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Abstract

The objective of this paper is to propose a new algebra, called decision map algebra (DMA), espe-
cially devoted to multicriteria spatial modeling. DMA is a generic and context-independent modeling
language inspired from map algebra and other similar languages. It supports the conventional geo-
metric objects and cartographic maps and adds a rich set of new operands representing different spa-
tial multicriteria concepts. Moreover, DMA supports different conventional map algebra-like
operations and adds several new ones corresponding to different spatial multicriteria evaluation
functions. The proposed algebra is the first step towards the development of a generic spatial mul-
ticriteria modeling language.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

The geographical information system (GIS) is a powerful tool to collect, store, manage
and analyze spatial data. However, GIS has several limitations in spatial decision making
which are due in great part to the lack of sophisticated analytical and spatial modeling
tools. The solution generally adopted to enhance the GIS in spatial decision making con-
sists in coupling it with other computing and operational research tools. Among these
tools, the multicriteria analysis is naturally the most appropriate one. Multicriteria anal-
ysis (MCA) is broadly defined as ““a decision-aid and a mathematical tool allowing the
comparison of different alternatives or scenarios according to many criteria, often conflict-
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ing, in order to guide the decision maker towards a judicious choice” (Roy, 1996). The
major argument in favor of GIS-MCA integration is that spatial decision problems are
inherently of multicriteria nature (Carver, 1991; Chakhar & Martel, 2003; Laaribi, Cheval-
lier, & Martel, 1996; Malczewski, 1999).

A great deal of papers concerning GIS-MCA integration has been published since 1990
(see Malczewski (2006) for a recent survey of the literature). Unfortunately, the lack of
adequate capabilities for supporting an effective multicriteria spatial modeling prevent
these works from going beyond the academic contexts. Indeed, in most of the previous
works attention is essentially oriented towards the physical integration of the two tools.
Currently, research on GIS and MCA integration is matured enough and we think that
more attention should be addressed to enhance GIS-based multicriteria analysis systems
by adding multicriteria spatial modeling capabilities.

There is a large body of literature for adding spatial modeling capabilities in GIS. One
possible solution is to develop generic, context-independent and script-like languages such
as map algebra or other similar tools. Map algebra, introduced in early 1980s by Tomlin
(Tomlin, 1983) and then extended and refined in a book (Tomlin, 1990), uses single-factor
map layers as operands on which spatial operators are applied to generate new map layers
as the result. Map algebra has played a useful function in the development of raster GIS,
but it exists somewhat in isolation from other more general approaches in the broader lit-
erature such as image algebra developed by Ritter (Ritter, Wilson, & Davidson, 1990), the
work of Serra on mathematical morphology (Serra, 1982), and the work of van Deursen
and the PCRaster group on dynamic modeling (Karssenberg, Burrough, Sluiter, & de
Jong, 2001; Wesseling, Karssenberg, van Deursen, & Burrough, 1996).

All these tools have played an important role in the development of spatial modeling
capabilities in the GIS. However, all of them and their different extensions are not able
to support multicriteria spatial modeling in GIS. This is due to the absence of convenient
operators permitting to implement the different multicriteria evaluation functions. The
objective of this paper is to propose a new algebra, called decision map algebra (or
DMA), especially devoted to multicriteria spatial modeling. DMA contains, in addition
to conventional geometric objects and cartographic maps, a rich set of new operands rep-
resenting different spatial multicriteria concepts. Moreover, DMA supports different con-
ventional map algebra-like operations and adds several new ones corresponding to spatial
multicriteria evaluation functions.

The development of DMA has been influenced by several proposals. The Map Analysis
Package (MAP) of Tomlin (1983, 1990) is the first comprehensive collection of analytical
and spatial operations on the basis of regular tessellations. It has been incorporated in a
large number of commercial GIS and remote sensing image processing packages, and it
has been extended in area ranging from cellular automata (Takeyama & Couclelis,
1997), to environmental modeling (Pullar, 2001), to topographic analysis (Caldwell,
2000), to spatio-temporal analysis (Mennis, Viger, & Tomlin, 2005). Tomlin’s map algebra
has influenced the development of DMA at least in two aspects. First, a large number of its
operators are required to define the ones of DMA. Second, the notion of “procedure”
introduced by Tomlin is very important in DMA since most of multicriteria operations
are complex ones needing the use of procedures for their formalizing.

An important limitation of Tomlin’s map algebra is related to the fact that it describes
map overlay operations textually, without applying the mathematical rigor necessary to
analyze the behavior of the operations. Among the first rigorous formalization of map
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algebra is the one provided by Chan and White (1987), where the authors describe for-
mally MAP operations in the C++ programming language. This formalization permits
especially to avoid the ambiguous interpretations of the semantic of different operations.
In particular, the authors associate two implicit axioms to each operation. The first one
states that a function returns “error” if any of its arguments does not belong to the
domain of the function. The second axiom states that a function returns “error’ if any
of its arguments is itself “error”. Although these axioms are not included explicitly in
the specification of DMA, they still fully apply to it with the same semantics. One limita-
tion of Chan and White (1987)’s work is the lack of the definitions of the corresponding
observe operations (i.e. operations to observe some of the properties of the datatype) so
that no axioms about the behavior of the operations can be formulated (Dorenbeck &
Egenhofer, 1991).

Another proposal that have inspired DMA is the one of Dorenbeck and Egenhofer
(1991). A major finding of this paper is the use of decision table concept, which is adopted
in our DMA. First, the authors propose a generic definition of the overlay operation bas-
ing on a “generalized value type” permitting to characterize all non-spatial properties of
each element (raster) of the map-layer. The overlay operation is then defined in similar
way to conventional arithmetic operations. Then, they propose and discuss two strategies
for the overly operation implying more than two map layers. Both strategies are based on
the use of decision table concept. Compared to the above cited papers, this one lacks geo-
metric operations on cells, e.g., those which exploit the neighborhood relationship between
cells.

A second important problem of Tomlin’s map algebra is the strong link between geo-
graphical datatypes and data structures. To avoid this problem, Camara, De Freitas, and
Cordeiro (1994) propose the use of a general data model, which formally defines the var-
ious types of geographical data and integrates them in a unified environment. Basing on
this data model, the authors introduce a field-oriented algebra where a map layer is defined
as function f between a set of localization L and a set of values V. According to the nature
of set V, three types of maps are defined: thematic maps, digital terrain models and images.
The major addition of this paper in respect to previous ones is the distinction between dig-
ital terrain models and images. Although the data format for digital terrain models and
images is the same, this distinction is practically useful since it permits to apply/extend
a large number of image algebra operators to spatial modeling as in Su, Li, Lodwick,
and Miiller (1997).

The major shortcoming of above cited works is the grid cell data structure considered in
all of them. More formal approaches are based on the representation of spatial data in
terms of points, lines and areas are very useful in a large number of spatial problems.
Lin (1998), for instance, uses the many stored algebra theory to define a family of models
organized into five groups: “point”, “line”’, “polygon”, “network” and “‘raster’’. In addi-
tion to the fact that it permits to handle multiple datatypes, the main addition of this work
is the introduction of “network’ datatype which is useful for a large of body of applica-
tions such as petroleum or public (e.g., services electricity and heat) distribution problems.

Recent works are essentially devoted to develop script-like programming languages
(e.g., MapScript of Pullar (2001)), to support spatial-temporal analysis (e.g., Mennis
et al., 2005), visual spatial modeling (e.g., Murray, Breslin, Ormsby, & Miller, 2000)
and to the development of web-based map algebra-like frameworks (e.g., Grunberg
et al., 2004). Although the relatively large number of algebra that have been proposed
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in the literature, to our knowledge there is not any one devoted to multicriteria spatial
modeling. We think that the developing of DMA permits to facilitate multicriteria spatial
modeling and enhance GIS-based multicriteria based spatial decision making (Malczew-
ski, 2000).

This paper goes as follows. Section 2 briefly introduces multicriteria spatial modeling.
Section 3 introduces the concept of decision map, which is a basic ingredient of our algebra.
Section 4 presents some basic primitives required for the specification of the proposed alge-
bra. Section 5 details the formal specification of this algebra. Section 6 concludes the paper.

2. Multicriteria spatial modeling
2.1. Multicriteria analysis

Multicriteria analysis is a family of OR/MS tools that have experienced very successful
applications in different domains since the 1960s. Different multicriteria analysis methods
are available in the literature (see, e.g., Belton & Stewart, 2002; Figueira, Greco, & Ehr-
gott, 2005a; Roy, 1996). Multicriteria methods are commonly categorized as discrete or
continuous, depending on the domain of alternatives. The former deals with discrete, usu-
ally limited, number of pre-specified alternatives. The latter deals with variable decision
values to be determined in a continuous or integer domain of infinite or large number
of choices. In this paper we focus on the first category. Fig. 1 gives the general schema
of discrete multicriteria methods. It illustrates how the different elements of the decision
problem are linked to each other.

The first requirement of nearly all discrete methods is a performance table containing
the evaluations or criteria scores of a set of alternatives on the basis of a set of criteria.
The alternatives are decision objects from which the decision maker should choose one
or several ones to implement. Let 4 = {ay,a»,...,a,} denotes a set of n alternatives.
The evaluation criteria are factors on which alternatives are evaluated and compared. For-
mally, a criterion is a function g, defined on A4, taking its values in an ordered set, and rep-
resenting the decision maker’s preferences according to some points of view. The

’ Alternatives ‘ ’ Evaluation criteria ‘

Criteria scores

’ Performance table ‘

Preferences

’ Aggregation ‘

’ Sensitivity analysis

l

’ Recommendation

Fig. 1. General schema of multicriteria discrete methods.
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evaluation of an alternative a € 4 according to criterion g is written g(a). Let
G=1{g1,2,...,&n} a set of m evaluation criteria and F= {1,2,...,m} the set of criteria
indices.

The next step consists in the aggregation of the different criteria scores using a specific
decision rule (or aggregation procedure) and taking into account the decision maker’s pref-
erences, generally represented in terms of weights that are assigned to different criteria. The
term “aggregation” is used both in GIS and MCA literatures. In GIS community, this
term implies spatial aggregation (e.g., aggregating spatial units). It is a combination func-
tion that “aggregate’ different map layers. In MCA community, this term implies func-
tional aggregation of partial evaluations of alternatives (using, for e.g., weighted sum
technique) into a unique and global evaluation. The aggregation of criteria scores permits
the decision maker to make comparison between the different alternatives on the basis of
these scores. Decision rules are somehow the identities of the multicriteria methods. More
details on decision rules within discrete methods are given in the next sub-section.

The uncertainty and the fuzziness generally associated with any decision situation
require a sensitivity analysis enabling the decision maker(s) to test the consistency of a
given decision or its variation in response to any modification in the input data and/or
in the decision maker preferences.

The final recommendation in multicriteria analysis may take different forms, according
to the manner in which a problem is stated. Roy (1996) identifies four types of results cor-
responding to four ways for stating a problem: (i) choice: selecting a restricted set of alter-
natives, (ii) sorting: assigning alternatives to a set of predefined categories, (iil) ranking:
classifying alternatives from best to worst with eventually equal positions, and (iv) descrip-
tion: describing the alternatives and their follow-up results. The currently available multi-
criteria methods permit to deal with the choice, sorting and ranking cases only.

2.2. Multicriteria decision rules

There are two great families of decision rules within multicriteria discrete methods: (i)
utility function-based decision rules, and (ii) outranking relation-based decision rules. The
basic principle of the first family is that the decision maker looks to maximize an utility
function U(a) = U(g(a),gx(a),...,g.(a)) aggregating the partial evaluations of each alter-
native into a global one. The most simple and also most used utility function is the additive
form: U(a) = uf(g(a)); where u; (j=1,...,m) are the partial utility functions. Within
this form, the preference P and indifference / binary relations are defined for two alterna-
tives a and b as follows:

aPb <<= U(a) > U(b) and alb<= U(a)=U(b)

Decision rules of the first family differ mainly on the way the partial utility functions u;
(j=1,...,m) are constructed and on the aggregation form used.

With the second family, criteria are aggregated into a partial binary relation S, such
that aSh means that “a is at least as good as b”’. The binary relation S is called outranking
relation. The most known method in this family is ELECTRE (Figueira, Mousseau, &
Roy, 2005b). To construct the outranking relation S, we compute for each pair of alter-
natives (a,b) a concordance index C(a,b) € [0,1] measuring the power of criteria that are
in favor of the assertion aSh and a discordance index ND(a,b) € [0,1] measuring the power
of criteria that oppose to aSh. Then, the relation S is defined as follows:
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C(a,b) =2 ¢ and ND(a,b) <d

where ¢ and d are the concordance and discordance thresholds, respectively. Often an
exploitation phase is needed to “‘extract”, form S, information on how alternatives com-
pare to each other. At this phase, the concordance C(a, b) and discordance ND(a, b) indices
are used to construct an index a(a,b) € [0, 1] representing the credibility of the proposition
aSh, V(a,b) € Ax A. The proposition aSb holds if a(a, b) is greater or equal to a given cut-
ting level, 2 €0.5,1].

Outranking relation-based decision rules differ mainly on the way the outranking rela-
tion S is constructed and on the manner the credibility index is computed.

2.3. Multicriteria spatial decision making

Multicriteria spatial decision making refers to the application of multicriteria analysis
in spatial context where alternatives, criteria and other elements of the decision problem
have an explicit spatial dimension. In the rest of this sub-section, we will focus only on
the spatial dimension of decision alternatives and evaluation criteria since they constitute
the basic ingredients of any multicriteria decision problem. More details concerning mul-
ticriteria spatial decision making are provided in Chakhar and Mousseau (2007).

A spatial decision alternative consists of at least two elements (Malczewski, 1999): action
(what to do?) and location (where to do it?). The cardinality of the set of spatial decision
alternatives is an important characteristic permitting to distinguish if this set is discrete or
continuous. In the first case, the problem involves a discrete set of predefined decision alter-
natives. Spatial alternatives are then modeled through the basic spatial primitives, namely
point, line, or polygon. Therefore, in a facility location problem, potential alternatives take
the form of points representing different potential sites; in a linear infrastructure planning
problem (e.g., highway construction), potential alternatives take the form of lines represent-
ing different possible routes; and in the problem of identifying a new industrial zone, poten-
tial alternatives are assimilated to a set of polygons representing different candidate zones.
In many real-world applications, one may be called to represent decision alternatives by
combining two or more atomic entities (Chakhar & Mousseau, 2004; Malczewski, 1999).
In the rest of this paper we consider only simple and atomic decision alternatives.

The second case corresponds to a high or infinite number of decision alternatives, often
defined in terms of constraints. For practical reasons, the set of decision alternatives in this
case is often represented in a discrete form where each raster represents an alternative.
Alternatives may also be constructed as a collection of rasters.

As for decision alternatives, spatial evaluation criteria are associated with geographical
entities and relationships between entities and therefore can be represented in the form of
maps (Malczewski, 1999). A criterion map is composed of a collection of spatial units; each
of which is characterized with one value relative to the concept modeled. Mathematically,
a criterion map c¢; is the set {(s,g(s)) : s € S;} where S;is a set of spatial mapping units and
g is a mono-valued criterion function defined as follows (E is a measurement scale):

g; S — E
S_’gj(s)

To conclude this section, it is important to mention that multicriteria analysis has
been used, since its emergence, to spatial decision problems without the use of GIS.
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Nevertheless, multicriteria analysis alone is not able to take into account explicitly the spa-
tial dimension of spatial decision problems. Koo and O’Connell (2006), for instance, re-
mark that with conventional spatial multicriteria analysis (i.e. without the use of GIS),
the performances of decision alternatives are either intrinsically a spatial or aggregated
into a unique value. In other words, these approaches suppose that the study area is spa-
tially homogeneous, which is unrealistic. Furthermore, most of multicriteria analysis soft-
wares are of little utility in spatial decision making since they lack functionalities required
(1) to collect, store, manage and analysis spatial data, and (ii) to represent the spatial
dimension of decision problems. These two problems are well handled by GIS. Thus,
GIS and multicriteria analysis are two complementary tools, each of which has advantages
and some limitations in spatial decision making; their integration permits to avoid these
limitations.

3. Concept of decision map

The concept of decision map was introduced in Chakhar, Mousseau, Pusceddu, and
Roy (2005) and Chakhar (2006) to facilitate the use of outranking relation-based decision
rules in the GIS. In fact, the major part of GIS and multicriteria analysis integration works
use utility function-based decision rules. However, outranking relation-based decision
rules are generally more appropriate to deal with ordinal aspects of spatial decision prob-
lems. The natural explication to this situation is that these decision rules have computa-
tional limitations in respect to the number of alternatives (Marinoni, 2006). Indeed,
methods based on outranking relation, except those devoted to multicriteria sorting prob-
lems, require pairwise comparison across all alternatives.

One possible solution to facilitate the use of outranking relation-based decision rules in
GIS is to reduce the number of decision alternatives. The idea generally used consists in
subdividing the study area into a set of homogenous spatial units (or zones) which are then
used as decision alternatives (Joerin, Thériault, & Musy, 2001; Marinoni, 2006) or as a
basis for constructing these alternatives (Chakhar & Mousseau, 2006). This permits to
reduce considerably the number of decision alternatives and make possible the use of out-
ranking relation-based decision rules.

A decision map is a planar subdivision of the study area represented as a set of non-
overlapping polygonal spatial units that are assigned, using a multicriteria sorting model
I, into an ordered set of categories. More formally, a decision map M is defined as
M = {(u,I',,),u € U}, where U is a set of homogenous spatial units and I',, is defined as
follows:

Ir,:U—E
u— Fw[gl(u)7’ . 7gm(u)7w]

where (i) E:[ey,es,...,e]: (with ;> ¢;, Vi>j) is an ordinal (or cardinal) measurement
scale defined such that ¢; for i=1,...,k, represents the evaluation of category C; (ii)
g{u) (j=1,...,m): is the performance of spatial unit u in respect to criterion g; associated
with criterion map c;; and (iii) w: is a set of preference parameters required to apply I'.
To be useful, a decision map should be composed of non-overlapping spatial units. In
addition, we generally suppose that the evaluations of adjacent (i.e. share at least one seg-
ment) spatial units are distinct, thatis I',(u;) # I',(u,), for all adjacent spatial units u; and u;.
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The construction of a decision map needs the superposition of a set of criteria maps.
The result is an intermediate map composed of a new set of spatial units that result from
the intersection of the boundaries of the features in the criteria maps:

®:G—-U

CiX...xCyu — Vicl mSi

where @ is the union variant of GIS overlay operation that yields a new map by combining
all involved features in the input criteria maps G = {c¢y,...,c¢,,}; and V returns the set of
spatial units resulting from the intersection of the boundaries of the spatial objects con-
tained in §1,S5,...,S,,. Recall that S; (j=1,...,m) is the set of spatial units composing
criterion map ¢; (cf. Section 2.3). At the end of this step, each spatial unit u is characterized
with a vector g(u) = (g1(u),...,g»(u)) of m evaluations.

The first version of M is then obtained by applying the multicriteria sorting model I',, to
associate each spatial unit # in U to a category in E:

M:U—E
u— Iy(u)

The obtained decision map M may contain adjacent spatial units having the same evalu-
ation. These spatial units need to be “merged” to obtain a final decision map.

Finally, we mention that criteria maps must represent the same territory and must be
defined according to the same spatial scale and the same coordinate system. Note also that
the overlay operation may generate silver polygons which should be eliminated. In addi-
tion, we mention that criteria maps must be polygonal ones. However, input datasets may
be sample data points, raster maps, contour lines, etc. We need to transform all non-polyg-
onal input datasets into polygonal ones. For example, a set of sample data points may be
transformed into a TIN by computing the triangulation having vertices at data points or
contour lines may be transformed into a polygonal map by a constrained Delaunay trian-
gulation (see, e.g., de Floriani, Magillo, & Puppo, 1999; Chrisman, 2002).

4. Primitives and definitions

DMA contains several data types that may be classified into several groups: (i) geo-
graphic maps, (ii) geographic objects, (iii) multicriteria operands, (iv) collection of geo-
graphic maps/objects, and (v) several other operands required for the specification of
DMA. The relationships among these data types are depicted in Fig. 2 using UML
formalism.

The basic data type in DMA is map-layer. A map-layer is the most elementary data
that contains the map image and other documentary items including the global geographic
reference system, rSystem; the map scale, mScale; etc. There are two types of map-
layer data type: raster and vector. The map image of a raster map-layer is composed
of pixels. Each element of a raster map-layer is called gPixel. The map image of a vector
map-layer is a collection of three types of geometric objects:

e gPoint: is an individual, zero-dimensional repressing a punctual entity in real-world.
e gLine: is a one-dimensional object representing a linear entity in real-world.
e gPolygon: is a two-dimensional object representing a polygonal entity in real-world.
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Fig. 2. DMA data types relationships.

A collection of gPixel, gPoint, gline and gPolygon are denoted xSet, pSet,
1Set and ySet, respectively. The gPixel elements of a raster map-layer are fully iden-
tified with their XY (or XYZ) coordinates on the map image. The gPoint, gLine and
gPolygon associated with a vector-based map-layer need to be uniquely identified.

We define three new subclasses of map-layer data type: decision-map, alterna-
tives-map and criterion-map (see Fig. 2). As defined earlier, a decision-mapisa
planar subdivision of the study area represented as a set of non-overlapping polygonal
spatial units that are assigned, using a multicriteria sorting model I',,, into a set of ordered
categories representing different evaluation levels (cf. Section 3). Each element of a deci -
sion-map is of type sUnit (for spatial unit). A collection of spatial units is denoted by
sSet. We denote by uClass the category to which a spatial unit is assigned by I',,.

An alternatives-map is a special kind of map-layer which contains a collection
of specific objects called alternatives. It is important to mention that alternatives are nor-
mally generated through decision-maps. The alternatives-map data type is
included in DMA to deal with spatial problems for which the use of a decision-map
is difficult or not possible. There are basically three types of alternatives: pAlter,
1Alter or yAlter representing punctual, linear or polygonal decision alternatives,
respectively (cf. Section 2.3). A collection of pAlter, 1Alter and yAlter are denoted
pAlters, 1Alters, and yAlters, respectively. The generic terms anAlter and sAlt-
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ers denote an alternative and a set of alternatives, regardless to their nature. It is impor-
tant to mention that for a given spatial decision problem, each alternatives-map con-
tains only one kind of alternatives; each of which is uniquely identified.

A criterion-map is a specific, mono-valued, map-layer where each spatial object
(i.e. gPixel, gPoint, gLine or gPolygon) is characterized by one value representing
the evaluation of this element in respect to a given criterion. A collection of evaluation
criterion-maps is called cFamily (for criteria family). In multicriteria analysis, each
criterion is often associated with a weight, a direction of optimization and several prefer-
ence parameters. To take into account these information, we associate to each crite-
rion-map the following data types:

e cWeight: An importance degree reflecting the power of the criterion during the com-
parison of alternatives.

e cDirection: The optimization direction of the criterion which may be maximization
or minimization.

e qThreshold and pThreshold: corresponding to the indifference and preference
thresholds. For a pair of alternatives @ and b, and a criterion g;, the indifference thresh-
old represents the largest difference g{(a) — g{b) preserving an indifference between a
and b on criterion g;. The preference threshold represents the smallest difference
gila) — g{b) compatible with a preference in favor of a on criterion g;.

e vThreshold: represents the smallest difference between the performance of two alter-
natives incompatible with the outranking assertion.

We introduce two additional complex data types to support multicriteria modeling. The
first is the decision-rule data type devoted to implement the different decision rules
(cf. Section 2.2). The second is sd-model (for spatial decision model) which is an aggre-
gation of one decision-map (or an alternatives-map), at least two criterion-
maps and a decision-rule. Several other data types are needed to formalize our alge-
bra are not included in Fig. 2 but they will be introduced progressively hereafter.

5. Formal specification of DMA

To specify DMA, we adopt the algebraic specification method of Guttag (1977) (see
also Guttag & Horning (1978)). The algebraic specification methods are mainly used in
software engineering to describe the behavior of complex systems. An algebraic specifica-
tion consists of three parts (Dorenbeck & Egenhofer, 1991; Guttag & Horning, 1978): (i) a
set of sorts (or operands) including the data type to define and the types needed to define its
properties; (ii) a set of operations defined on the operands. Each operation is defined by its
name, the Cartesian product of the input sorts and the sort of the result; and (iii) a set of
axioms (or equations) that describe the behavior of the operations. It is important to men-
tion that details about the basic geometric data types such as point, line or polygon, and
basic methods like get, set, etc., are not included in this paper.

5.1. Specification of sUnit data type

The formal specification of sUnit data type in given in Fig. 3. As shown in Fig. 2,
sUnit data type is a subclass of gPolygon data type. This means that sUnit inherits
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Type: sUnit
set: sUnit, gPolygon, aCriterion, cFamily, aProfile, real, value, boolean

syntax:

ADJACENT sUnit X sUnit — boolean

ASSIGN sUnit X aCriterion X value — sUnit
SCORE sUnit X aCriterion — real
CONCORDANCE sUnit X aProfile X cFamily — real
DISCORDANCE sUnit X aProfile X cFamily — real
SIGMA sUnit X aProfile X cFamily — real

X X

OUTRANK sUnit aProfile cFamily X value — boolean

arioms:
w: sUnit; h: aProfile; f: cFamily; g: aCriterion; A: value

SIGMA(u, h, )
= CONCORDANCE(w, h, f) * DISCORDANCE(u, h, f)

SIGMA(u, h, f)
= CONCORDANCE(u, h, f)

OUTRANK (u, h, £, \)
= if SIGMA(u, h, f) > X then uSh

Fig. 3. Formal specification of sUnit data type.

all the basic operations associated with gPolygon such as the operator ADJACENT which
tests if two spatial units are adjacent or not. All the other operators are devoted to spatial
multicriteria modeling.

The operator ASSIGN permits to set the performance of a sUnit in respect to a
given criterion provided as parameter. The ASSIGN is a hidden function (Chan &
White, 1987), i.e., it is not part of the algebra and serves its purpose in the specifica-
tion only. The SCORE operator returns the performance of a spatial unit in respect to a
given criterion. These two operators are quite straightforward and their specifications
are not detailed in Fig. 3.

Data type sUnit is associated with a set of operators devoted to implement the mul-
ticriteria model I',,. The CONCORDANCE (resp. DISCORDANCE) operator computes a real
value in [0, 1] corresponding to the global concordance (resp. discordance) index (cf. Sec-
tion 2.2). The specifications of CONCORDANCE and DISCORDANCE are not included in
Fig. 3 because they vary according to the multicriteria sorting model I',,.

The SIGMA operator permits to compute the credibility index as explained in Section
2.2. Fig. 3 contains two different specifications for STGMA operator which permit to cover
most of multicriteria sorting models. The operator OUTRANK permits to test if the spatial
unit u outranks the profile /1 (profiles are limits of categories on the measurement scale E;
see Section 3). This holds if and only if STGMA (u,4,f) is greater or equal to the cutting
level, A.

5.2. Specification of decision-map data type

The decision-map data type corresponds to the concept of decision map introduced
in Section 3. Fig. 4 specifies the decision-map data type. As it is shown in this figure,
the syntax part of decision-map data type contains four operators. The MAKE operator cre-
ates a decision map as the intersection of a set of criterion-maps. The operator
CLASSIFY is the assignment procedure associated with the multicriteria sorting model
I',,. It permits to assign each spatial unit in the decision-map to a predefined set of cat-
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egories defined in terms of their profiles. CLASSIFY compares each spatial unit « to all the
profiles starting from the best to the worst. The spatial unit u is assigned to the first cat-
egory for which u outranks its lower limit.

The MERGE operator groups two or more adjacent spatial units. It uses the MAKE oper-
ator, inherited from gPolygon data type, to create a new spatial unit. The evaluations of
the new spatial unit in respect to all criteria are obtained by aggregating, using operator
aOperator, the evaluations associated with the initial spatial units. The specification
of the MERGE operator is shown for two spatial units. The generalization to more than
two spatial units is straightforward. The specification of the aOperator is given in
Appendix A. The aOperator must provide operation to combine a series of values. Since
a large set of aggregation operators are available, the specification of its CREATE operator
is differed (Meyer, 1988; Dorenbeck & Egenhofer, 1991), because it depends upon the par-
ticular aggregation operator.

The GROUP operator takes a decision-map and an aggregation operator, aOpera-
tor, and generates a new decision-map by merging all adjacent spatial units that are
assigned to the same category.

5.3. Specification of criterion-map data type

The specification of a criterion-map is shown in Fig. 5. The operator SET permits
to set the preference parameters associated with criterion-map data type (cf. Section
5.1). The operator MAKE takes as input a predefined map algebra procedure (Tomlin,
1990), that is, a sequence of map algebra operations; and generates a criterion map.
The following example permits to better illustrate the notion of procedure. The example
looks to the construction of a criterion map to measure the “the level of underground pol-
lution” in a given study area. First, we introduce the concept of decision table.

Type: decision-map
set: map-layer, criterion-map, sUnit, cFamily, aOperator, aProfile, sProfiles, value

syntax:
MAKE criterion-map X --- X criterion-map — decision-map
CLASSIFY decision-map X cFamily X sProfiles — decision-map
MERGE decision-map X sUnit X --- X sUnit X cFamily X aOperator — sUnit
GROUP decision-map X cFamily X aOperator — decision-map
arioms:
d: decision-map; w,uj,us: sUnit; c¢1,---,cp,: criterion-map; g: aCriterion; f: cFamily;

h: aProfile; b: sProfiles; op: alperator; A: value

MAKE(cC1,- * *,Cm)
= INTERSECT(c1, " *,Cm)

CLASSIFY(d, b, f)
=V (w) (u€d
[V (h) (u € b) if OUTRANK(u, h, f,\) then u.uClass «— h+1 ]

MERGE(d, u1, uz, f, op)
= u.make(d, [BOUNDARIES(w;) U BOUNDARIES(uz)]\ [BOUNDARIES(INTERSECTION (w1, u2)]
V(g)(g € f)[ASSIGN(u,g,op.combine (SCORE(u1 ,g) ,SCORE(us,g)))]

GROUP (d, op)
=V (u1)(u2)(ur € d)(uz € d) A (ug <> uz)
[if ADJACENT (w1, us2) wuj.uClass = up.uClass then MERGE(d, ui,us2,op, f)]

Fig. 4. Formal specification of decision-map data type.
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A decision table, denoted dTable, is a method to specify formally the behavior of oper-
ations, particularly those which can be described by a series of rules. It consists of two
parts (Dorenbeck & Egenhofer, 1991): (i) a set of conditions which have to be satisfied
simultaneously; and (ii) the corresponding actions to be taken upon these conditions. Deci-
sion tables are most naturally presented in the form of a table with the set of conditions
being put into the upper half of the table and the corresponding set of actions underneath.
The specification of dTable is provided in Appendix A. Each dTable has two operators:
CREATE and ACTION. The specification of the CREATE operator is deferred.

Next, “the level of underground pollution” criterion map can be generated (coarsely)
by using the following procedure:

SLICE((WEIGHTING(sol-map,wTable) *0.3+(1/SLOPE(dtm-map) *0.7)),
sTable)

This procedure uses three operators:

e WEIGHTING: permits to transform a soils map into a weighted soils map. The input for
this operator is the map layer sol-map and the decision table wTable shown in Table
1.

e SLOPE: permits to generate a map layer representing the slope basing on the digital ter-
rain model, dtm-map.

e SLICE: permits to combine the two previous map layers—obtained by the application
of WEIGHTING and SLOPE operators—to obtain a suitability map where suitability
varies from 0.0 to 1.0 according to the data in input. SLICE takes in input the decision
table sTable shown in Table 2. The value of ”weight-slope” parameter associated with
this decision table is given by

(WEIGHTING(sol-map, wTable) *0.3) + (1/SLOPE(dtm-map) *0.7)

Within the multicriteria methods that rely on utility function-based decision rules, the
term criterion is a generic one that includes objectives and attributes. In this case, a crite-
rion map represents the spatial distribution of an “attribute’” measuring the satisfaction of

Type: criterion-map
set: map-layer, criterion-map, cWeight, cDirection, qThreshold, pThreshold, vThreshold,
aParameter, dTable, value, procedure

syntax:
MAKE procedure — criterion-map
SET criterion-map X aParameter X value — criterion-map
ATTRIBUTE map-layer X --- X map-layer — attribute-map
OBJECTIVE attribute-map X --- X attribute-map — criterion-map
TIN sample-data-points — map-layer
C-TIN contours — map-layer
THEMATIC-SLICING dtm — map-layer
WEIGHTING thematic-map X dTable — dtm

azrioms:
m: map-layer; d: dTable
WEIGHTING (m, d)
= d.action(m)

Fig. 5. Formal specification criterion-map of data type.



S. Chakhar, V. Mousseau | Comput., Environ. and Urban Systems 31 (2007) 572-596 585

an ‘“objective”. An objective is a statement about the desired future which is made oper-
ational by assigning to it one or more attributes describing a geographical entity or the
relationship between geographical entities (Malczewski, 1999). The operators ATTRIBUTE
and OBJECTIVE are destined to model the concepts of objective and attribute.

As we have mentioned in Section 3, the construction of a decision map require that all
criteria maps are polygonal ones. In Fig. 5 we have included a series of map transforma-
tion operations permitting to obtain polygonal maps. The TIN operator permits to gener-
ate a triangulation from a sample data points. The C-TIN operator represents the
constrained Delaunay triangulation operation permitting to transform a contours map into
a TIN. The THEMATIC-SLICING operator transforms a digital terrain model into a the-
matic map. The WEIGHTING operator is introduced in the example above.

5.4. Specification of pstructure data type

A preference structure, pStructure, permits the decision maker to articulate his/her
preferences when comparing two alternatives. In multicriteria analysis, a pStructure is
often operationalized through a criterion function. Thus, a pStructure may be associ-
ated with several thresholds. Here, we adopt the most general case that considers the pres-
ence of two preference thresholds: an indifference threshold, called qThreshold, and a
preference threshold, called pThreshold. A such pStructure permits to model three pref-
erence situations when comparing two alternatives a and b:

aPb < g(a) > g(b) + pThreshold
aQb < g(b) + pThreshold > g(a)] > g(g) + qThreshold
alb <= g(b) + Threshold > g(a)andg(a)+ qThreshold > g(b)

The P, Q and I symbols are the binary relations of strict preference, weak preference and
indifference, often used in preference modeling. Any pStructure can be fully character-
ized in terms of its characteristic function (Vincke, 1992). For example, we may associate to
the preference structure above the following characteristic function:

aSh < aPbV aQbV alb

Table 1

Decision table wTable associated with WEIGHTING operator

type-of-sol =Lg =Aq =Le
ACTION 0.2 0.3 0.7
Table 2

Decision table sTable associated with SLICE operator

weight-slope =>0.0A<0.5 >0.5N<0.8 >0.8AN< 1.0

ACTION unsuitable possible Recommended
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The formal specification of pStructure data type is provided in Fig. 6. It includes three
operators, P, Q and I, implementing the three preference situations mentioned above; and
an operator, S, implementing the characteristic function given above.

5.5. Formal specification of decision-rule data type

This data type is devoted to implement the different decision rules. Each decision rule is
modeled as a map algebra procedure. Fig. 7 contains the formal specification of decision-
rule data type. It includes some known decision rules. The result of a decision rule
may be either a real representing the global utility of the alternative in the input (this
applies for utility function-based decision rules) or a credibility index for the pair of alter-
natives in the input (this applies for outranking relation-based decision rules).

For illustration, the axioms part of Fig. 7 contains the specification of the multicriteria
sorting model ELECTRE TRI (Figueira et al., 2005b). ELECTRE TRI decision rule is
defined in terms of the following procedure:

CONCORDANCE(a, h, f) * DISCORDANCE(a, h, f)

The CONCORDANCE and DISCORDANCE operators permit to compute the global concor-
dance and discordance indices, respectively (cf. Section 2.2). They are defined (for ELEC-
TRE TRI method) as follows:

CONCORDAI\TCE(u,h,f) = ZPCONCORDANCE(u,h,g)*g,cWeight}/[Z g.cWeight}
g<f g<f

DISCORDANCE(u, &, f) = I [l — PDISCORDANCE(u, , g)]/
g€/ A(PDISCORDANCE(u,h,g)>CONCORDANCE(u,h,g))

[l — CONCORDANCE(u, h, g)]

The CONCORDANCE and DISCORDANCE operators use two new operators: PCONCOR-
DANCE and PDISCORDANCE. The formal specifications of these two operators are defined
as follows:

PCONCORDANCE(u, h,g) = #;.action(SCORE(u,g), SCORE(h, g), g)
PDISCORDANCE(u,h,g) = haction(SCORE(u,g), SCORE(h, g),g)

These two operators are defined through the decision tables shown in Tables 3 and 4,
respectively. In these tables, the parameters ¢, p and v should be mapped to qThreshold,
pThreshold, and vThreshold attributes; and vl and v2 correspond to SCORE (h,g)
and SCORE (u,g), respectively. All of them are provided as parameters for the ACTION}
operator of the associated decision table.

5.6. Specification of sd-model data type

The specification of sd-model data type is provided in Fig. 8. The three first operators
permit to generate the decision alternatives. For instance, P-ALTERNATIVE operator per-
mits to generate a set of punctual alternatives. It takes a decision-map and returns a set
of spatial units verifying the constraints ensured by the expression <aCriterion>
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Type: pStructure
set: pStructure, aAlter, aCriterion, boolean

syntax:
P aAlter X alAlter X aCriterion — boolean
I aAlter X aAlter X aCriterion — boolean
Q aAlter X aAlter X aCriterion — boolean
S aAlter X aAlter X aCriterion — boolean

arioms:
a,b: anAlter; g: aCriterion; p: pStructure

P(a, b, g)
= if SCORE(a, g) > SCORE(b, g) + g.pThreshold then aPb else —(aPb)

QCa, b, )
= if [SCORE(b, g) + g.pThreshold > SCORE(a, g)]A [SCORE(a, g) > SCORE(b, g) + g.qThreshold]
then aQb else —(aQb)

I(a,b,g)
= if [SCORE(b, g) + g.qThreshold > SCORE(a, g)] A [SCORE(a, g) + g.qThreshold > SCORE(b, g)]
then alb else (alb)

S(a, b, g)
= if (P(a,b,g) V I(a,b,g)) then aSb else —(aSbh)

Fig. 6. Formal specification of pStructure data type.

<bOperator> <value>; where aCriterion represents an evaluation criterion and bOp-
erator is a binary operator.

The constraints, or admissibility criteria, dichotomize a set of alternatives under consid-
eration into two categories: acceptable (or feasible) and unacceptable (or unfeasible) (Mal-
czewski, 1999). The FEASIBLE operator associated with the sd-model permits to
generate the set of acceptable alternatives. It takes in input a set of decision alternatives
(aSet) and a constraint similar to the one presented in the previous paragraph. Two
examples of constraints are: “slope <0.3” or “altitude > 290”. When several
admissibility criteria are needed, we may model them as a series of FEASIBLE operations;
each of which takes the output of the previous one as input.

The alternatives generated by L-ALTERNATIVE or Q-ALTERNATIVE operators are
composed of a set of spatial units, each of which is associated with a set of partial evalu-
ations. The EVATUATE takes a linear or polygonal decision alternative, a family of criteria
and an aggregation operator, aOperator, and returns the new partial evaluations that
apply to the alternative as a whole.

The SCORE operator is a hidden one. It takes an alternative and a criterion and returns
the partial performance of that alternative in respect to the criterion. The P-VECTOR
returns the performances of an alterative in respect to a family of criteria. The result is
stored in a conventional ADT list. This function uses the INSERT operator associated
with the ADT list, aList. The PAYOFF operator takes a set of alternatives and a family
of criteria and returns the performance table.

The DOMINATE is an implementation of the dominance relation used in multicriteria
modeling. The dominance relation is defined for two alternatives @ and b; and a family
of criteria F as follows:

alb <= g;(a) = g;(b); jEF,
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Type: decision-rule
set: decision-rule, anAltere, cFamily, pParameters, aProfile, cIndex, real

syntax:
ELECTRE-III anAlter
ELECTRE-TRI anAlter

X anAlter X cFamily X pParameters — cIndex

X aProfile X cFamily X pParameters — cIndex
MACBETH anAlter X anAlter X X cFamily X pParameters — cIndex
PROMETHEE anAlter X anAlter X X cFamily X pParameters — cIndex
MUAT anAlter X cFamily X pParameters — real
AHP anAlter X cFamily X pParameters — real
QUALIFLEX anAlter X anAlter X cFamily X pParameters — cIndex
ORESTE anAlter X anAlter X X cFamily X pParameters — cIndex

arioms:
a,b: anAlter; f: cFamily; h: aProfile

ELECTRE-TRI(a, b, f)
= CONCORDANCE(a, h, f) * DISCORDANCE(a, h, f)

Fig. 7. Formal specification of decision-rule data type.

Table 3

Decision table associated with PCONCORDANCE operator

v1i-v2 =>p <q <pA>q

ACTION 0 1 [p—vl+v2]/[p—q]
Table 4

Decision table associated with PDISCORDANCE operator

v2—vl =p <v <vA>Dp

ACTION 0] 1 [v—v1+v2]/[Vv—p]

with at least one strict inequality. DOMINATE operator takes a set of alternatives of the
same type and returns all the non-dominated ones in respect to a family of criteria,
cFamily.

The operator QUANTIFY takes in input a performance table and a measurement scale
and returns a new performance table where all qualitative criteria are transformed into
quantitative ones. This operator is particularly useful for methods based on utility func-
tion-based decision rules since they require quantitative evaluation criteria.

The NORMALIZE operator is introduced to re-scale, when it is necessary, the different
criteria scores between 0 and 1. It takes in input a set of alternatives of the same type,
a family of criteria and a normalization procedure, denoted nProcedure. The specifica-
tion of a nProcedure (see Appendix A) is similar to that of aOperator. Since different
methods of normalization are available (see, e.g., Malczewski, 1999), the CREATE opera-
tor of a nProcedure is a deferred.

The operator AGGREGATE applies a decision rule to all the alternatives. The CHOICE,
SORT and RANGE operators correspond to the three types of recommendations in multi-
criteria analysis mentioned in the end of Section 2.1. The CHOICE operator may be imple-
mented in terms of a choice function defined on a pStructure. A choice function C is a
function that associates to a set B a subset C (B) of B. For example, we may associate to
pStructure defined in Section 5.4 the following choice function:
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syntaz:
P-ALTERNATIVE
L-ALTERNATIVE
Q-ALTERNATIVE
EVALUATE
SCORE
P-VECTOR
PAYOFF
FEASIBLE
DOMINATE
QUANTIFY
NORMALIZE
AGGREGATE
CHOICE
SORT
RANGE

azioms:

PAYOFF (s, f)

DOMINATE(y, f)

CHOICE(s,p,f)

RANGE(s, p, f)
=i 1

While s <> 0
i— i+ 1
SORT(s, b, p, f)

= V(z)(z € s)
[V(h)(u € b)

Type: sd-model
set: map-layer, decision-map, criterion-map, sUnit, uSet, cFamily, aAlter, pAlters, lAlters, sAlters, aProcedure,
nProcedure, alperator, pTable, aScale, value

decision-map X aCriterion X bOperator X value — pAlters

desicion-map X sUnit X sUnit — 1Alters
desicion-map X aConstraint — aAlters

aAlter X cFamily X aOperator — aAlter

aAlter X aCriterion — real

aAlter X cFamily — aList

aSet X cFamily — pTable

sAlters X aCriterion X bOperator X value — sAlters
sAlters X cFamily — uSet

pTable X aScale — pTable

sAlters X cFamily X nProcedure — decision-map
aSet X cFamily X decision-rule — decision-map
aSet X pStructure X cFunction — aSet

aSet X sCatogries X sProfiles — aSet

aSet X rdirection — aSet

m, r: decision-map; w:sUnit; f: cFamily; a: aProcedure; m: nProcedure; s:aSet;b:pStructure; c:cFunction;
2: anAlter; y:sAlters; v, l, m:aList

P-ALTERNATIVE(d, g, op, v)
={u : w € d A SCORES(u, g) op v }

FEASIBLE(y, g, op, v)
={x :x € y A SCORES(z,g) op v }

EVALUATE(z, f, op)
= V(g)(g € f)IASSIGN(u,g,op.combine(SCORE(uq,g),- - -,SCORE(ure, )]

=V (a) (a € s) m.insert(P-VECTOR(a, f))

={z:z€yn () €y)

[¥(g)(g € f) SCORE(z, g) > SCORE(z’, g)] A
[3(g’)(g’ € f) SCORE(z, g’) > SCORE(x, g’)]}
NURMALIZE(y, fT n)

=V(z)V(g)(z € y)(g € f
SCORE(x, g) +— m.combine(SCORE(x1{, g),- - -,SCORE(z -, g))

={a € s:p.S(a,b,g)Vh € sVg € f}

[insert (I,CHOICE(s, p, f), i)

s — s\ GET(i — 1, 1))

if p.S(a, h, g) then insert(l, =, h + 1)]

Fig. 8. Formal specification of sd-model data type.

C(B) ={a € B:aSb,Vb € B}.
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Note that other functions may also apply as for example: C(B) ={a€B:—-3b€B:
bPa}. As it is shown in Fig. 8, the CHOICE operator is defined in terms of the above choice
function. It takes in input a set of alternatives, a preference structure and a family of cri-
teria; and returns the alternatives that verify the choice function S associated with the pref-

erence structure.

The RANGE operator establishes a partial pre-order on the set of alternatives. A pre-
order consists of (i) a set of equivalence classes and (ii) an order relation upon these clas-
ses. Thus, it can be implemented as a series of CHOICE operators; each of which is of the

following form:

C(B)={a€B:aPb V alb, Vb € B}.
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In each step i, RANGE returns the most preferred alternatives from set B’; where
B'=B\B"'; and B' = B. In the first step, the choice function is applied to all the alterna-
tives in the set B. The next steps use the set generated in the previous step minus the se-
lected alternatives as input. As it is shown in Fig. 8, the result of the RANGE operator is
a list of ordered set of equivalence classes. The INSERT and GET operators are those of
aList data type. They are used to insert and to get the alternatives for a given equiva-
lence class (identified by its position i in the list).

Compared to CHOICE and RANG operators, the SORT operator has an important char-
acteristic: the two first ones compare each alternative to all the other ones, while the third
one compares each alternative to a set of p profiles defining a set of p + 1 predefined cat-
egories. The implementation of the SORT operator is similar to the operator CLASSIFY
associated with decision-map data type. The only difference is related to the fact that
CLASSIFY uses the preference structure associated with the decision-map, while SORT
is a more general one and can be used to implement other multicriteria sorting methods.

6. Concluding remarks

Coupling the geographical information system (GIS) and multicriteria analysis is an
active research topic as illustrated by the relatively large number of papers published since
early 1990s. Unfortunately, the lack of adequate capabilities for supporting an effective
multicriteria spatial modeling prevents these works from going beyond the academic con-
texts. In this paper, we have proposed a new algebra called decision map algebra (DMA)
especially devoted to multicriteria spatial modeling. We think that DMA is of interest not
only for multicriteria analysis but also in terms of developing formal specifications for spa-
tial modeling (Ding & Fotheringham, 1992) in general.

DMA supports the major part of multicriteria spatial evaluation functions and concepts
introduced in Section 2. Table 5 shows the correspondence between these functions and
concepts and DMA operators. DMA includes also several operators permitting to con-
struct decision maps as OUTRANK, GROUPING and CLASSIFY. Specifically, the concept
of decision map is very useful in the sense that it facilitates the use of outranking rela-
tion-based decision rules in GIS which, according to several authors (e.g., Joerin et al.,
2001; Malczewski, 1999; Marinoni, 2006), are more appropriate in spatial decision making.

To show how DMA can be used in practice, we consider the following hypothetical
problem. The objective is to select a corridor for some linear infrastructures. This example
may apply in problems like the construction of highways, pipelines, etc. Within a deci-
sion-map, a corridor is modeled as a sequence of linearly adjacent spatial units linking
two spatial units representing the start and end points (Chakhar & Mousseau, 2006). This
problem may be “solved” using the following sequence of instructions:

m: map-layer

cl,c2,c3: criterion-map

s,e: sUnit

res: uSet

f: cFamily

b: sProfiles

cl « m.MAKE( (population/ area) * 100)

c2 «— m.MAKE( (active-population/ area) * 100)
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Table 5

Multicriteria evaluation functions and the corresponding DMA operators

Multicriteria modeling functions

DMA operators

Generation of decision alternatives
Construction of criteria maps
Construction of attribute maps
Generation of performance table
Quantification

Normalization

Pre-analyse of dominance
Generation of feasible decision alternatives
Preference modeling

Evaluation criteria weighing
Aggregation

Final recommendation

P-ALTERNATIVES, L-ALTERNATIVES, Q-ALTERNATIVES
All the operators associated with data type criterion-map
ATTRIBUTE, OBJECTIVE

SCORE, EVALUATE, P-VECTOR, PAYOFF

QUANTIFY

NORMALIZE

DOMINATE

FEASIBLE

P,Q 1,8, C

The operator SET associated with criterion-map
AGGREGATE

RANGE, CHOICE, SORT

cd «— m.MAKE( (total-area - used-area))

d < INTERSECT (cl,c2,c3)

f—{cl,c2,c3}

b+~ {{3.5,0.2,0.3,2.5,0.2,0.3,0.25,0.2,0.3},{2,0.2,0.3,3.
5,0.2,0.3,4,0.2,0.3},

{20,2,3,15,2,3,10,2,3}}

d «— d.CLASSIFY(d,b,f)

res <+ d.L-ALTERNATIVE(s,e)

First, we start by generating the criteria maps. In this example, three criteria are
considered (cl, c2 and c3). These criteria maps are generated by using the
MAKE operator. Three map algebra procedures are used and applied on the initial
map layer m. These procedures, provided as parameters for the MAKE operator, com-
pute: (i) the demographic density, (ii) the employment level, and (iii) the available
territory.

Then a decision map d is generated using INTERSECT operator to combine the criteria
maps. Then, the CLASSIFY operator is applied on d to generate a final decision map. To
apply this operator, we need to use a family of criteria, f, and a set of profile limits, b. In
the example above, the set of profiles b is defined as a matrix. The elements of this matrix
are the following:

(g) gibs) q3(g) pig)  glb) qg) paAg)  gb)  qi(g)  pi(g)
g 3.5 0.2 0.3 2.5 0.2 0.3 025 02 0.3
2 2 0.2 0.3 3.5 0.2 0.3 4 0.2 0.3
2 20 2 3 15 2 3 10 2 3

Then, the operator L-ALTERNATIVE is applied on d to generate the set of potential
corridors relating the start (s) and the end (e) spatial units, which are provided as
parameters.

Currently, the implementation of DMA is ongoing. DMA is being implemented on ArcGIS
9.1 of ESRI. In future time, we envisage the development a script-based version of DMA.
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Appendix A. Formal specification of some elementary data types

See Figs. A.1-A.7.

Type: gPoint
set: gPoint, gPolygon, real, boolean

syntax:
MAKE real X real — gPoint
X gPoint — real
Y gPoint — real
ISEQUAL gPoint X gPoint — boolean

DISTANCE-PP gPoint X gPoint — real

DISTANCE-PQ gPoint X gPolygon — real
arioms:

i,5,k,l: real; p,q: gPoint

X(MAKE (i, j))
=i

Y(MAKE (,7))
=]
DISTANCE-PP(MAKE (i, j), MAKE (k, 1))

= sqrt (((X(MAKE (i, j)) - X(MAKE (k, 1)) * (X(MAKE (i, 7)) - X(MAKE (k, D)))) +
((Y(MAKE (i, j)) - YOMAKE (k, 1))) * (Y(MAKE (i, j)) - Y(MAKE (k, 1)))))

Fig. A.1. Formal specification gPoint.

Type: gLine
set: gPoint, glLine, gPolygon, real, boolean

syntazx:
MAKE gPoint X gPoint — gPoint
START gline — gPoint
END gline — gPoint
LENGTH gline — real

POINT-IN-LINE gline X gPoint — boolean

INTERSECT-LQ gline X gPolygon — boolean
arioms:

p,q: gPoint, [: gLine

START (MAKE (p, q))
=p

END (MAKE (p, ¢q))
=q

LENGTH(1)
= DISTANCE-PP(START(l) ,END(I))

Fig. A.2. Formal specification of gLine data type.
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Type: gPolygon
set: gPoint, gline, gPolygon, Rectangle, real, boolean

syntazx:
MAKE gPoint X --- X gPoint — gPolygon
POINT-IN-POLYGON gPolygon X gPoint — boolean
INTERSECT gPolygon X gPolygon — boolean
INTERSECTION gPolygon X gPolygon — gPolygon
CLIPPING gPolygon X Rectangle — gPolygon
ADJACENT gPolygon X gPolygon — boolean
AREA gPolygon — real
CENTROID gPolygon — gPoint
BOUNDARIES gPolygon — gLine
MERGE gPolygon X --- X gPolygon — gPolygon
arioms:
P1,-+*,Pn,r: gPoint; [: gLine;
AREA(MAKE(p1, - - ,pn))
= _area
CENTROID(MAKE(p1, -+, Pn))
= _gPoint
POINT-IN-POLYGON(MAKE(p1, -+, pPn), T)
= if (V (p) in (p1,- -+, pn) X(r) < X(p) and Y(r) <Y(p)) then true
INTERSECTS (MAKE (p1,- -+, pn),l)
= POINT-IN-POLYGON( MAKE(pi,---,pn), SART(I)) or
POINT-IN-POLYGON(MAKE(p1, - - -,pn), END(I))

Fig. A.3. Formal specification of gPolygon data type.

Type: map-layer

set: map-layer, gPoint, gLine, gPolygon, real
syntazx:

MAKE name — map-layer

PUT-P map-layer X real X real — gPoint

PUT-L map-layer X gPoint X gPoint — gLine

PUT-Q map-layer X gPoint X --- X gPoint — gPolygon
INTERSECT map-layer X --- X map-layer — map-layer
UNION map-layer X --- X map-layer — map-layer
arioms:

m: map-layer; p,pi,P2,q1, '',qn: gPoint; l: gline; g: gPolygon; v1,v2:

PUT-P(m, v1, v2)
= p.MAKE(v1, v2)

PUT-L(m, p1, p2)
= [.MAKE(p1, p2)

PUT-Q(m, q1, -+, qn)
= q.MAKE(q1, -, qn)

Fig. A.4. Formal specification of map-layer data type.

Type: aOperator
‘ set: alperator, value
syntax:

CREATE DEFERRED — aOperator

COMBINE value X value X --- X value — value
arioms:

x,y,z: value

COMBINE(x,y)
= x+y

COMBINE (x,COMBINE(y, z))
= x + COMBINE(y,z)

Fig. A.5. Formal specification of aOperator data type.

real

593
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Type: dTable
set: dTable, bCondition, value

syntazx:
CREATE bCcondition X --- X bCcondition X value ---
bCcondition X --- X bCcondition X value — dTable
ACTION value X value X --- X value — value
arioms:
V1, Um, @1, Gnt value; cf,ccc, ey, cc,ch, o, cl': bCondition
CREATE
1 3 3
= (((Cls Tty C;n)’ al)v T ((C»}w o "C:)’an))
ACTION(v1, -+, Um)
= if ci,< -+, c]" then a
else
[if c711717 <o+, et | then ap_ielse an)

Fig. A.6. Formal specification of dTable data type.

Type: aList
set: alist, value, aPosition
syntax:

INSERT alist X value X aPosition — alList
LOCALIZE value X alList — aPosition

GET aPosition X aList — value

FIRST alist — aPosition

RAZ alist — alist

REMOVE aPosition X alist — aList

NEXT aPosition X aList — aPosition
BEFORE aPosition X alList — aPosition

artoms:

Vi, " *,VUn,v: value; 7: integer
INSERT((U1, -, Vie1, Vi, ", Un),V,1)
= </U1).“11}7;*1)1)71)7;7‘.‘71}’71)

GET (¢, (U1, -+, 05, *,Upn))

=,

Fig. A.7. Formal specification of aList data type.
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