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Abstract: We consider the problem of assigning alternatives evaluated on several criteria into ordered categories C1, C2, . . . , Cp .
This problem is known as the multi-criteria sorting problem and arises in many situations such as classifying countries into different
risk levels based on economical and socio-political criteria, evaluating credit applications of bank customers. We are interested
in sorting methods that are grounded on the construction of outranking relations. Among these, the Electre Tri method requires
defining multidimensional profiles that represent the “frontier” separating consecutive categories Ch and Ch+1, and assigns an
alternative to categories according to how it compares to each of the profiles. The explicit specification of the profiles of consecutive
categories can be difficult for decision makers. We develop a new outranking based sorting method that does not require the explicit
definition of profiles. We instead require the decision maker to assign a subset of reference alternatives to the categories. To assign
the remaining alternatives, each such alternative is compared to reference alternatives, and assigned to categories accordingly.
© 2008 Wiley Periodicals, Inc. Naval Research Logistics 56: 74–85, 2009
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1. INTRODUCTION

When modeling a real world decision problem using mul-
tiple criteria decision aid, several problematics (or problem
formulations) can be considered. [16] distinguishes three
basic problematics: choice, sorting and ranking.

Given a set A of alternatives (or actions), the choice (or
selection) problematic consists in a choice of a subsetA′ ⊂ A,
as small as possible, composed of alternatives being judged
as the most satisficing. Optimization problems are particu-
lar cases of a choice problematic where A′ is restricted to
a single alternative. Purchasing a car or a house are such
problems. The ranking problematic consists in establishing
a preference preorder (either partial or complete) in the set
of alternatives A. Ranking academic programs is a typical
example. Choice and ranking are comparative problem state-
ments in that comparisons among alternatives are required to
reach the results.

Correspondence to: M. Köksalan (koksalan@ie.metu.edu.tr)

The sorting problematic consists in formulating the deci-
sion problem in terms of a classification so as to assign each
alternative from A to one of the predefined categories. The
assignment of an alternative a to the appropriate category
should rely on the intrinsic value of a (and not on the com-
parison of a to other alternatives from A). Typical sorting
examples arise in situations such as classifying countries into
different risk levels based on economical and sociopoliti-
cal criteria and evaluating credit applications of bank cus-
tomers. For example, credit rating agencies like Standard &
Poor’s (S&P) regularly evaluate countries based on nine cri-
teria. (http://www2.standardandpoors.com/servlet/Satellite?
pagename=sp/Page/HomePg). S&P currently classifies 113
sovereign governments into one of a number of categories
between “AAA” and “CC”. AAA corresponds to S&P’s esti-
mate of the group of governments having the least risk of
not fulfilling their financial obligations. Naturally, these esti-
mates have a huge impact on the potentials of these countries
to borrow and on their borrowing conditions. S&P indicates
that they do not use a fixed formula or weights to establish
the ratings.
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Ranking academic programs can also be treated as a sort-
ing problem. Koksalan et al. [6] and Keeney et al. [5] argue
that characteristics of this problem makes it more suitable as
a sorting problem and they mention various shortcomings of
the existing procedures. Whether it is treated as a ranking or
a sorting problem, the resulting evaluations are very impor-
tant for the academic programs, especially in terms of the
recruitment of students.

The literature proposes various multiple criteria sort-
ing methods: Trichotomic Segmentation [10], N-TOMIC
[9], ORCLASS [8], ELECTRE TRI [20], PROAFTN [1],
UTADIS [3], a general class of filtering methods [14], rough
sets [4] or Koksalan and Ulu methods [19],[7].

In this article, we are interested in the multiple criteria sort-
ing problems when the preference model is grounded on an
outranking relation. More precisely, our work is related to
a well known existing method called ELECTRE TRI (see
ref. [20], [12]). This method uses a majority rule and a
veto rule to compare alternatives to the so called profiles
that are considered as representative vectors defining cate-
gories. Roughly speaking, when an alternative “outperforms”
a category profile in terms of the majority of criteria, and
is not “inferior” to that profile by a “large margin,” then
that alternative cannot be assigned to a worse category than
the category represented by that profile. The DM has to
define weights, thresholds, and profiles in order to opera-
tionalize the method. In practice, it is not realistic to assume
that the DM would be able to give explicitly the values of
these parameters; the natural terms in which the DM usually
expresses his/her preferences and expertise are by making
assignments of alternatives to typical categories. Inferring
the model parameters of ELECTRE TRI through an analysis
of assignment examples given by the DM has already been
studied either inferring all parameters simultaneously (see
ref. [11]) or a subset of parameters only ([13] and [2]). Nev-
ertheless, one difficulty that has not been addressed when
implementing ELECTRE TRI consists in defining (either
directly or by inference) the profiles representing the cat-
egories. In practice, it is not even reasonable to assume
the existence of such profiles. Requiring a DM to specify
such profiles is not realistic. However, these profiles have
played a central role for methods that are based on ELECTRE
TRI.

We propose a new method that avoids the use of
such profiles, the categories being implicitly defined by
assignment examples. The paper is organized as follows.
Section 2 briefly reviews the ELECTRE TRI method
and studies properties for outranking based sorting meth-
ods. We introduce, in Section 3, our new outrank-
ing based sorting method. Section 4 provides a demon-
stration of the approach through illustrative examples.
Last section presents conclusions and issues for further
research.

2. ELECTRE TRI AND OUTRANKING
BASED SORTING

2.1. Notation and Definitions

We consider the following notation:

• A = {a1, a2, . . . , ai , . . . , am} - a finite set of m

alternatives to be assigned to categories,
• g1, g2, . . . , gj , . . . , gn -n evaluation criteria,gj : A →

R for all j ∈ G = {1, 2, . . . , n}, we will assume, with-
out any loss of generality, that preferences increase
with the value on each criterion.

• Considering these n criteria, we define the dominance
relation � as a�b ⇔ gj (a) ≥ gj (b), ∀j ∈ G, one of
the inequalities at least being strict.

• We consider an outranking relation S on A, whose
semantic is “at least as good as”. We denote indif-
ference relation I and the preference relation P ; I

and P correspond to the symmetric and asymmetric
parts of S (I = S ∩ S−1 and P = S∩�S−1). We also
denote R the incomparability relation on A defined as
R =�S∩�S−1, i.e., aRb ⇔�(aSb) and �(bSa).

• C1, C2, . . . , Cp - p predefined ordered classes, where
Ch+1 	 Ch (	 a complete order on the set of classes),
h = 1, . . . , p − 1, moreover, H = {1, . . . , p},

• A∗ ⊆ A - a set of reference alternatives for which the
decision maker (DM) defines a desired assignment.
We denote C∗

h ⊆ A∗ the set of reference alternatives
assigned by the DM to category Ch, h ∈ H(C(a) =
h, ∀a ∈ C∗

h),
• C∗

>h = ⋃
h′>h C∗

h′ and C∗
<h = ⋃

h′<h C∗
h′ the set of

reference alternatives that are assigned by the DM to
category higher (lower, respectively) than Ch.

• Xj = {xj ∈ R : gj (ai) = xj , ai ∈ A} - the set of all
different evaluations on gj , j ∈ G,

• X = ∏
j∈G Xj the cartesian product of all evaluation

scales, x ∈ X is called an evaluation vector,
• P denotes a strict preference relation on A (asymmet-

ric and irreflexive), I denotes an indifference relation
on A (symmetric and reflexive), R denotes an incom-
parability relation on A (symmetric and irreflexive).
These relations are defined such that: P ∩I = P ∩R =
I ∩ R = ∅ and P ∪ I ∪ R is complete,

• S denotes an outranking relation (weak preference
relation) defined by S = P ∪ I .

2.2. Brief Review of Electre Tri

In the Electre Tri method (see ref. [20], [12]), the assign-
ment of an alternative a results from the comparison of a
with multidimensional profiles defining the limits of the cat-
egories. Let us denote b1, b2, . . . , bp−1 the profiles delimiting
the p categories (B = {1, 2, . . . , p − 1}), bh being the
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Figure 1. Definition of categories using limit profiles.

upper limit of category Ch and the lower limit of category
Ch+1, h = 1, 2, . . . , p − 1 (see Fig. 1, where the profiles
bp and b0 correspond to the ideal and anti-ideal alternatives,
respectively).

Schematically, Electre Tri assigns alternatives to categories
following two consecutive steps:

• construction of an outranking relation S that char-
acterizes how alternatives compare to the limits of
categories,

• exploitation of the relation S in order to assign each
alternative to a specific category.

Electre Tri builds a valued outranking relation S whose
meaning is “a is at least as good as bh”, i.e., defines an index
S(a, bh) ∈ [0, 1] (S(bh, a), resp.) that represents the degree
of credibility of the assertion aSbh (bhSa, resp.), ∀a ∈ A,
∀h ∈ B. The assertion aSbh (bhSa, resp.) is considered to be
valid if S(a, bh) ≥ λ (S(bh, a) ≥ λ, resp.), λ being a “cutting
level” such that λ ∈ [0.5, 1].

Determining S(a, bh) is done as follows (the value of
S(bh, a) is computed analogously):

1. Compute the partial concordance index cj (a, bh),
∀j ∈ G:

cj (a, bh) =



0 if gj (bh) − gj (a) ≥ pj (bh)

1 if gj (bh) − gj (a) ≤ qj (bh)
pj (bh)+gj (a)−gj (bh)

pj (bh)−qj (bh)
otherwise

(1)
where qj (bh) and pj (bh), j ∈ G, h ∈ H , denote the
indifference and preference thresholds that account
for the imprecise nature of the evaluations gj (a)

(see ref. [18]). qj (bh) specifies the largest difference
gj (a)−gj (bh) that preserves indifference between a

and bh on criterion gj ; pj (bh) represents the small-
est difference gj (a) − gj (bh) compatible with a
preference in favor of a on criterion gj .

2. Compute the comprehensive concordance index
c(a, bh):

c(a, bh) =
∑

j∈F wjcj (a, bh)∑
j∈F wj

(2)

3. Compute the discordance indices dj (a, bh), ∀j ∈ F :

dj (a, bh) =




0 if gj (bh) ≤ gj (a) + pj (bh)

1 ifgj (bh) > gj (a) + vj (bh)

∈ [0, 1] otherwise
(3)

where vj (bh), j ∈ G, h ∈ H , denote the veto thresh-
olds: an alternative a such that gj (a) ≤ gj (bh) −
vj (bh) cannot outrank bh, and an alternative a′ such
that gj (a

′) > gj (bh) + vj (bh) cannot be outranked
by bh.

4. Compute the credibility index S(a, bh) of the out-
ranking relation:

S(a, bh) = c(a, bh)
∏
j∈F

1 − dj (a, bh)

1 − c(a, bh)
,

where G = {j ∈ G : dj (a, bh) > c(a, bh)} (4)

The values of S(a, bh), S(bh, a) and λ determine how a and
bh compare:

• S(a, bh) ≥ λ and S(bh, a) ≥ λ ⇒ aSbh and bhSa ⇒
aIbh, i.e., a is indifferent to bh,

• S(a, bh) ≥ λ and S(bh, a) < λ ⇒ aSbh and not
bhSa ⇒ aPbh, i.e., a is preferred to bh,

• S(a, bh) < λ and S(bh, a) ≥ λ ⇒ not aSbh and
bhSa ⇒ bhPa, i.e., bh is preferred to a,

• S(a, bh) < λ and S(bh, a) < λ ⇒ not aSbh

and not bhSa ⇒ aRbh, i.e., a is incomparable
to bh.

Two assignment procedures are then available:
Pessimistic procedure :

a) compare a successively to bi , for i = p, p − 1, . . . , 0,
b) bh being the first profile such that aSbh, assign a to

category Ch+1(C(a) = h + 1).

Optimistic procedure :

a) compare a successively to bi , i = 1, 2, . . . , p,
b) bh being the first profile such that bhPa, assign a to

category Ch(C(a) = h).
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Figure 2. Outranking relations between categories.

2.3. Properties and Issues for Outranking
Based Sorting

The assignment principle we intend to study is the
following:

aSb ⇒ C(a) > C(b), ∀a, b ∈ A (5)

This principle states that “if an alternative a is as good as
an alternative b, a should be assigned to a category at least
as good as b.” In other words, this principle forbids that b is
assigned to a higher category than a whenever aSb. Figure 2,
in which no alternative outranks another alternative assigned
to a higher category, illustrates this assignment principle.
Such assignment principle has been used in [15].

Consider the following proposition:

PROPOSITION 1: Considering the assignment princi-
ple (5) holds: If a1Sa2, a2Sa3, . . . , ak−1Sak and akSa1, for
a1, a2, . . . , ak ∈ A, then C(a1) = C(a2) = . . . = C(ak).

PROOF: Consider k alternatives a1, a2, . . . , ak that are
involved in a circuit of the outranking relation S, i.e., such that
aiSai+1, i = 1, .., k − 1 and akSa1. According to the assign-
ment principle (5) we can deduce that C(a1) ≥ C(a2) ≥ . . .≥
C(an) ≥ C(a1). The only possible assignments respecting
these inequalities are : C(a1) = C(a2) = . . . = C(an). �

This proposition states that the assignment principle (5)
implies all alternatives that are in a circuit of the outranking
relation S should be assigned to the same category. Hence,
the absence of circuits among alternatives assigned to dif-
ferent categories is a necessary condition for the assignment
principle (5) to be fulfilled.

It should be noted that the Electre Tri method does not
respect such property of absence of circuit among alternatives
assigned to different categories. A simple counter-example
can be built, considering three alternatives involved in a cir-
cuit resulting from a so-called Condorcet effect: 3 alternatives

evaluated on 3 criteria (to be maximized) are to be assigned
to two categories C1 and C2. The evaluations of alternatives
are given in Table 1.

The criteria weights are equal (w1 = w2 = w3 = 1
3 ) and λ

is set to any value between 0.5 and 1. Moreover, we consider
true-criteria (qj (b1) = pj (b1) = 0, j ∈ G), and veto thresh-
olds are set so that no veto phenomenon occur. It is easy to
observe that, due to a Condorcet effect, a1Pa2, a2Pa3 and
a3Pa1 holds. Moreover the profile delimiting the categories
C1 and C2 is b1 = (2, 0, 1). Note that b1 is the same as a1.
Hence a1Ib1, b1Pa2, a3Pb1 holds. Therefore both Electre Tri
assignment rules will assign a1 and a3 to C2, but a2 to C1.

However, such statements should not be analyzed as short-
comings for the Electre Tri method. Indeed, the principle
underlying any sorting method is not to compare alternatives
to each other, but rather to analyze each alternative individu-
ally so as to define its assignment to a category. In the Electre
Tri method, this is performed by comparing each alterna-
tive a to reference alternatives that represent the limits of
categories.

Hence, it is reasonable to weaken the requirements of the
assignment principle (5), so that the implication holds for a
subset of alternatives A′ ⊆ A:

aSb ⇒ C(a) ≥ C(b), ∀a, b ∈ A′ ⊆ A (6)

In Electre Tri, as the ordered categories are defined using
profiles bh corresponding to the frontier between category Ch

and Ch+1, these bh are such that bh+1�bh, i.e., gj (bh+1) ≥
gj (bh), ∀j ∈ G, one of the inequalities at least being strict,
h = 1, . . . , p − 1. Moreover, [17] imposes an even stronger

Table 1. Condorcet effect.

g1 g2 g3

a1 2 0 1
a2 1 2 0
a3 0 1 2

Naval Research Logistics DOI 10.1002/nav
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condition (gj (bh+1) ≥ gj (bh) + pj (bh) + pj (bh+1), ∀j ∈
G, ∀h ∈ H).

LEMMA 2.1: In the Electre Tri method, when categories
are defined such that gj (bh+1) ≥ gj (bh)+pj (bh)+pj (bh+1),
∀j ∈ G, ∀h ∈ H , no circuits in the outranking relation S can
occur involving only a subset of profiles B ′ ⊆ B = {bh, h =
1, . . . , p − 1}.

PROOF: Consider the p−1 profiles b1, b2, . . . , bp−1 defin-
ing the categories in Electre Tri. These profiles ordered by
dominance, i.e., defined such that bP−1�bP−2� . . . �b1. As
the outranking relation S contains the dominance relation
�, bhSbh′ , for all h, h′ such that h > h′. Moreover, the
definition of categories imposes that gj (bh+1) ≥ gj (bh) +
pj (bh) + pj (bh+1), ∀j ∈ G, ∀h ∈ H , which makes it
impossible to have bh′Sbh, for h, h′ such that h > h′.
Hence, no circuit can occur in S involving only profiles in
B = {bh, h = 1, . . . , p − 1}. �

LEMMA 2.2: In the Electre Tri method, when categories
are defined such that gj (bh+1) ≥ gj (bh)+pj (bh)+pj (bh+1),
∀j ∈ G, ∀h ∈ H , no circuits in the outranking relation S can
occur involving only one alternative a ∈ A and a subset
of profiles B ′ ⊆ B ∪ {a} containing more than one profile
(|B ′| ≥ 2).

PROOF: The profiles separating the categories are defined
such that bp−1�bp−2� . . . �b1. Moreover, these profiles are
defined such that no alternative a ∈ A can be indifferent to
two consecutive profiles bh, bh+1, h ∈ B, i.e.:

∀a ∈ A, it holds: aIbh ⇒�[aIbh−1] and �[aIbh+1] (7)

Usually imposing (7) is done by posing the following
sufficient condition:

gj (bh+1) ≥ gj (bh)+pj (bh)+pj (bh+1), ∀j ∈ G, ∀bh ∈ B

(8)
Considering an alternative a ∈ A and a profile bh ∈ B, four
situations can occur: aIbh, bhPa, aPbh or aRbh.

• Suppose aIbh, i.e., aSbh and bhSa. Consider bh′ ∈ B,
h′ > h. (8) and aIbh implies that bh′Pa. As bh′Sbh

(because bh′bh), alternative a can not be included in
a circuit of S involving bh and bh′ . Consider b′′

h ∈ B,
h′′ < h. (8) and aIbh implies that aPbh′′ . As bhSbh′′

(because bh�bh′′ ), alternative a can not be included
in a circuit of S involving bh and bh′′ .

• Suppose bhPa and consider bh′ ∈ B, h′ > h. As
bh′�bh, it holds bh′Pa. Hence, alternative a can not
be included in a circuit of S involving bh and bh′ . Con-
sider bh′′ ∈ B, h′′ < h. As bh�bh′′ , it holds bhPbh′ .

Hence, alternative a can not be included in a circuit
of S involving bh and bh′′ .

• Suppose aPbh. An argument analogous to the preced-
ing case proves that alternative a can not be included
in a circuit of S involving bh and another profile.

• Suppose aRbh; alternative a can obviously not be
included in a circuit of S involving bh as neither aSbh

nor nhSa holds.

Therefore no circuits in the outranking relation S can occur
involving only one alternative a ∈ A and a subset of profiles
B ′ ⊆ B ∪ {a} containing more than one profile. �

PROPOSITION 2: When categories are defined such that
gj (bh+1) ≥ gj (bh) + pj (bh) + pj (bh+1), ∀j ∈ G, ∀h ∈ H ,
Electre Tri method’s assignments are compatible with the
assignment principle (6) when considering the limit profiles
only, i.e., when A′ = B.

PROOF: Because of the dominance among profiles, S con-
stitutes a strict total order on B : bh−1Sbh−2S . . . Sb1. Electre
Tri assigns bh to category Ch+1. Hence, Electre Tri method’s
assignments are compatible with the assignment principle
(6), when considering the limit profiles only. �

PROPOSITION 3: When categories are defined such that
gj (bh+1) ≥ gj (bh) + pj (bh) + pj (bh+1), ∀j ∈ G, ∀h ∈ H ,
Electre Tri method’s assignments are compatible with the
assignment principle (6) when considering the limit profiles
and any single alternative, i.e., when A′ = B ∪ {a}, a ∈ A.

PROOF: According to proposition 2, Electre Tri method’s
assignments are compatible with the assignment principle
(6), when considering the limit profiles only. In order to prove
that it remains true when considering A′ = B ∪ {a}, a ∈ A,
we must consider how a compares to the profiles bh and its
comparative assignment, i.e., we need to prove that:

if aSbh then C(a) ≥ C(bh), ∀bh ∈ B (9)

if bhSa then C(bh) ≥ C(a), ∀bh ∈ B (10)

• Electre Tri pessimistic rule assigns a to the highest
class for which a outranks the lower profile. Let bh′

denote the highest profile for which aSbh′ . Then a

and bh′ are both assigned to Ch′+1. As bh′ is the high-
est profile for which aSbh′ , a does not outrank any
higher profile. Moreover, due to dominance among the
ordered profiles, a outranks all profiles lower than bh′ ;
however each of them are assigned to a category lower
than Ch′+1. The optimistic assignment rule assigns a

to a category that is higher or equal to the pessimistic
assignment. Therefore (9) holds for both assignment
rules.
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• Electre Tri optimistic rule assigns a to the lowest class
for which the higher profile is preferred to a. Let bh′′

denote the lowest profile for which bh′′Pa, i.e., bh′′Sa

and not aSbh′′ . Then a is assigned to Ch′′ whereas bh′′

is assigned to Ch′′+1. It is possible that a is indifferent
to bh′′−1 (but only bh′′−1 as a can not be indifferent to
more than one profile), i.e., bh′′−1Sa and aSbh′′−1; in
this case a and bh′′−1 are both assigned to Ch′′ . The
pessimistic assignment rule assigns a to a category
that is lower or equal to the optimistic assignment.
Therefore (10) holds for both assignment rules.

�

PROPOSITION 4: Even when categories are defined such
that gj (bh+1) ≥ gj (bh) + pj (bh) + pj (bh+1), ∀j ∈ G,
∀h ∈ H , Electre Tri method’s assignments are not neces-
sarily compatible with the assignment principle (6) when
considering all alternatives, i.e., when A′ = A.

PROOF: The example presented in Table 1 provides a
counter-example that proves that Electre Tri method’s assign-
ments are not necessarily compatible with the assignment
principle (6) when considering all alternatives. �

3. A NEW OUTRANKING-BASED
SORTING METHOD

Specifying the category limits through profiles can be a dif-
ficult task for the DM. On the other hand, in many decision
situations, DMs can easily specify alternatives that are typical
examples of a category, say reference alternatives. Therefore,
we propose a new outranking-based sorting method that does
not require explicit profiles characterizing the multidimen-
sional limits of consecutive categories, but rather represents
categories implicitly using reference alternatives.

In this section, we first develop a procedure that cap-
tures the circuits, if any, among alternatives assigned by
the DM to different categories. We detect the alternatives
that cause these circuits and determine which assignments
to disregard in order to eliminate the circuits. We then try
to assign the remaining alternatives considering the available
preference information. We assume that preference and indif-
ference thresholds, therefore partial concordance indices of
alternatives are known. We treat criteria weights as unknown.

3.1. Identifying Assignment Examples Compatible
with the Assignment Principle

To obtain the initial assignments, we ask the DM to assign
some alternatives to categories. Let A∗ be the set of these
alternatives. We would like to have approximately equal num-
ber of initially assigned alternatives in each category. To

achieve this, different approaches can be employed in select-
ing the alternatives to be presented to the DM for initial
assignments. For example, we could use a simplified ver-
sion of Electre Tri without the veto property. We could use
equal weights and suitably chosen profiles and thresholds to
come up with some rough assignments. We can then select
alternatives from these categories with the expectation that
the DM’s assignments will roughly be consistent with Electre
Tri’s assignments. Another approach would be to select the
alternatives sequentially utilizing the information obtained
from the previous assignments of the DM. We can keep pre-
senting new alternatives to the DM until a desired number of
assignments are made to each category. We should emphasize
that these are some possible ways of choosing the alternatives
in A∗. The chosen alternatives will be presented to the DM
who will make the actual placement of them into categories.

After the DM assigns the given alternatives to categories,
we would like to find a large subset of the assignments
that do not have circuits. A circuit occurs when two alter-
natives from different categories outrank each other. There
may also be circuits between more than two alternatives.
Since there are no profiles for categories, circuits between
different categories may exist. We are not concerned about
circuits within the same category but we do not allow cir-
cuits between categories. In order not to have such circuits,
whenever C(aq) < C(ar), alternative aq should not outrank
alternative ar . That is, if an alternative placed in a lower
level category outranks an alternative placed in a higher-level
category, there is a circuit.

Using model (P1), we eliminate these circuits (if there
exists any) from the reference alternative set. We remove
some of the assigned alternatives in order to eliminate these
circuits. (P1) achieves this by maximizing the minimum num-
ber of alternatives assigned to any category. This helps in
maintaining an approximately equal number of alternatives
in each of the categories. After the necessary eliminations
from set A∗, set A∗

1 ⊆ A∗ is obtained so that there are no
circuits between the alternatives in A∗

1.
Decision variables:
α: minimum number of alternatives in a category
λ: concordance threshold
wj : weight of criterion j

yi =
{

1 if reference alternative ai is not deleted
0 otherwise

(P1) Max α + p
∑

i:ai∈A∗
yi (11)

s.t.

α ≤
∑

i:C(ai )=Ch

yi , ∀h ∈ H (12)
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S(aq , ar) =
n∑

j=1

wjcj (aq , ar), ∀aq , ar ∈ A∗

(13)

S(aq , ar) ≤ λ − ε + M(1 − yq) + M(1 − yr),

∀aq , ar ∈ A∗ � C(aq) < C(ar) (14)

yi ∈ {0, 1} ∀i : ai ∈ A∗ (15)

w ∈ � (16)

λ ∈ [0.5, 1] (17)

where ρ and ε are arbitrarily small positive constants, and M

(big-M) is an arbitrarily large positive constant. The minimal
restrictions on w that define set � are

n∑
j=1

wj = 1 (18)

ε ≤ wj ≤ 0.5, ∀j (19)

If we have additional preference information of the DM, we
can incorporate these as additional restrictions in �.

Constraints (12) assure that α is less than or equal to the
number of assigned alternatives that are not eliminated in
each class. These constraints, together with the term, α, in
the objective function maximize the minimum category size
in terms of the retained alternatives assigned by the DM.
Constraints (13) define the overall concordance measure in
terms of the weighted sum of its components in each crite-
rion. Constraints (14) determine if a circuit exists based on
the assignments of aq and ar . If a circuit exists, either aq or ar

will be eliminated depending on their effects on the objective
function.

3.2. Assigning Alternatives to Categories

After we eliminate some of the reference alternatives in
order to prevent circuits (i.e. after we construct set A∗

1) we try
to place the unassigned alternatives. In making these assign-
ments, we do not use any profiles. Instead, we utilize the
reference alternatives assigned to categories by the DM (i.e.
the alternatives in A∗

1) as benchmarks to place the remaining
alternatives. We denote the alternatives already assigned by
the DM as ak and the alternatives we try to place as ai .

Decision variables:

yih =
{

1 if alternative ai is assigned to category Ch

0 otherwise

uihk = Amount of violation in the outranking relation
between alternatives ai and ak when ai is assigned to Ch.

The parameters, ρ, ε, and M are as defined before.

(P2) Min
∑

i

∑
h

∑
k

uihk − ρλ (20)

s.t.

S(ai , ak) ≤ λ − ε + M(1 − yih),

∀ak ∈ C>h, h = 1, . . . , p − 1, ∀i (21)

S(ak , ai) ≤ λ − ε + M(1 − yih),

∀ak ∈ C<h, h = 2, . . . , p, ∀i (22)

S(ai , ak) ≥ λ − M(1 − yih) − uihk ,

∀ak ∈ C<h, h = 2, . . . , p, ∀i (23)

S(ak , ai) ≥ λ − M(1 − yih) − uihk ,

∀ak ∈ C>h, h = 1, . . . , p − 1, ∀i (24)
p∑

h=1

yih = 1, ∀i (25)

S(aq , ar) ≤ λ − ε,

∀aq , ar ∈ A∗
1 � C(aq) < C(ar) (26)

S(ai , ak) =
n∑

j=1

wjcj (ai , ak), ∀i, k (27)

λ ∈ [0.5, 1] (28)

yih ∈ {0, 1}, uihk ≥ 0 (29)

w ∈ � (30)

The model, (P2), makes sure that any alternative, ai , placed
by the model does not outrank any alternative, ak , placed by
the DM to higher-level categories, and is not outranked by
any alternative ak placed by the DM to lower-level categories
(constraints (21) and (22)). Furthermore, the model tries to
have an alternative in a higher-level category to outrank an
alternative in a lower-level category between all pairs, and
tries to minimize the total magnitude of violations when it is
not possible to maintain these relations (constraints (23) and
(24)). That is, the uihk variable measures the magnitude of
violation of this outranking relation and the objective function
tries to minimize the sum of these violations. The second term
in the objective function maximizes the λ value as a secondary
objective due to its sufficiently small positive coefficient. The
constraints (25) make sure that each ai is assigned to exactly
one category. (26) force the reference alternatives assigned
to lower-level categories not to outrank those assigned to
higher-level categories. Constraint (28) specifies the allow-
able values for λ. Small values of λ are not allowed since it
would be too easy for solutions to outrank each other.

To compute the assignment of the nonreference alterna-
tives, we can consider another objective function which min-
imizes the maximum variable uihk instead of the sum of these
variables. This leads to a program corresponding to an inter-
esting alternative formulation in which the worst deviation is
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considered. This can be achieved by replacing the objective
function of (P2) by:

Min u − ρλ (31)

and adding constraints

u ≥ uihk , ∀i, h, k (32)

where u represents the maximum violation.
If (P2) turns out to be infeasible, we may wish to find

the placements with minimum number of violations of
constraints (21) and (22). Let

zik =



1 if outranking relation between ai and ak

is violated
0 otherwise

Min
∑

i

∑
k

zik + ρ
∑

i

∑
h

∑
k

uihk (33)

s.t.

S(ai , ak) ≤ λ − ε + M(1 − yih) + Mzik ,

∀ak ∈ C>h, h = 1, . . . , p − 1, ∀i (34)

S(ak , ai) ≤ λ − ε + M(1 − yih) + Mzik ,

∀ak ∈ C<h, h = 1, . . . , p, ∀i (35)

Constraints(23) − (30)

When zik takes a value of 1, the above model
allows violating the corresponding constraint (34) or (35).
The objective function primarily minimizes the number
of such violations. Minimizing sum of uihk variables
becomes a secondary objective.

On the other hand, if we want to minimize the total mag-
nitude of violation, or minimize the maximum violation, we
can do without the zik variables. Let u′

ik be the violation in
the outranking relation for the pair (ai , ak). In this case, we
can write the following model.

Min
∑

i

∑
k

u′
ik + ρ

∑
i

∑
h

∑
k

uihk (36)

s.t.

S(ai , ak) ≤ λ − ε + M(1 − yih) + u′
ik ,

∀ak ∈ C>h, h = 1, . . . , p − 1, ∀i (37)

S(ak , ai) ≤ λ − ε + M(1 − yih) + u′
ik ,

∀ak ∈ C<h, h = 2, . . . , p, ∀i (38)

Constraints(23) − (30)

(36) minimizes the total violation u′
ik . If we wish to

minimize the maximum violation, instead, we then use the
following model.

Min u + ρ
∑

i

∑
h

∑
k

uihk (39)

s.t.

u ≥ u′
ik , ∀i, k (40)

Constraints(37), (38), (23) − (30)

3.3. Finding a Range of Categories

Another useful information is the range of categories each
alternative can be assigned to in light of the set of reference
alternatives, A∗

1, obtained from (P1). To find if alternative
i can be assigned to category h, we solve a slight variation
of (P2).

Letting yth′ = 1 in (P2), we can find if it is possible to
assign a specific alternative t to a specific category h′. Let
this model be (P 2th′). If there exists a feasible solution, then
it is possible to assign t to h′ while finding feasible assign-
ments to all remaining alternatives. By solving (P 2th′) for
all h′ = 1, . . . , p, we can find all possible categories of
alternative t . We can repeat the procedure for all alternatives.

A relaxed version of (P 2th′) can be obtained as a linear
program given as (P 3ih).

(P 3ih)Min 0 (41)

s.t.

S(ai , ak) ≤ λ − ε, ∀ak ∈ C>h (42)

S(ak , ai) ≤ λ − ε, ∀ak ∈ C<h (43)

S(aq , ar) ≤ λ − ε, ∀aq ,

ar ∈ A∗
1 � C(aq) < C(ar) (44)

S(a, b) =
n∑

j=1

wjcj (a, b), (45)

λ ∈ [0.5, 1] (46)

w ∈ � (47)

The constraints of (P 3ih) are similar to those in previous
problems. Since we need to find whether a feasible solution
exists or not, the objective function is not relevant and we just
set it to a constant value, zero. For each ai , we solve (P 3ih)

for all categories. A feasible solution indicates that it might
be possible to assign ai to category h. When (P 3ih) does not
have a feasible solution, assigning ai to category h would
not be consistent with the DM’s assignments of reference
alternatives.

(P 3ih) can also be used to reduce the number of integer
variables in (P2) and (P 2th′). We may define only those yih

variables for which (P 3ih) indicates a possible assignment.
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Table 2. Reference alternatives.

Program name Alumni career progress Diversity Idea generation Category of reference alternatives

London business school 68.78 62.03 59.87 5
MIT: Sloan 60.01 24.10 85.81 4
Yale School of Management 79.01 25.98 51.84 4
University of North Carolina: Kenan-Flagler 67.80 22.45 62.40 3
University of Toronto: Rotman 59.34 36.68 60.79 3
UCLA: Anderson 55.46 21.52 74.54 2
University of Oxford: Said 57.04 43.49 47.12 2
University of Maryland: Smith 55.33 25.28 64.13 1

4. DEMONSTRATION OF THE APPROACH

In this section we demonstrate the approach using several
problems. We first consider the evaluation problem of MBA
programs using actual data. We then use a problem from the
banking sector to further demonstrate various aspects of our
approach.

4.1. An Application to Global MBA Rankings

Here, we demonstrate our method on the MBA program
rankings using the Financial Times (FT) 2005 data. Every
year, FT announces top 100 global MBA programs. FT uses
20 criteria grouped under three main criteria: alumni career
progress, diversity and idea generation.

Ref. [6] studied the MBA program ranking problem for 81
programs of the FT data. We use 30 programs of their list to
demonstrate our approach. They create numerical scores that
are consistent with the criteria information that are provided
in ordinal scale by FT. We use this data set to assign the 30
MBA programs to five categories using three criteria.

We assume that eight programs (reference alternatives)
have already been assigned to categories. The scores and cate-
gories of the reference alternatives are given in Table 2. Table
3 shows the data for the remaining alternatives that are to be
assigned to categories by our models. We use indifference
and preference thresholds given in Table 4. When we solve
(P1), none of the reference alternatives is removed from set
A∗.

We first determine the categories each alternative can be
assigned to without causing any circuits. For this purpose,
we solve the linear programming model (P 3ih) for each
alternative-category pair. We then solve the mixed integer
programming model (P 2th′). The possible categories of both
models for each alternative are given in Table 5. (P 2th′)

reduces the possible number of categories for Cornell Uni-
versity and University of Iowa compared to (P 3ih). Note that,
the size of (P 2th′) can be reduced by defining binary vari-
ables for the assignment of program i only for the possible
categories found by (P 3ih).

Then we solve (P2) and obtain the assignments given in
the last column of Table 5. Optimal weight set is found as

0.362, 0.276, and 0.362 for the three criteria, and λ is found
to be 0.638. The size of (P2) can also be reduced like (P 2th′)

using the results of (P 3ih).

Table 3. Alternative scores.

Alumni
career Idea

Program name progress Diversity generation

Carnegie Mellon: Tepper 54.02 18.69 71.93
Columbia Business

School
83.44 32.94 71.63

Cornell University:
Johnson

60.54 30.31 55.99

Duke University: Fuqua 64.05 27.25 64.68
Esade Business School 54.61 60.15 14.45
Harvard Business

School
77.84 29.05 93.91

Iese Business School 61.99 54.61 49.04
Insead 56.59 70.74 65.45
New York University:

Stern
68.24 26.74 80.5

Northwestern
University: Kellogg

68.68 24.52 72.43

Rotterdam School of
Management

51.2 52.91 42.98

Stanford University GSB 76.77 28.52 81.8
UC Berkeley: Haas 61.26 31.04 73.69
University of Chicago

GSB
75.64 25.37 77.73

University of Iowa:
Tippie

58.25 26.25 46.81

University of Michigan:
Ross

63.23 28.36 69.61

University of
Pennsylvania: Wharton

77.11 32.51 91.59

University of Rochester:
Simon

60.25 29.6 49.25

University of Virginia:
Darden

76.49 19.05 37.68

University of Western
Ontario: Ivey

50.04 40.55 53.55

Vanderbilt University:
Owen

64.67 26.33 35.14

York University:
Schulich

57.03 50.73 47.55
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Table 4. Preference and indifference thresholds.

Alumni career Idea
progress Diversity generation

Indifference threshold 0.35 0.7 0.5
Preference threshold 3 3 3

(P2) places each nonreference alternative a to a category
such that a does not outrank a reference alternative of a bet-
ter category. For example, consider two programs: University
of Pennsylvania: Wharton (W) and London Business School
(L). According to the optimal criteria weights and the λ value
found in (P2), the concordance and outranking relations of
these two programs can be calculated as follows:

g1(L) − g1(W) = 68.78 − 77.11

= −8.33 < q1 = 0.35 ⇒ c1(W , L) = 1

g2(L) − g2(W) = 62.03 − 32.51

= 29.52 > p2 = 3 ⇒ c2(W , L) = 0

g3(L) − g3(W) = 59.87 − 91.59

= −31.72 < q3 = 0.5 ⇒ c3(W , L) = 1

S(W , L) =
3∑

i=1

wici(W , L) = 0.362 + 0 + 0.362 = 0.724

g1(W) − g1(L) = 77.11 − 68.78

= −8.33 > p1 = 3 ⇒ c1(L, W) = 0

g2(W) − g2(L) = 32.51 − 62.03

= 29.52 < q2 = 0.7 ⇒ c2(L, W) = 1

g3(W) − g3(L) = 91.59 − 59.87

= 31.72 > p3 = 3 ⇒ c3(L, W) = 0

S(W , L) =
3∑

i=1

wici(W , L)=0 + 0.276 + 0 = 0.276

S(W , L) = 0.724 ≥ λ ⇒ W outranks L

S(L, W) = 0.276 < λ ⇒ L does not outrank W

Therefore, W cannot be assigned to a category worse than
that of L. Since L is a reference alternative placed in the
best category, W should also be assigned to this category
in order not to violate assignment principle (5). It should,
however, be noted that the solution provided by (P2) guar-
antees principle (5) when considering the comparison of a
single nonreference alternative to reference alternatives. As
mentioned before, there may be circuits among nonreference
alternatives.

Although it is neither necessary nor possible to guarantee
preventing circuits among nonreference alternatives with an
outranking-based methodology, it is easy to identify the exis-
tence of such circuits. A variation of our approach would be

to identify those circuits and present them to the DM as feed-
back. If the DM wishes to prevent some of the circuits, the
corresponding alternatives may be added to A∗ and the whole
process can be repeated. In this problem the assignment prin-
ciple (5) is violated in five of the 231 pairs of nonreference
alternatives, leading to circuits involving these five pairs.

In this problem there are 22 schools, each of which is
assigned to one of the five categories. Hence (P 2) has 110
binary variables. When we solve (P 2) directly, it takes 1.23
CPU seconds with CPLEX 8.1 on a Pentium 4, 2.80 GHz
computer with 520 MB RAM. As Table 5 indicates, (P 3ih)

narrows down the possible assignments and we see that 30 of
the 110 assignments are not feasible. When we incorporate
this information into (P 2), the total CPU time of (P 3ih) and
(P 2) turns out to be 0.66 s.

4.2. Some Computational Results

To further demonstrate the performance of our approach,
we consider a sorting problem which corresponds to a real-
world decision problem in the banking sector [20]. However,
due to the confidentiality of the data, the precise context of
the problem had not been explained. In this application, the
DM considers a new set of alternatives each day. The sorting
model aims at distinguishing alternatives so as to eliminate
those considered as unsuitable with respect to some prede-
fined norm; at a second stage, a preference ranking of the
remaining alternative was build; the final choice was made

Table 5. Results of models P 3ih, P 2ih and P 2.

Program name P 3ih P 2ih P 2

Columbia Business School 4,5 4,5 5
Harvard Business School 4,5 4,5 5
New York University: Stern 3,4,5 3,4,5 5
Northwestern University: Kellogg 3,4,5 3,4,5 5
Stanford University GSB 3,4,5 3,4,5 5
University of Chicago GSB 3,4,5 3,4,5 5
University of Pennsylvania: Wharton 4,5 4,5 5
Duke University: Fuqua 1,2,3,4,5 1,2,3,4,5 4
Insead 2,3,4,5 2,3,4,5 4
UC Berkeley: Haas 2,3,4,5 2,3,4,5 4
University of Michigan: Ross 1,2,3,4,5 1,2,3,4,5 4
Iese Business School 2,3,4,5 2,3,4,5 3
Cornell University: Johnson 1,2,3,4,5 1,2,3 2
University of Iowa: Tippie 1,2,3 1,2 2
University of Rochester: Simon 1,2,3 1,2,3 2
Vanderbilt University: Owen 1,2,3,4 1,2,3,4 2
York University: Schulich 2,3,4,5 2,3,4,5 2
Carnegie Mellon: Tepper 1,2 1,2 1
Esade Business School 1,2,3,4,5 1,2,3,4,5 1
Rotterdam School of Management 1,2,3,4,5 1,2,3,4,5 1
University of Virginia: Darden 1,2,3,4 1,2,3,4 1
University of Western Ontario: Ivey 1,2,3,4,5 1,2,3,4,5 1
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Table 6. Indifference and preference thresholds and weights of criteria for Electre Tri.

Criteria

g1 g2 g3 g4 g5 g6 g7

Indifference threshold qj 0.64 1.56 1.56 1.56 1.56 1.56 2.04
Preference threshold pj 1.28 3.17 3.17 3.17 3.17 3.17 4.15
Weights wj 0.24 0.12 0.12 0.12 0.12 0.12 0.16

on the basis of this ranking. We are interested here in the first
stage, which consists in the elaboration of a sorting model.

This example problem contains 100 alternatives and seven
criteria. We consider placing alternatives into three cate-
gories, we simulate DM’s responses using Electre Tri with
parameters given in Table 6, and we try to choose the
reference alternatives to represent categories well.

We first tried our approach by choosing two reference
alternatives in each category. In this case, the remaining
94 alternatives were placed by our models. We next added
one more reference alternative to each category and run the
models again to place 91 alternatives. Finally, we repeated
the procedure adding one more reference alternative to each
category and placing the 88 nonreference alternatives.

In none of the cases did Model (P 1) encounter any cir-
cuits. Hence we did not need to eliminate any of the reference
alternatives. The results of Model (P 2) turned out to be very
robust. Regardless of the number of reference alternatives,
(P 2) placed the alternatives into the same category, with the
exception of one alternative. This alternative was placed to
category one when using two and four reference alternatives,
but to category two when using three reference alternatives.
When we compare the results of the assignments with those
of Electre Tri, we observe that a vast majority of alternatives
are assigned to the same categories in all cases. There were at
most six alternatives assigned to different categories by Elec-
tre Tri and our approach. Of course, in theory there could be
more disagreement since these are two different approaches.
In all solutions, the λ value turned out to be very close to its
lower bound. This is expected since minimizing uihk values
is in conflict with larger λ values. Although the assignments
to categories were almost the same with our approach using
different number of reference alternatives, there was some
variation in the resulting weight values.

We also solved the variation of (P 2) that minimizes the
maximum violation discussed in Section 3.2. In this case we
minimized the maximum uihk value, rather than the sum of
uihk values. The placements made by the model were identical
to the previous case except for one alternative. The alternative
that was an exception in the previous case turned out to be an
exception here as well. It was placed to category two when
using two and three reference alternatives, but to category
one when using four reference alternatives.

Another observation we have is regarding the objective
function value of the (P 2) problem. It turned out to be very

small (around 0.001), indicating that nonreference alterna-
tives in better categories could outrank reference alternatives
in worse categories, and reference alternatives in better cat-
egories could outrank nonreference alternatives in worse
classes, in general. Looking more closely, only around 10
uihk variables turned out to be nonzero among 1000 to 2000
possible uihk values for different cases.

The computational difficulty of (P 2) increases with the
number of binary variables. Number of binary variables is
equal to the number of alternatives to be assigned by the
model times the number of categories. To see the computa-
tional performance of our algorithm, we conducted a small
experiment. We tried 100 and 300 alternatives. For the 300-
alternative case we randomly generated 200 alternatives in
addition to the original 100 alternatives. We selected five ref-
erence alternatives in each category and solved each problem
twice; once using only (P 2) and once preprocessing with
(P 3ih) first and then using (P 2) for the simplified problem.
We present the CPU times we obtained using CPLEX 8.1
solver on a Pentium 4, 2.80 GHz computer with 520 MB
RAM in Table 7. The results indicate that the CPU times
increase substantially with the number of alternatives, as
expected. The effectiveness of (P 3ih) also increases sub-
stantially with the number of alternatives. The problem is
manageable for reasonably large number of alternatives using
the CPLEX solver directly. It may be possible to further
improve the computations by studying the features of the
integer programs solved. This is an issue we consider for
future research.

5. CONCLUSIONS AND FURTHER RESEARCH

In this article, we developed an outranking-based approach
to place alternatives into preference-ordered categories. Our

Table 7. Computational results.

CPU seconds

Number of Using (P 2) Using (P 3ih)
alternatives only and (P 2)

100 3.63 3.11
300 783.63 180.95
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approach aims to avoid asking difficult preference informa-
tion from the DM such as weights or category limits (profiles)
or the λ threshold. We only require the DM to place a small
number of reference alternatives into suitable categories. We
then place the remaining alternatives with the aid of an inte-
ger program that maintains desired relationships between the
reference alternatives and the alternatives that are placed by
the model. We demonstrate our approach on a small example
problem and observe that it performs well on larger problems
as well. Studying various aspects of the integer programs is
a future research direction that might prove useful to further
improve the computation times.

We believe that there is need for further research to
simplify the information requirements of outranking-based
approaches. Further developments and experimentation will
lead to more realistic outranking-based approaches.

Using the veto concept is not straightforward when para-
meters are not directly specified by the DM. This is a future
research area. Extending our approach to the case of multiple
decision makers is another future work we intend to do.
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