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Abstract

This paper addresses the situation where a group wishes to cooperatively develop a common multicriteria evaluation model to sort
actions (projects, candidates) into classes. It is based on an aggregation/disaggregation approach for the ELECTRE TRI method,
implemented on the Decision Support System IRIS. We provide a methodology in which the group discusses how to sort some exemplary
actions (possibly fictitious ones), instead of discussing what values the model parameters should take. This paper shows how IRIS may be
used to help the group to iteratively reach an agreement on how to sort one or a few actions at a time, preserving the consistency of these
sorting examples both at the individual level and at the collective level. The computation of information thatmay guide the discussion among
the groupmembers is also suggested.We provide an illustrative example and discuss some paths for future researchmotivated by this work.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In multicriteria sorting problems [22], a set of actions
(projects, candidates, alternatives…) is to be classified into
different categories. These categories are ordered and the
actions are described by a vector evaluating their per-
formance on multiple criteria. For instance, multiple cri-
teria can be aggregated to sort loan applications into
categories such as “Reject”, “Accept conditionally”, or
“Accept”. Each action is sorted by comparing its perfor-
mances with the definitions of the categories, based on the
preferences of decision makers. There exist several meth-
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ods and Decision Support Systems (DSS) for this type of
problems, such as ELECTRE TRI, IRIS, PREFDIS,
PROAFTN, and TOMASO [20]. However, except for
[3], most of the research on group multicriteria decision
aiding (e.g., [2,13,14]) deals with choice or ranking
problems, rather than sorting. One objective of this paper is
then to address sorting problems in group decision settings.

Building a multicriteria sorting model requires defining
values for its preference-related parameters. However, the
decision maker (DM) often finds it is difficult to express
his/her preferences as precise numerical values, correctly
taking into account the role played by each parameter. In
contexts with multiple DMs, besides phenomena such as
leadership emergence or minorities' inhibition, what
makes the process harder is that an agreement between
the DMsmay have to be reached in spite of the diversity of
judgments and subjective perceptions of reality.
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This paper proposes a methodology to help DMs
interact in order to define a common multicriteria ag-
gregation model indirectly, through the assignment of
some exemplary actions (possibly fictitious ones) to
categories. For the DMs, agreeing on how to sort these
actions is only a means to infer a sorting model that may
then be used to sort any other actions. Themethodology is
based on an aggregation/disaggregation approach [7]
suitable to those contexts where numerical information
about preferences is hard to obtain. Since the sorting
examples correspond to constraints on the parameter
values, this type of information is a particular case of what
is usually called “incomplete”, “imprecise”, or “partial”
information [9,10,12]. The use of imprecise information
in group decision making has been addressed (e.g.,
[3,4,11,21]), but not using aggregation/disaggregation
approaches, which is a second objective of this paper.

We will consider the use of a (single-user) DSS called
IRIS [5,6] to support the methodology proposed in this
paper. Therefore, we will focus on the case where the
aggregation method is ELECTRE TRI, and both the
performances of the actions to be sorted and the category
limits have been defined a priori: only the criteria
weights and a cutting level remain to be set. A brief
revision of ELECTRE TRI and the analyses implemen-
ted in IRIS are provided in Section 2.

Section 3 introduces the group sorting methodology
and the way the current version of IRIS may be used to
support the group members and the analyst. In this group
setting, each DM may use an instance of the DSS to
analyze the problem individually and propose a consistent
set of sorting examples, while an analyst may use another
instance of the DSS to update a consistent collective
model and answer “what-if” questions for the group. By
consistency, we mean that there exist parameter values
that restitute all the sorting examples. The collective
model is (imprecisely) defined by the consistent examples
Fig. 1. Definition of categorie
agreed by the group, added in successive discussion
rounds. We will suggest some indicators that may be
computed to inform the discussion among the DMs,
showing where disagreement comes from. It is therefore a
methodology that includes elements of sharing, aggregat-
ing, and comparing individual information [1].

To illustrate the methodology, an example is provided
in Section 4. A concluding section discusses the pro-
posed methodology and the use of IRIS, and presents
future research streams motivated by this research.

2. The ELECTRE TRI method and the IRIS
decision support system

2.1. A brief presentation of the ELECTRE TRI method

This section outlines the ELECTRE TRI method for
sorting actions according to multiple criteria. Readers
interested in the method's details can consult, e.g.,
[5,8,16,18].

Let us denote A={a1,…, am} the set of actions, eval-
uated on the n criteria g1, g2,…, gn, to be sorted into a
predefined set of ordered categories {Cl,…, Ch} (let Cl

denote the worst or lowest category, whereas Ch denotes
the best or highest category). Let us denote b1, b2,…, bh−1
the limit profiles separating the h categories (Fig. 1), bx
being both the lower limit for Cx+1 and the upper limit of
Cx. These limit profiles indicate the performance levels
separating the categories on each criterion. ELECTRE
TRI sorts each action individually comparing it with the
categories profiles.

For each action to sort a and profile bj, ELECTRE
TRI establishes whether a outranks bj (a is at least as
good as bj), denoted as aSbj. To establish this, ELECTRE
TRI computes n single-criterion concordance indices,
which evaluate on a [0,1] scale the agreement of each
criterion with the assertion aSbj, taking into account
s through limit profiles.
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indifference and preference thresholds [19] associated to
the criteria. A vector of weights w1,…, wn is then used to
aggregate these single-criterion concordance indices into
a global concordance index. These weights represent the
“voting power” of each criterion, not trade-offs as in
compensatory aggregation methods. A vector of veto
thresholds is also used, in order to compute discordance
indices for each criterion against the assertion aSbj, i.e.,
the criteria where a is worse than bj, on a [0, 1] scale. The
global index and the discordance indices are then
aggregated into a credibility index s(a, bj), also
expressed on a [0, 1] scale. The assertion aSbj is
established if and only if s(a, bj)≥λ, where λ is a cutting
level λ∈ [0.5, 1] (considering the voting power analogy
for weights, λ can be interpreted as the required
majority).

To assign each action to a category we will consider
the pessimistic variant of ELECTRE TRI, which sorts
each action ai into a category Cx such that the action
outranks its lower-bound profile (s(a, bx−1)≥λ, except
C1) and does not outrank its upper-bound profile (s(a,
bx)<λ, except Ch).

2.2. Concepts of robust assignment and consistency in
IRIS

The standard use of ELECTRE TRI consists in the
elicitation of all of the method's parameters, thereby
Fig. 2. IRIS screen: examples are given on the left, the inferred values and corr
on the right (initial inputs of DM1).
defining a sorting model that assigns each action to a
single category. Alternatively, one can follow an
aggregation/disaggregation approach [7,15], which
consists in inferring part of the preference-related
information on the basis of sorting examples provided
by the DM, according to his/her holistic appreciation of
some actions. The IRIS DSS implements such an
approach to avoid the direct elicitation of the weights
and cutting level of ELECTRE TRI, considering the
remaining aspects of the model (the profiles, the veto,
the preference, and the indifference thresholds) have
already been elicited. Hereafter, we present only the
main features implemented by IRIS. Readers interested
in the details may refer to [5,6].

The IRIS DSS is able to infer weights and a cutting
level from a set E of sorting examples (which can be
provided as intervals, e.g., in left part of Fig. 2, the
“ELow” and “EHigh” columns indicate the minimum
and maximum categories to which an action can be
assigned, according to one DM), i.e., to find a vector of
criteria weights w=(w1, w2,…, wn) and a value for λ
that restores E with the aggregation rule of ELECTRE
TRI (IRIS indicates these values in the right bottom of
the screen, see Fig. 2). The right part of Fig. 2 depicts the
robust assignment (robust sorting) intervals [3,7]. A
sorting interval [Cx, Cy] is said to be robust for an action
ai if the action cannot be assigned to a category lower
than Cx, or higher than Cy, for all (λ, w1,…, wn)∈Ω (Ω
esponding assignments, as well as the robust sorting intervals, are given



Fig. 3. Inputs of DM1 at a second iteration (after accepting to sort a12 into C3). Note that a13 can no longer be assigned into C4.
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represents the set of admissible parameter vectors given
E).Adding examples or making them more precise leads
to narrowing the robust assignment intervals, possibly
until all actions are sorted into single categories. For
instance, Fig. 3 shows that if the assignment example C
(a12)∈ [C3, C4] becomes C(a12)=C3, then this results in
narrowing the interval for action a13 to a single category
(in Fig. 2 the interval was two categories wide).

Sometimes, there does not exist any vector (λ,w1,…,
wn)∈Ω that reproduces all the examples through the
aggregation rule. For instance, in the situation depicted
in Fig. 2, stating that a14 is to be sorted into C3

originates an inconsistency with the examples already
Fig. 4. IRIS inconsistency analysis: constraints implied by the assignment ex
are given on the right.
introduced. The IRIS DSS includes an inconsistency
analysis [17] module that suggests alternatives to
remove the inconsistency. Fig. 4 shows that in this
situation either the 15th constraint is removed (i.e.,
stating that a14 is to be sorted into C3), or the example
concerning a14 can be kept but the examples
concerning a10 and a11 have to be changed (10th and
11th constraints). Hence, IRIS guides the DM to stay
consistent by successively choosing one example at a
time within the robust assignment ranges, but also
allows the DM to test new examples that contradict
previous ones, showing what previous judgments must
then be revised.
amples are given on the left, possibilities for solving the inconsistency
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3. A group decision methodology based on an
aggregation/disaggregation approach

3.1. Outline of the process

The methodology we propose is based on the ideas of
aggregation/disaggregation methods and methods that deal
with imprecise information on parameter values. Although
we do not exclude that DMsmay agree on other constraints
on the parameters (e.g., stating that one criterion weighs
more than some other), we here suppose they provide infor-
mation only about assignment examples. DMs will indivi-
dually assign some actions (eventually all) to a single category
or an interval of categories. Although the proposed metho-
dology can be applied to anymulticriteria sorting aggregation
method and does not imply the use of IRIS (nor even
ELECTRETRI),wewill also introduce the role IRIScanplay.

In this context we identify two main difficulties. The
first one stems from the possible disagreement amongDMs
on the different sorting examples they are asked to give.
Indeed, DMs do not always have in mind the same relative
importance of each criterion, and this influences the way
each of them assigns actions to different categories. The
second difficulty ariseswhen looking for an agreement on a
set of sorting examples that is consistent, i.e., that can be
reproduced by the method using a vector of suitable para-
meter values. This second difficulty leads us to separate the
individual consistency from the collective consistency. The
first one is concerning the information each DM is pro-
viding. The second type of consistency is concerning the
information all the DMs agree on. Simple examples show
that reducing disagreement on sorting examples without
being collectively consistent is possible when the DMs are
staying individually consistent through the whole process.
For this reason, we propose a procedure that consists in
maintaining both collective and individual consistency
throughout the process. The methodology that we suggest
takes into account these two following issues:

• the necessity to make the whole group converge
toward a collective set of robust assignments and
finally a common vector of inferred weights;

• the necessity to make DMs being and staying
collectively as well as individually consistent.

To copewith the last requirement, we suggest that each
group member should build his/her model using IRIS
(each one using his own instance of the program),whereas
an analyst uses another instance of IRIS to build a group
model, based on the agreements reached by the group.

We propose a process based on progressively agreeing
on the assignment of one or a few actions at a time. The
agreed assignment may not be a precise one, since DMs
are allowed to agree on conclusions such as “a10 can be
assigned only to C2 or to C3”. Let us define:

• L(ai)t and U(ai)t are the lower and upper bound
(respectively) for assigning action ai according to the
group's agreement, at iteration t.

At the outset, L(ai)1=Cl and U(ai)1=Ch, ∀ai∈A, i.e.,
there are no agreed examples. At each iteration t (t≥1),
the outcome of each discussion round is to narrow the
interval of categories [L(ai)t, U(ai)t] for at least one of the
actions ai, if possible making L(ai)t=U(ai)t. An agreement
on a precise (or imprecise) assignment for some action ai
introduces constraints on the parameter values, which in
turn will constrain the interval of possible assignments for
the remaining actions, in order to maintain consistency.
Hence, by agreeing on an assignment the DMs should be
aware of the implications that the assignment has
concerning other actions, and this can be easily observed
by each DM when inserting a potential assignment in
IRIS. The iterative process is the following:

Step 1: Each DM gives his/her individual set of consistent
sorting examples and determines the corres-
ponding robust sorting intervals. IRIS can be
used by eachDM to solve possible inconsistencies
and to compute the robust assignment intervals.

Step 2: Aided by an analyst who gathers the robust
sorting intervals from all the DMs, the group
discusses in order to agree on at least one
assignment. If the group is not able to agree on
any example among the multiple possibilities
available, then this iterative process ends.

Step 3: The agreed sorting example or examples are
incorporated in the collective model and all the
individual models. If the group feels the
collective model is satisfactory, then the
procedure stops. Otherwise, return to Step 2.

At any stage, each DM may privately revise his/her
individual model by adding, deleting, or modifying
examples that have not yet been settled by the group,
again using IRIS. Moreover, an important aspect is that
the methodology does not preclude the DMs from
collectively reneging on a previous agreement, if they
conclude they prefer to agree on an assignment that
contradicts a previously agreed one.

This iterative sequence of discussion rounds may end
in different ways. Ideally, it will end because the DMs
managed to agree on how to sort all the actions into
precise categories. It may also end because the DMs find
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they cannot progress any further, although an agreement
was not reached regarding all the actions. In this case,
the analyst may suggest the DMs to accept an inferred
vector of parameter values able to reproduce all the
assignments they agreed on, and chosen according to the
stability criterion used by IRIS [6]. However, assisting
groups that are not cooperative enough to follow this
procedure is outside the scope of this paper.

The goal of the process may be not only to sort all the
actions inA, but also, and perhapsmore importantly, to find
an inferred vector of parameter values able to reproduce the
assignments that were agreed. Indeed, the set of example
actions will usually be a subset of a much larger set of
actions to which the method will be applied. For instance,
DMsworking for a bankmay discuss a sample of past loan
applications and try to agree on how they would be sorted,
aiming at using the resulting sortingmodel as a standard for
sorting applications that arrive in the future.

3.2. Implications of agreements for the individual models

A key issue in the methodology outlined above is the
coexistence of internally consistent individual and
collective models, each defined by possibly different
sets of sorting examples. The collective model is defined
by all the assignments that have been agreed on by the
group. The individual models reflect the sorting examples
of each group member and should not contradict the
collective model. This means that some group members
may have to change their individual models as a result of
the assignments that the group agreed to change in the
collective model. Let us define:

• Let Lk(ai)t and Uk(ai)t denote the lower bound and
upper bound (respectively) for assigning action ai
according to the group member DMk at iteration t
(obviously, Lk(ai)t≤Uk(ai)t).

The implications of the agreements for the individual
models are not restricted to the actions that were subject
of the group's agreement. For instance, let us imagine
that at iteration t, the group agreed to sort action ai into
category C3. Three situations may occur for DM1:

• He/she might have already have L1(ai)t=U1(ai)t=C3,
hence nothing would change in his/her individual
model;

• He/she might have L1(ai)t=C3, U1(ai)t=C4, and to
place L1(ai)t+1=U1(ai)t+1=C3 does not contradict his/
her individual model, but may imply reducing the
sorting possibilities of other actions (this was exem-
plified with IRIS in Section 2.2, cf. Figs. 2 and 3);
• He/she might have L1(ai)t=U1(ai)t=C4, and to place
L1(ai)t+1=U1(ai)t+1=C3 implies revising some of his
individual sorting examples to restore consistency,
possibly with implications in other actions besides ai
(in Section 2.2 — Figs. 2 and 4 — we exemplified
with IRIS that accepting C(a14)=C3 also would
imply revising the examples concerning a10 and a11).

3.3. Computations to inform the discussion in Step 2

At the second step of each round of the methodology,
the DMs will try to reach agreements on how to assign at
least one of the exemplary actions. We will now suggest
two simple indicators that may be computed in order to
inform the DMs and structure this discussion, allowing
the group to know what actions are more (or less) likely
to generate agreements. These indicators, hence, have
informative rather than normative value.

The first ideawe propose is to compute the proportion of
DMs that accept each possible assignment. A straightfor-
ward measure of the support for assigning ai to Cx is:

Eðai;CxÞt ¼

XK
k¼1

Ekðai;CxÞt
K

� 100%;

with Ekðai;CxÞt

¼ 1; if Cx a½LkðaiÞt;UkðaiÞt�
0; if Cx g½LkðaiÞt;UkðaiÞt�

:

�

This natural definition, however, places an interesting
question. Let us for instance imagine that (in a sorting
problem involving 3 categories) the DMs provide the
following support for an action a1: E(a1, C1)t=50%, E
(a1, C2)t=0%, and E(a1, C3)t=50%. This might be
interpreted as if the DMs unanimously agree that a1 will
not be assigned to C2. However, assigning a1 to C2

seems to be a natural proposal for consensus reaching, in
a “split the difference” type of agreement.

For this reason we suggest a modified version for
the support computation that yields a “unimodal”
distribution:

E Vðai;CxÞt
Eðai;CxÞt; x ¼ 1 _ x ¼ h

maxfEðai;CxÞt;
minfmax

y<x
Eðai;CyÞt;

max
y>x

Eðai;CyÞtgg;

1 < x < h
�100%

8>>>>>><
>>>>>>:



Fig. 5. Fixed values for the profiles and criteria thresholds.
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In this case, we would have E′(a1, C1)t=E′(a1, C2)t=
E′(a1,C3)t=50%, highlighting the fact that the assignment
of a1 to C2 should not be less considered than the
assignment of a1 to C1 or to C3. The sum of the support
for the possible assignments of an action may be greater
than 100% for this reason, and also because eachDMmay
provide intervals as assignment examples.

Given the support computed for each assignment
possibility, the analyst may invite the group to focus on
the assignments with highest support values. Alterna-
tively, the analyst may focus on the lowest support
Fig. 6. Initial inpu
values and suggest the group to agree on the exclusion
of such assignments. The current version of IRIS may
help by generating a report file indicating its users'
robust assignment intervals, which can be imported into
a spreadsheet to automatically calculate the E′(ai, Ck)t
values for all possible assignments.

A second idea we suggest is try tomeasure the “cost” or
“effort” incurred by each DM when accepting a collective
assignment, through what we have called the number of
“shifts”. One shift corresponds to change an action's
assignment to one category above or below the interval
accepted by the DM. To exemplify this concept, consider
that DM1's examples were those depicted in Fig. 2. Then,
agreeing for instance that a12 is assigned to C3 would cost
no shift, and the same would happen if the assignment was
to C4. Assigning a14 to C3 would cost one shift, assigning
it to C2 would cost 2 shifts, etc. Besides these shifts, the
ones implied in the remaining actions by the need to remain
consistent also have to be taken into account. Hence,
assigning a14 toC3 would cost not one shift, but a total of 3
shifts, taking into account that a10 and a11 would have to be
sorted into category C2, as IRIS would show (Fig. 4).

This measure accounts for the number and “extent” of
the changes that aDMhas tomake in his inputs to accept an
agreement and remain consistent. This is a rough measure;
for instance, it can be criticized for assuming that two shifts
in one action are equivalent to one shift for two actions, and
ts of DM2.
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for disregarding the information contained in ELECTRE
TRI's credibility indices. However, it is simple to com-
pute and to explain. More sophisticated measures may be
sought, but to accurately model the DM's preferences con-
cerning concessions may well be an elusive goal. It would
be possible to compute other indicators, such as the sum of
the “lost support” or the maximum of “lost support”, where
“lost support” is the support for the assignments that be-
come infeasible when agreeing on a potential assignment.

4. A short illustrative example

4.1. The decision problem

For the sake of illustrating the concepts and to show
how a group might proceed, let us consider a
hypothetical problem of a bank that decided to use the
ELECTRE TRI method to sort loan applications. A team
of four experts (the DMs) met to build a common sorting
model to be used by all the bank branches. Let us
suppose that 15 past loan applications (the actions),
which have been evaluated on 5 criteria (g1,…, g5) using
a 0–20 scale, were taken as examples. The four experts
should agree on how to sort each action. We denote C1,
C2, C3 and C4 the 4 categories and ai (i=0,…, 14) the
actions to sort (Fig. 2). In this example the thresholds are
constant for all the profiles and no veto thresholds were
Fig. 7. Initial inpu
used (Fig. 5). DMs have the possibility to give for each
action only one assignment (one category) or a range of
possible assignments (an interval of categories). The four
DMs have different ways to judge the actions, as
depicted in Fig. 2 (DM1) and Figs. 6–8 (DM2, DM3, and
DM4).

4.2. Application of the methodology

4.2.1. Iteration 1
Let us suppose that the results for the acceptability of

the different assignments were those presented in Fig. 9.
For example, the possibility C(a4)=C3 yields 75% of
agreement among DMs, i.e., 3 out of 4 DMs agree that
action a4 can be assigned to category C3. If DMs agree
on this assignment it means that 25% of them (here it
represents 1 DM) will have to make a concession, that is
to say at least one “shift” from one category to another
category. The assignment C(a12)=C3 does not require
any shift from any DM, i.e., all have placed C3 in the
interval assignments of a12. Its acceptability is 100%.
Observing this, the DMs agreed to add C(a12)=C3 to
their individual models (Fig. 3 illustrates this for DM1),
and the analyst placed the same example in the collective
model. They also noticed that it was unanimous that a0
and a1 cannot reach C4, a2 can be assigned only to C2 or
C3, etc.
ts of DM3.



Fig. 8. Initial inputs of DM4.
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4.2.2. Iteration 2
The analyst studied the implications of fixing each of the

11 assignments that were acceptable by 3 out of 4 DMs
(75%). By using IRIS, he computed the number of shifts
that each DM would need to perform to accept the assign-
ment, considering the implied changes to other assignments
Fig. 9. Acceptability of the
resulting from the need of staying consistent (see Table 1).
For instance, if a3 is assigned to C1 then DM2 (Fig. 6) has
to make two shifts concerning that action (since he had
placed C(a3)=C3). Furthermore, the fact that C(a3)=C1

implies C(a9)≤C2 requires two additional shifts (since
DM2 had placed C(a9)=C4), and the fact that C(a3)=C1
different assignments.



Table 1
Needed shifts for each possible assignment with 75% of acceptability
(iteration 2)

Assignment Implied constraints DM1 DM2 DM3 DM4 Total

C(a1)=C2 C(a0)≤C2 0 0 2 0 2
C(a2)=C3 None 1 0 0 0 1
C(a3)=C1 C(a9)≤C2,

C(a10)≤C3

0 5 0 0 5

C(a3)=C2 None 0 1 0 0 1
C(a4)=C3 C(a0)≤C2,

C(a1)≤C2,
C(a10)≥C3,
C(a14)=C4

0 0 5 0 5

C(a6)=C3 C(a3)≤C2 0 2 0 0 2
C(a7)=C3 None 0 1 0 0 1
C(a8)=C1 None 0 0 2 0 2
C(a9)=C2 C(a10)≤C3 0 3 0 0 3
C(a11)=C1 None 2 0 0 0 2
C(a14)=C4 C(a0)≤C2,

C(a1)≤C2, C(a4)=
C3, C(a10)≥C3

0 0 5 0 5

Table 3
Needed shifts for each possible assignment with 50% of acceptability
or more (iteration 7)

Assignment Implied
constraints

DM1 DM2 DM3 DM4 Total

C(a0)=C1
⁎ None 0 1 1 0 2

C(a0)=C2
⁎⁎ None 1 0 0 0 1

C(a4)=C2
⁎⇔

C(a10)=C2
⁎⇔
⁎

C(a9)=C2 2 5 1 0 8
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implies C(a10)≤C3 requires one more shift (since DM2
had placed C(a10)=C4), totaling 5 shifts. The numbers of
shifts for eachDM seem to indicate that DM2 andDM3 are
the ones further away from a group consensus.

This brief analysis shows that the easiest concessions
could come from DM1 (accepting that C(a2)=C3), or
DM2 (either C(a3)=C2 or C(a7)=C3). DM4 does not
need to make any concession. Given these results, we can
imagine DM2 would offer to accept C(a3)=C2, because
he prefers to offer a concession now and avoid the pros-
pect ofC(a3)=C1, which also has an acceptability of 75%.
Furthermore, he noticed the poor performance of a3 on all
the criteria except the third (the one he cared most about
and that justified his initial position of placing a3 in a
higher category). All DMs incorporated the example
C(a3)=C2 in their individual models. The same example
was added to the collective model.
Table 2
Needed shifts for each possible assignment with 75% of acceptability
(iteration 5)

Assignment Implied
constraints

DM1 DM2 DM3 DM4 Total

C(a0)=C2 C(a11)≤C2 3 0 0 0 3
C(a4)=

C3⇔
C(a14)=C4

C(a0)≤C2,
C(a1)≤C2,
C(a10)≥C3

0 0 5 0 5

C(a6)=C3 None 0 1 0 0 1
C(a7)=C3 None 0 1 0 0 1
C(a8)=C1 None 0 0 2 0 2
C(a9)=C2 C(a10)≤C3 0 3 0 0 3
C(a11)=C1 None 2 0 0 0 2
4.2.3. Iteration 3
The agreed example does not have much impact on the

other actions. The easiest concessions are the same as
before, which could come from DM1 (accepting C(a2)=
C3) or DM2 (acceptingC(a7)=C3). This timeDM1was the
one to concede, hence the collective model, as well as the
individual models, were updated by placing the example
C(a2)=C3.

4.2.4. Iterations 4 and 5
At iteration 4, of the remaining assignments acceptable

by 75% of the DMs, only DM2 can make concessions
costing only one shift. Due to the former concessions each
DMhas made, the discussion led to an agreement to make
C(a1)=C2. (a concession by DM3) at iteration 4 and
C(a7)=C3 (a concession by DM2), at iteration 5.

4.2.5. Iteration 6
The shifts in Table 2 for the remaining 7 possible

assignments with 75% acceptability did not change. Now,
the easiest concession is again from DM2 (C(a6)=C3).
However, this DM objects that he has just made a con-
cession. DM1 was then persuaded to place C(a11)=C1,
given its poor performance (below level 6) on the 3rd, 4th,
and 5th criteria. DM1 was receptive to that argument, pro-
vided that the same argument was accepted to placeC(a8)=
C1, given its poor performance (below level 6) on the 2nd,
C(a14)=C3

C(a4)=C3
⁎⁎⇔

C(a14)=C4
⁎⁎

C(a10)≥C3 0 0 3 0 3

C(a5)=C1
⁎ C(a9)=C2,

C(a10)≤C3

1 5 0 0 6

C(a5)=C2
⁎ C(a9)=C2,

C(a10)≤C3

0 4 0 1 5

C(a5)=C3
⁎ None 1 0 0 2 3

C(a6)=C3
⁎⁎ None 0 1 0 0 1

C(a6)=C4
⁎⁎ None 1 0 0 0 1

C(a9)=C2
⁎⁎ C(a10)≤C3 0 3 0 0 3

C(a10)=C3
⁎ C(a4)=C3,

C(a9)=C2,
C(a14)=C4

0 3 3 0 5

C(a13)=C1
⁎ None 2 0 2 0 4

C(a13)=C2
⁎ None 1 1 1 0 3

C(a13)=C3
⁎ None 0 2 0 1 3

⁎50% acceptability; ⁎⁎75% acceptability.
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3rd, and 4th criteria, requiring the agreement of DM3. The
group agreed to add the examples C(a11)=C(a8)=C1 in
their individual models and in the collective model.

We will end the example here, but the procedure
would continue until either the group feels the collective
model is satisfactory or the group is not able to agree on
any further example. The situation at this point is pre-
sented in Table 3, where it can be seen that that the
assignments of a0, a6 and a13 do not have any impact on
the remaining actions, whereas the assignment of the pair
a4, a14 is crucial and has an impact on a9 and a10.

5. Conclusions

The methodology we suggest extends an aggregation/
disaggregation approach based on the use of an ELECTRE
TRI method to a context with multiple decision makers. It
aims at supporting interaction amongDMs, helping them to
reach a common and accepted unique multicriteria aggre-
gation model in a context where numerical information is
hard to obtain. Hence, it extends current literature on group
decision aiding by addressing sorting problems and by
using the ideas of aggregation/disaggregation.

We believe that the use of imprecise information
(assignment of some actions as examples that are translated
to constraints on the weights) rather than precise numbers
for the weights brings two important benefits. First, it
contributes to avoid the cognitively difficult task of eliciting
some of the model's parameters. Second, it contributes to
ground the discussion on assignment examples (that is a
rather natural form of expression for DMs), rather than on
weight values, whose understanding may be problematic.
Moreover, we can note that there is a many-to-one corres-
pondence from parameter values to results (i.e., different
input values may yield the same output).

The proposed process should not be seen as a precise
“recipe” ormethod to be rigidly followed.Rather, itmay be
seen as a methodology that may be flexibly adjusted by a
facilitator–analyst, where the computed outputs serve as an
orientation for the discussion among the group members.
As a matter of fact, the methodology is general enough to
be applied to other multicriteria sorting methods based on
aggregation/disaggregation, namely UTADIS [22].

The example we have built illustrates how the group
may progress towards a common and unique ELECTRE
TRI model while maintaining consistency along the whole
process both at the individual and at the collective levels.
This is themain contribution brought by the use of the IRIS
DSS. By using an individual instance of the software to
privately build his/her model, each DM is helped to keep a
consistent set of examples. Moreover, the DM can check
the impact on his/her model that results from agreeing to an
assignment example being discussed by the group. At the
same time, the analyst uses an instance of IRIS to maintain
a consistent set of examples agreed by the group, and may
use the software to answer “what-if” questions or to verify
whether a “package agreement” involving the assignment
of several actions simultaneously is consistent or not.

We deem that the a Delphi-like procedure, where DMs
can present arguments for or against some assignments
and then each one is invited to change his/her inputs,
given the arguments presented, is the most desirable in-
teraction mode for the discussion stage. However, it is not
impossible that, as suggested in the example, DMs may
bargain or exchange concessions.

The discussion-focusing suggestions of maximizing
the support for the assignment examples and minimizing
the number of shifts can be joined by other measures. The
main issue here is that these measures are meant to focus
the discussion and suggest agreements, rather than as
voting schemes to aggregate individual examples, which
are always hard to justify. Indeed, the latter perspective,
that of an automatic arbitration, should be used only as a
last resort and when there remain few actions to be sorted.
If this were not the case, then the possibility of mani-
pulation would be a true concern, for instance. By con-
sidering the criteria's role to bemore suggestive rather than
normative, strategic misrepresentation (which may always
exist) is less prone to be a problem to the group.Moreover,
the requirement of consistency in the set of assignment
examples makes it more difficult to misrepresent the as-
signment of an action being discussed without being con-
tradictory with the way the remaining actions are sorted.

Future research is still needed for the cases where the
group is not cooperative enough to proceed as suggested in
this paper. One idea is to study what are the best computed
measures/rules for choosing or imposing assignment ex-
amples. In such cases the computed measures would be-
come normative, with the associated risks indicated above.
Another idea could consist in identifying different coali-
tions of DMs (i.e., subgroups of DMs with similar pre-
ferences), and inferring a differentmodel for each coalition.
At the end of such a process, it could be interesting to look
for robust conclusions [3] acceptable by all the coalitions.

Another future development envisaged by us is to
develop a GDSS based on IRIS. Firstly, this means
adding networking capabilities to the software, namely
to facilitate sending the assignment examples informa-
tion from the DMs to the analyst. Secondly, this means
adding an additional module for the analyst to perform
the computations for which we used a spreadsheet. We
feel that the level of interaction among group members
recommends same-time/same-place meetings, but the
GDSS can be built without this assumption.
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