidates are supposed to be listed eence preferences have been elicited, and represented in some
plicitly (typically, they are individuals or lists of individuals), compact representation language, how is the voting or aggre-
which assumes that they are not too numerous. In this papegation rule computedThe prohibitive number of candidates
we consider the case where the set of candidates bama  makes it practically impossible to compute these rules in a
binatorial structure i.e., is a Cartesian product of finite value Straightforward way.
domains for each of a finite set of variables. When domains are not too large, it may still be reason-
Since the number of possible alternatives is then exponerable to first generate the whole preference relations from their
tial in the number of variables, it is not reasonable to ask voteompact representations and then compute the outcome by a
ers to rank all alternatives explicitly. Consider for exampledirect implementation of the voting rule. However, when do-
that voters have to agree on a common menu to be compose@ahins become bigger, this naive method becomes too greedy
of a first course, a main course, a dessert and a wine, with and then we need to find a more sophisticated way of com-
choice of 6 items for each. This makeé$ candidates. This puting the outcome of the vote. Two methods come to mind:
would not be a problem if each of the four items to be chosereither (1) give up optimality and compute approximation
were independent from the other ones: in this case, this votef the voting or aggregation rule, or (2) assume that the vot-
over a set o6* candidates would come down to four inde- ers’ preferences enjoy specific structural properties that can
pendent votes over sets 6fcandidates each, and any stan- be exploited so adecomposthe problem into smaller, local
dard voting rule could be applied without difficulty. Things subproblems. Here we address (2), and we focus on a specific
become more complicated if voters express dependencies beestriction of preference profiles where all voters have a pref-
tween items, such as “if the main course is meat then | prefeerence relation enjoying conditional preferential independen-
red wine, otherwise | prefer white wine”. Indeed, as sooncies compatible with a common acyclic gra@hAfter giving
as variables are not preferentially independent, it is genersome background on preference relations over combinatorial
ally a bad idea to decompose a vote problem witlariables  domains and vote in Section 2, we introduce and study se-
into a set ofp smaller problems, each one bearing on a singlequential voting rules in Section 3. Section 4 then considers
variable: “multiple election paradoxe§Bramset al., 1994 preference aggregation over combinatorial domains, and Sec-
show that such a decomposition leads to suboptimal choicetipn 5 concludes.

In many real-world collective decision problems,
the set of alternatives is a Cartesian product of fi-
nite value domains for each of a given set of vari-
ables. The prohibitive size of such combinatorial
domains makes it practically impossible to repre-
sent preference relations explicitly. Now, the Al
community has been developing languages for rep-
resenting preferences on such domains in a succinct
way, exploiting structural properties such as condi-
tional preferential independence. In this paper we
reconsider voting and aggregation rules in the case
where voters’ preferences have a common prefer-
ential independence structure, and address the is-
sue of decomposing a voting rule or an aggregation
function following a linear order over variables.



2 Background

2.1 Preferences on combinatorial domains

LetV = {x1,...,x,} beasetofariables Foreactx; € V,
D; is thevalue domairof x;. A variablev; is binaryif D; =
{z;,7;}. Note the difference between the variakleand the
valuex;. If X = {x;,,...,x;,} CV,withi; < ... <1,
thenDx denotesDval XX Dy,

X = Dy x ... x D, is the set of alkalternatives or can-
didates Elements oft are denoted by, 7’ etc. and rep-

Observation 1 A linear preference relatio is compatible
with G if and only if there exists a CP-naf whose associated
graph isG and such that- extends- /.

Let G be an acyclic graph ove¥” and letO = x; >
... > x, be a linear order ofV. G is said tofollow O
iff for every edge(x;,x;) in G we havei < j. A pref-
erence relation- is said to follow O iff it is compatible
with some acyclic grapli following O. Clearly, > follows
O =x; > ... > x,ifand only if for all i < p, x; is pref-
erentially independent dfX;+1, ..., X, } given{xy, ...,X;_1}

resented by concatenating the values of the variables: fakith respect to-. If > follows © then theprojectionof >

instance, ifV = {xi,x2,x3}, x1T3x3 assignsx; to 1,
X, 10 T3 and x3 to x3. We allow concatenations of vec-
tors of values: for instance, I8 = {x1,x2,X3,X4,X5},
Y = {1’1,132}, J = {I3,$4}, zj = 122, Z = T3T4, then
7.Z.T5 denotes the alternative 75732475.

A (strict) preference relatioron X is a strict order (an ir-
reflexive, asymmetric and transitive binary relation)infear
preference relation is @ompletestrict order, i.e., for any
andy # Z, either® > i orj = & holds. If R is a preference
relation, we generally noté > &’ instead ofR(Z, &').

Let {X,Y, Z} be a partition of the sét’ of variables and
>~ a preference relation ovéry,. X is (conditionally) prefer-
entially independeraf Y given Z (w.r.t. >) if and only if for
all 1,72 € Dx, 41,92 € Dy, Z € Dy,

fl‘gl.ZF nglglff fl.g2.2> fg.gg.g

onx; given(z,...,x;—1) € Dy x ... x D;_1, denoted by
-Xilxi=w1,..xi1=ri1 g the preference relation af; de-
fined by: for allz;, 2}, € Dy, x; =XiPa=2nxicai=zia gl
iff ©1..0-12%41...2p > T1...xi_1%}241..2, holds for all

(J}H_l,...,l‘p) S Di-l—l X ... X Dp.

Due to the fact that- follows O and that> is a lin-
ear order;-Xilx1=21,...xi-1=i-1 5 3 well-defined linear or-
der as well. Note also that if follows bothO = x; >

> xpand 0" = xp0) > . > Xep-1) > Xi(=

Xo(k) > > X,(p), then =XiPa=er..xici=zi-1 gnd
=Xi[Xo(1)=To (1), Xo(k-1)=To(:-1) coincide. In other words,
the local preference relation or; depends only on the
values of the parents of; in G: =Xilx1=21,Xi1=ri
and =XiXe)=to)Xo-)=%o(k-1) poth coincide with
-xilpar(x)=y whereY = par(x;).

Lastly, for any acyclic grapl overV, we say that two lin-

Unlike probabilistic independence, preferential indepen-ear preference relatiod®, andR» areG-equivalent, denoted

dence is a directed notiok’ may be independent af given
Z withoutY” being independent oX given Z.

A CP-net\ [Boutilier et al, 2004 overV is a pair con-
sisting of a directed grap& overV and a collection of con-
ditional preference tableS PT'(x;) for eachx; € V. Each
conditional preference tablé PT'(x;) associates a total or-
dert -% with each instanciatiod of x;’s parentsPa(x;) =
U. Forinstance, leV’ = {x,y, z}, all three being binary, and
assume that preference of a given agent @ecan be de-

fined by a CP-net whose structural part is the directed acyclicR .
graphG = {(z,v), (y, 2), (z, z) }; this means that the agent’s ’

preference over the values »fis unconditional, preference
over the values of (resp. z) is fully determined given the
value ofx (resp. the values of andy).

by Ry ~¢ R, if and only if R; and R, are both compatible
with G and for anyx € V, for anyy, 5 € Dom(par(x)) we
haveR’f‘p“T(x):y _ R;ImT(X)=y )

Observation 2 For any linear preference relation® and R/,
R ~¢ R’ if and only if there exists a CP-n&f whose asso-
ciated graph isG and such thaf? and R’ both extend- .

Example 1 LetV = {x,y,z}, all three being binary. and
let R and R’ be the following linear preference relations:
TYZ = TYZ = TYZ = TYzZ = TYZ = TYZ = TYz = TY2
R :xyz = xyzZ > TYzZ > xYZ = Tyz = TYZ = Thz = TYz
LetG the graph ovel” whose set of edges{éx,y), (x,z)}.
R and R’ are both compatible witld;. Moreover,R ~g R/,

S o . . e L C
The conditional preference statements contained in thesiince all local preference relations coincide: % z and

tables are written with the usual notation, thatriggs : 3 =
T3 means that wher; is true andx, is false therxs = z3 is

z|x=z,y=y z|x=z,y=y

T R I, 2 - zZandz > zZ, etc. The
CP-netV such thatk and R’ both extend- » is defined by

preferred taxs = 73. In this paper we make the classical as- the following local conditional preferences: >~ z; y > ;

sumption that7 is acyclic A CP-net\ induces a preference
ranking onX: ¥ =, 7 iff there is a sequence of improv-
ing flips from ¢ to Z, where an improving flip is the flip of a
single variablez; “respecting” the preference tallePT (x;)
(see[Boutilieret al, 2004). Note that the preference relation
induced from a CP-net is generally not complete.

Let G be a directed graph ovéf, and- a linear preference
relation. > is said to becompatible with iff for eachx € V,
x is preferentially independent &f \ ({x} U Par(x)) given
Par(x). The following fact is obvious, but important:

TY: 2= Z, Y22, XY 2> 2, TY : 2 = Z.
2.2 \oting rules and correspondences

Let A = {1, ..., N} be afinite set ofotersand X’ a finite set
of candidates A (collective) preference profile.r.t. A and
X is a collection of N individual preference relations over
X: P=(1,..,.>nN)=(P,..,Py). Let Py set of all
preference profiles fad andX’.

A voting correspondend€ : P4 x — 2%\ {0} maps each
preference profile® of P4 x into a nonempty subset(P)
of X. A voting ruler : P4 x — X maps each preference

More generally, the entries of conditional preference tablesProfile P of P4 x into a single candidate(P). Arule canbe
may contain partial orders over the domains of the variables (se@btained from a correspondence by prioritization over candi-
[Boutilier et al,, 2004), but we don’t need this here. dates (for more details s€Brams and Fishburn, 2004



To give an example, consider the well-known family of G* has cycles). Moreover, in many real-life domains it may
positional scoring rules and correspondencds positional  be deemed reasonable to assume that preferential dependen-
scoring correspondence is defined froscaring vectorthat  cies between variables coincide for all agents.
is, a vectors = (s1,...,Sm,) Of integers such that; > Sequential votingonsists then in applying “local” voting
S9 > ... > s, ands; > s,. Letrank;(x) be the rank rules or correspondances on single variables, one after the
of z in »=; (1 if it is the favorite candidate for voter, 2 if  other, in such an order that the local vote on a given variable
it is the second favorite etc.). The scorezofs defined by can be performed only when the local votes on all its parents
S(x) = 32N, Spank:(x)- The candidates chosen by the cor- in the graph; have been performed. _ _
respondence defined frofis the set of all candidates max-  We defineComp¢ as the set of all collective profile3 =
imizing S. A positional voting rule is defined as a positional (~1, - - -, =x) such that eachk-; is compatible withG.

scoring correspondence plus a tie-breaking mechanism, f@§afinition 1 Let ¢ be an acyclic graph or/; let P —
the case where more than one candidate have a maximumb1 Py)in Compg, © = x1 > ... > x, @ Iinear order
VAR y - “es D

score. Well-known examples are tBerdarule, given by ony following G, and(r4, . .., ,) a collection of determin-
sp = m — kforall k = 1,....m; theplurality rule, by igiic yoting rules (one for each variable;). Thesequential
s1 = 1, ands, = 0 forall & > 1; and thevetorule, by qting ruleSeq(ry, ..., r,) is defined as follows:
s, = 1 forall kK < m, ands,, = 0. X1 N

We also recall the definition of @ondorcet winne{CW). o zi =ri(P, .. Py

Given a profileP = (>4, ..., =n), x € X is a Condorcet
winner iff it is preferred to any other candidate by a strict

Xo|x1=2] Xo|x1=27\.
o o = (PO P,

majority of voters, that is, for aly = =, #{i,z =; y} > % ° ...

Itis well-known that there are some profiles forwhichnoCW o« _ . (Pxp\m:wi‘,»-ﬁxp—lzw;l B Pxp\m:zi‘,--»xp—l:%ﬂ)

exists. Obviously, when a CW exists then it is unique. PP UON
ThenSeq(ry,...,m)(P) = (27,...,7}).

3 Sequential voting Example2 Let N = 12, V = {x,y} with Dom(x) =

Given a combinatorial set of alternatives and a compact rep{m’ z} and Dom(y) = _{g{,g}, andP = (P,..., Pi2) the
resentation (in some preference representation lang&age °/0Wing 12-voter profile: o
of the voters’ preferences, how can we compute the (set of) Py, Py, Py, Pyt ay = oy = wy = 1y

winner(s)? The naive way consisting in “unfolding” the com- 5, L, Pre LY = Y = Ty = TY
pactly expressed preference relations (that is, generating the £3: £o; 1o: LY = 2Y = TY = Y
whole preference relations diy, x ... x D, from the input), Pro, Pry: LY = Y = Y = TY

and then applying a given voting rule, is obviously unfeasible, All these preference relations are compatible with the
except if the number of variables is really small. We can try tod'@Ph G over {x,y} whose single edge i&,y); equiva-

do better and design an algorithm for applying a given voting€ntlY, they follow the ordex > y. Hence,P € Compg.

rule ~ on a succinctly described profile without generat- he corresponding conditional preference tables to are:

ing the preferences relations explicitly. However, we can't beVoters 1,2,3,4 _ voters 56,7 voters 89,10 _voters 11,12

too optimistic, because it is known that the latter problem is| z > & T - Tz
computationally hard, even for simple succinct representation z :y >y T:Yg-y T:Yy>=7 Ty
languages and simple rules (§eang, 2004). Z:y>79y T:y>9y Z:y>79y T:y>=79y

A way of escaping this problem consistsrastricting the Taker, andr, both equal to the majority rule, together

set of admissible preference profilessuch a way that com-  ith a tie-breaking mechanism which, in case of a tie between
putationally simple voting rules can be appfied very natu- . and z (resp. betweem and 7), electsz (resp. y). The
ral restriction (that we investigate in the next Section) consistggjection of P onx is composed of 7 votes forand 5 forz,
in assuming that preferences enjoy some specific structurghat is, Px is equal toz = z for 1 < i < 7 and toz = z for
properties such as conditional preferential independencies. § < ; < ‘12. Thereforer* — rx(p_lx, _f_7p1)c2) — 1 the x-

. . winner isz* = z. Now, the projection oP ony givenx = z
3.1 Sequential voting rules and correspondences g composed of 7 votes fgrand 5 fory, thereforey* — y,
Now comes the central assumption to the sequential apand the sequential winner is now obtained by combining the
proach: there exists an acyclic grap&' such that the pref- x—winner and the conditionaf-winner givenx = z* = «,
erence relation of every voter is compatible with This as-  namelySeq,. -, (P) = zy.
sumption is not as restrictive as it may appear at first look: In addition to sequential voting rules, we also de-
suppose mdged that preference relations, ..., ) are fine sequential voting correspondencesm a similar
compatible with the acyclic grapf, , ..., G, Whose Sets .. it for eachi, C; is a correspondence oy, then
of edges areF,, ..., Ey. Then they are a fortiori compati- Seq(Ch,...,C )(P,) is the set of all outcomes:, )
ble with the graphG* whose set of edges & U...UEy. ¢ th,atxl ’é Cy (P Px1), and for alli > 5
Thereforejf G* is acyclig then sequential voting will be ap- va\xl:a:l,..,xPll A X X1 =1 X 1= i1
plicable to(-1, . .., =) (of course, this is no longer true if i € Ci(F;" IR )
Due to the lack of space, we give results for voting rules only.
2Such an assumption is called a “domain restriction” in social AN important property of such sequential voting rules and
choice theory — here, the “domain” has to be understood as the s€prrespondences is that the outcome does not depe on
of admissible preferences, not the set of alternatives. provided thaiG follows O. This can be expressed formally:



Observation3Let O = (x; > ... > x,) and O’ =  x,onV and for any preference profilB = (P, ..., Py) such
(Xo(1) > -+ > Xq(p)) be two linear orders o such thatG  that eachp; follows O, we haveSeq(ry, . .., 7,)(P) = r(P).

follows both©® and@’. Then The definition is similar for correspondences.
Seq(ri,. .., p)(P) = Seq(ro), - -3 To(p))(P) An interesting gquestion is the following: for which voting
and similarly for voting correspondences. rulesr does the sequential winner (obtained by sequential ap-

Note thatwhen all variables are binaryall “reasonable”  plications ofr) and the “direct” winner (obtained by a direct
neutral voting rules (we have no space to comment on whapplication ofr) coincide? The following result shows that
“reasonable” means — and this has been debated extensivélyis fails for the the whole family of scoring rules (and simi-
in the social choice literature) coincide with the majority rule larly for correspondances).
when the number of candidates is 2 (plus a tie-breaking mectpgnosition 1 No positional scoring rule is decomposable.
anism). Therefore, if all variables are binary and the number ) )
of voters is odd (in which case the tie-breaking mechanism i€T00f sketch: We give a proof sketch for the case of two binary
irrelevant), then the only “reasonable” sequential voting ru|evar|ab_les (this _generallzes easily to more variables, as well as to
is Seq(r1, . ..,r,) where each; is the majority rule. non-binary varla_bles). Let be a decomposable scoring rule on

It is important to remark that, in order to compute 2{x:¥}: there exist two local rulesy andry, such that whenever
Seq(r1,...,r,)(P), we do not need to know the preference £’ follow x >y, we haveSeq(r«,ry)(P) = r(P). Then we
relations Py, ..., Py entirely. everything we need is the lo- show thatr, andry are both the majority rule _(th|s follows _eqsny
cal preference relations: for instanceif= {x,y} andG from the fact that some properties of including monotonicity,
contains the only edgex, y), then we need first the uncondi- Cary on torx andry.) Now, consider the same preference profile
tional preference relations onand then the preference rela- £ @s in Example 3. P follows the orderx > y. Now, let
tions ony conditioned by the value of. In other words, if we ~ 5t = 52 = s3 = sa = 0 (with s1 > 0) the weights defining. The
know the conditional preference tables (for all voters) associSCOre Ofry is 4s1 + 3s2 + 3s3; the score ofy is 5s1 + 4s2 + 3s3,
ated with the grapldz, thenwe have enough information to wh|ch_ is strictly larger than the score of, thereforery cannot be
determine the sequential winner for this profien though ~ the winner forr, whatever the values &f, sz, s. u
some of the preference relations induced from these tables are ,
incomplete. This is expressed more formally by the following Such counterexamples can be found for many usual voting

fact (a similar result holds for correspondences): rules outside the family of scoring rule§ (we must omit th_e re-

) . sults due to the lack of space), including the whole family of
Observation4 LetV = {x;,... 7Xz;}' G an acyclic graph yoting rules based on the majority graph. Positive results, on
overV,andP = (Py,...,Py), P' = (P,..., Py) tWO  the other hand, seem very hard to get. Obviously, dictatorial
complete preferepce profiles such that foral= 1,..., N ryles (electing the preferred candidate of some fixed voter)
we haveP; ~¢ P/. Then, for any collection of local voting anq constant rules (electing a fixed candidate whatever the
rules(ry, ..., rp), we have , voters’ preferencesire decomposable. But the latter rules

Seq(ry,...,rp)(P) = Seq(r1,...,rp)(P'). are of course not reasonable, and we conjecture that the an-

This, together with Observation 2, means that applying seswer to the above question is negative as soon as a few rea-
quential voting to two collections of linear preference rela-sonable properties are requifed
tions corresponding to the same collection of CP-nets gives A particular case of preferential independence is when
the same result. This is illustrated on the following example.all variables are preferentially independent from each other
Example 3 Everything is as in Example 2, except that we\lNht'ﬁ.h correspt)r?nds t]? a dependilncyf/ ﬁr@mth no gdges.th
don't know the voters’ complete preference relations, put! [NIS case, e preterence protile follows any order on the

only their corresponding conditional preference tables. Thes%et of variables, and the sequential winner is better called a

conditional preferences contain strictly less information than Z:]ageel V‘g:}gfé]zg?ﬁ ;r:]e I(())rcdaelrvo\';\?: r%? t#tetﬁénngfoxzir:jﬁkfﬁ e
P, because some of the preference relations they induce a Ilowinp roperty ofse zlrabilit. 9

not complete: for instance, the induced preference relation g property P ¥

for the first 4 voters isy > Ty > zy, xy = =y > Ty, with  Definition 3 A deterministic ruler is separabléf and only

zy and Zy being incomparable. However, we have enoughif for any preference profilé®> = (-1, ..., =) such that the
information to determine the sequential winner for this pro-variables are pairwise conditionally preferentially indepen-
file, even though some of the preference relations are inconrdent, the parallel winner of w.r.t. P is equal tor(P).

plete. For instance, taking again the majority rule fog Obviously, any decomposable rule is separable. Are there
andry, the sequential winner isy for any complete profile 5y separable rules? Focusing on positional scoring rules, we

P’ = (Py,..., Pj,) extending the incomplete preference re- fing a rather intriguing result (the proof of which is omitted):
lations induced by the 12 conditional preference tables above. . .
Proposition 2 LetV = {x3,...,x,} (withp > 2).

3.2 Sequential decomposability e if p = 2 and both variables are binary, exactly one posi-
We now consider the following question: given a voting rule tional scoring rule is separable: the rule associated with
r, is there a way of computing sequentially when the pref- the weightss; = 23, = 2s3 (andsy, = 0).

erence relations enjoy common preferential independencies? More precisely, itcould be the case that the only correspon-

Definition 2 A voting ruler on X = Dy x ... x D, isde-  dence satisfying anonymity, neutrality and decomposability is the
composablef and only if there exist voting rulesry,...,r,  correspondence such tha(P) = X for all P. We spent a lot of
onDy,...,D,suchthatforany linear orde® = x; > ... > time trying to prove such an impossibility theorem, without success.



e in all other casesy{ > 3 or at least one variable has is a sequential Condorcet winner f@? if and only if it is a
more than 2 possible values), then no positional scoringCondorcet winner forP.

rule is separable. Proof sketch: Let #* a SCW for P, and @ # #*. Let
3.3 Sequential Condorcet winners k = min{i,z; # x;} andI; C A be the set of voters who prefer
xy to x}, givenx; = z1,...,Xx—1 = xx_1. Becauser® is a

We may now yvonder whether a Condorcet winner (CW)*SCW,|Ik| > N We haver* =, & for everyi € I, because-;
when there exists one, can be computed sequentially. Sgs lexicographic w.r.t.x; &> ... > x,. Therefore a majority of
quential Condorcet winners (SCW) are defined similarly as,;os prefers™ to &' This being true fporaw’ £ 7 F isaCWm
for sequential winners for a given rule: the SCW is the se- ' '
guential combination of “local” Condorcet winners.

Definition 4 Let G be an acyclic graph and® = (1, ..., 4 Arrow’s theorem and structured domains
>n) a profile inCompg. LetO = x; > ... > X, be a linear
order onV following G. (z7,..., ;) is a sequential Con-
dorcet winneffor P if and only if

We end this paper by considering decomposable domains
from the point of view of preference aggregation. A pref-
erence aggregation function maps a profile to an aggregated

o Vo € Dy, #{i,x} =1 i} > & profile representing the preference of the group. Arrow’s the-
o for everyk > 1 andvz), € Dy, orem[Arrow, 1963 states that any aggregation function de-
L Xplxi=alxpa=zi_, N fined on the set of all profiles and satisfying unanimity and
#i, x> TR} > 5 independence of irrelevant alternatives (IIR) is dictatorial. An

This definition is well-founded because we obtain the samé\rrow-consistent domairD is a subset ofP allowing for
set of SCWs for any) following G. The question is now, do unanimous, IIR and nondictatorial aggregation functions.
SCWs and CWs coincide? Clearly, the existence of a SCW Itis easy to see that for any acyclic grahComp(G) is
is no more guaranteed than that of a CW, and there cannot @ Arrow-consistent. Indeed, consider the preference aggre-
more than one SCW. We have the following positive result: gation function defined as follows:

Proposition 3 Let G be an acyclic graph and® = (>, ..., e reorder the variables in an qrder compatibl_e vﬁth._e.,
=n) in Compg. If (z%,23%,...,2}) is a Condorcet winner w.l.0.g., assume that there is no edge, x;) in G with

for P, then it is a sequential Condorcet winner fBr i > j. Such an order exists becausés acyclic.

Proof sketch: Let > be an order orv/ following G. Assume e leth : V — Aassociating a voter to each variable, such
there is a CWe* for P: for anya’ # z*, #{i,&* =; @'} > &. thath is not constant (it is possible becausi > 2).

Letz; € D; s.t. 2} # z}. Sincex; is preferentially independent o for any# andy # 7, letk(Z, §) = min{j, z; # yj},
of xo,...,Xp, 7 =11 a7 iff (27,23,...25) =i (z1,23,...2;);

) x . L e for any collective profile , define ~,=
hence#{i, =} =7 4} > & 2} is a“local” CW. Similarly, for all Fu( Y ) b‘? for <E>l_||l7i”' a,nGNJ 7 e " ”
k, by comparingzt* to (z3,...,z5_1, Th, Tie1, ..., 25), We show Jm1,. .5 7N DY 9 * Y

_1 : + o P z >_x;€\x1_@1,...,x7l_@n wherek — k’(f _»)
thatx} is a “local” CW for(>-?klxr% """ Ty N kT h(k) Yk )

Proposition 5 f;, is a nondictatorial aggregation function on
The following example shows that the converse fails: 2Comp(G) satisfying unanimity and IIR.

voters have the preference relatiop > zy » xy - Iy, Therefore,Comp(G) is Arrow-consistent.f; is easier to
one voterry - xy » Ty > Iy, and 2 Volersty > Iy = ngerstand when it is turned into a voting rule: voéx, )

vy = xy. x andy are mutually preferentially independent g o oses his preferred value for varialig then voter

in all relations, therefore the SCW is the combination of theh(x2) comes into play and chooses his preferred value for
locals CW for{x} and for{y}, provided they exist. Since 3 ;1100 diven the value assigned g, and so forth.

voters uncondltlonally_prefer to z, x is the {X}'.CW; sim- Now, even if f;, is truly nondictatoriél it however has
llarly, 3 voters unconditionally prefey to y and is the{y}- ;.o gictators (one for each variable), since vot) im-
CW. Thereforegy is the SCW for the given profildgutzy is poses his preference on the domaimpiNe may then won-

not a CW for this profile, because 4 voters prefgro zy. der whether a weaker form of Arrow's theorem holds for
We now give a condition on the preference relations ensur€omp(G). This is actually the case. Let us first express the
ing that SCWs and CWs coincide. L&t=x; > ... > x, following properties (P1), (P2), (P3).

be a linear order olv. We say that a preference relatign (P1) preservation of the independence structure

on D is conditionally lexicographiaev.r.t. O if there existp f is a mapping fronComp(G)N to Comp(G).
local conditional preference relatiogss: X1 =1, Xi—1=2i-1 : . .
o/ fori = 1,..,p, such that# = 7 if and only if there is (P2) independence of irrelevant values and variables

aj < p such that (a) for every < j, z;, = y and (b) Foranyx; € V', 2 € Dpar(x;), andP = <P17---aPN>j
T o X [X1 =@, X1 =51 y;. Aprofile P = (=1,...,>n) Q={(Q1,...,Qn)in Corrip(G)N such Ehat for every
is conditionally lexicographic w.r.tO if each-; is condi- and allz, 2’ € Dy,, >’1§;‘Z 2 iff x >’5j'z x’, we have

tionally lexicographic w.r.tO. Such preference relations can xi|Z
be represented by TCP-ngBrafmanet al., 2004 or condi- f(P)
tional preference theorid8Vilson, 2004. (P3) local unanimity

Proposition 4 Let© be a linear strict order ove¥. If P = ForanyP € Comp(G), x; € V i‘”dg € Dpar(x), if
(>1,...,>n) is conditionally lexicographic w.r.tO, thenz Plx”z =...= P]’\‘;‘Z thenf(P)*l% = Plxilz.

x1|2

!
e FQ T

2" ifand only if z >~



(P1) expresses that the preferential independencies egnd two binary variables andy, and thatG has no edge.
pressed in the graph should be transferred to the aggregatedAssume voter 1 prefers to z and voter 2 preferg to 7.
preference relation. Therefore, under (P1), for any preferencghens-,= f(-,, ) is such that: =% z andy -¥ 7, but

relation’-. resulting from the aggregation of preferences this does not tell whethery -, zy or zy =, z7.
relations inComp(G) there existp local conditional prefer-

x;|Par(x;

ence relations- ) fori=1,...,p. 5 Conclusion

(P2) is a local version of independence of irrelevant al-As far as we know, aggregating structured preferences on
ternatives: whether the society prefers a valu¢o another  combinatorial domains exploiting preferential independence
valuey; of x; given an assignmentof the parent variables of properties has never been considered neither in social choice
x; depends only on the voters’ preferences between these twgyr in Al. [Rossiet al, 2004 define a multi-agent exten-
values givere’ (and not on their preferences on other valuession to CP-nets and propose various semantics for aggregat-
of x; nor on their preferences on other variables.) ing preferences; but they do not address computational issues.

(P3) tells that if all voters have the same local preference This paper contains several negative results. But one im-
relation over the values of a variabte given a fixed value  portant question is left unanswereghat are the sequentially
Z of its parents, then the local collective preferencelan  decomposable voting rulesAnswering this question (by
givenz should be equal to this local preference relation.  finding a small set of properties implying that a rule cannot be

Importantly, note that the way (P2) and (P3) are writtendecomposable) seems much more difficult than we thought,
depends on the assumption that (P1) holdstherwise we  and this is of course an issue for further research.
would not have been allowed to write’;z‘}f). Next, we identified a domain for which direct and sequen-

- ] : . tial Condorcet winners coincide. Clearly, lexicographic pref-
Proposition 6 LetG be an acyclic grapli over asetofvari-  grences are very specific, so that we would like to find more
ablesV. An aggregation functiorf on Comp(G) satisfies  yeasonable restrictions for the latter property to hold.

(P1), (P2) and (P3) if and only if there exists a local dictator  Another important issue stems from the fact that in combi-

d(x;, Z) for each variablex; and eachz’ € Dpar(x,), SUCh  natorial domains with structural properties (independencies),

that for eacht € Dy (par(x,)ufx,})» W€ have direct (global) voting rules are generally not computable by

- x) Zir! o Ztr; = d(xs.2) Zix) a sequential application of local rules: so, what should we
o _ favor? Global voting rules, which are well studied in social

Proof sketch: The « direction is straightforward. For the chgjice but which take no advantage of preferential indepen-

= direction, let f satisfying (P1), (P2) and (P3). (P1) guaran- gencies, or sequential local rules, which are based on the de-

tees that for every; and 2 € Dpar(x,), Xi IS independent of  nendency graph, thereby being more intuitive and easier to

VA (Dpari) U {xi}) given 7, therefore there exists a well-  compute? A theoretical comparison between global voting

defined, local collective preference relatisri‘”z such that for all  gnd sequential local voting is a highly promising issue.

t € Dy\(par(x;) U {x:}) and for allz;, 7} € Dx,, Ztz; = Ztx).
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