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Abstract. Outranking methods, a family of multicriteria analysis tools,
cope better with the ordinal aspects of spatial decision problems. How-
ever, it is recognized that these methods are subject to computational
limitations with respect to the number of alternatives. This paper pro-
poses an approach to generate these alternatives based on a planar sub-
division of the study area. The planar subdivision is obtained by com-
bining a set of criteria maps. The result is a set of non-overlapping poly-
gons/spatial units. Punctual, linear and areal decision alternatives, con-
ventionally used in spatial multicriteria analysis, are then constructed
as an individual, a collection of linearly adjacent or a collection of con-
tiguous spatial units. This permits to reduce substantially the number
of alternatives enabling the use of outranking methods.
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1 Introduction

Multicriteria analysis (MCA) tools are often used in spatial contexts to evaluate
and compare a set of potential decision alternatives—often modeled through
punctual, linear or areal entities and evaluated on several criteria—in order to
select a restricted subset for implementation. They have been incorporated into
geographical information systems (GIS) to enhance its modeling and analysis
capabilities. The author in [7] provides a recent review on GIS-MCA integration
covering the period 1990-2004. MCA methods are commonly categorized, based
on the set of alternatives, into discrete and continuous. There are two families
of methods within the discrete category: utility function-based approach and
outranking-based approach.

Most of MCA based-GIS systems use utility function-based methods (e.g.
[1]). These methods still dominate today and only few works (e.g. [8]) use
outranking-based ones. Outranking methods cope better with spatial decision
problems since they: (i) permit to consider qualitative evaluation criteria (in ad-
dition to quantitative ones) for which preference intervals ratios have no sense;
(ii) permit to consider evaluation criteria with heterogenous scales that coding
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them into one common scale is very difficult or artificial; (iii) avoid the compen-
sation between evaluation criteria; and (iv) require fewer amount of information
from the decision maker (DM). But the major drawback of outranking methods
(except those devoted to multicriteria sorting problems) is that they are not
suitable for problems implying a large or infinite number of alternatives. Indeed,
it is recognized that these methods are subject to computational limitations
with respect to the number of alternatives [9] as most methods require pairwise
comparison across all alternatives.

In this paper, we propose an approach to generate spatial alternatives based
on a planar subdivision, that we call decision map, of the study area. The planar
subdivision is obtained by combining a set of criteria maps. The result is a set of
non-overlapping polygonal spatial units. Punctual, linear or areal decision alter-
natives are then constructed as an individual, a collection of linearly adjacent,
or a collection of contiguous spatial units. This permits to reduce substantially
the number of alternatives enabling the use of outranking methods.

The rest of the paper is as follows. Section 2 provides the background. Sec-
tion 3 briefly introduces multicriteria analysis. Section 4 introduces the concept
of decision map. Section 5 proposes solutions for the generation of spatial deci-
sion alternatives. Section 6 briefly presents the developed prototype. Section 7
concludes the paper.

2 Background

We consider only simple area, line and point features of R2. In the rest of the
paper, the letters P , L, and Q are used to indicate point, line, and area features,
defined as follows: (i) An area feature Q is a two-dimensional open points-set
of R2 with simply connected interior Q◦ (with no hole) and simply connected
boundary ∂Q; (ii) A line feature L is a closed connected one-dimensional points-
set in R2 with no self-intersections and with two end-points. The boundary ∂L
of L is a set containing its two endpoints and its interior L◦ is the set of the
other points; and (iii) A point feature P is zero-dimensional set consisting of
only one element of R2. The interior P ◦ of a point feature P is the point itself
and its boundary is empty (i.e. ∂P = ∅). Below, the symbol γ may represent
anyone of the three feature types.

There are several proposals for classifying topological spatial relationships
(see [3] for a comparative study of some classification methods). These clas-
sifications are based on the intersection of boundaries, interiors and exteriors
of features. In [2] the authors introduce the CBM (Calculus-Based Method)
based on object calculus that takes into account the dimension of the intersec-
tions. The authors provide formal definitions of five (touch, in, cross, overlap,
and disjoint) relationships and for boundary operators. They also proved that
these operators are mutually exclusive, and they constitue a full converging of
all topological situations. In the following, we recall the definitions of the CBM.
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Definition 1. The touch relationship applies to all groups except point/point
one:

(γ1, touch, γ2) ⇔ (γ◦1 ∩ γ◦2 = ∅) ∧ (γ1 ∩ γ2 6= ∅)

Definition 2. The in relationship applies to every group:

(γ1, in, γ2) ⇔ (γ1 ∩ γ2 = γ1) ∧ (γ◦1 ∩ γ◦2 6= ∅)

Definition 3. The cross relationship applies to line/line and line/area groups:

(L1, cross, L2) ⇔ (L1 ∩ L2 6= ∅) ∧ (dim(L1 ∩ L2) = 0)

(L, cross, Q) ⇔ (L ∩Q 6= ∅) ∧ (L ∩Q 6= L)

Definition 4. The overlap relationship applies to area/area and line/line groups:

(γ1, overlap, γ2) ⇔ (dim(γ◦1 ) = dim(γ◦2) = dim(γ◦1 ∩ γ◦2))

∧(γ1 ∩ γ2 6= γ1) ∧ (γ1 ∩ γ2 6= γ2)

Definition 5. The disjoint relationship applies to every group:

(γ1, disjoint, γ2) ⇔ (γ1 ∩ γ2 = ∅))

In order to enhance the use of the above relationships, the authors in [2] have
defined operators able to extract boundaries from area and lines features. The
boundary operator b for an area feature Q returns the circular line of ∂Q. The
boundary operators f and t for a line feature return the two end-points features
of L.

3 Multicriteria analysis

In MCA the DM has to choose among several possibilities, called alternatives, on
the basis of a set of, often conflicting, evaluation criteria. The set of alternatives
A may be finite (or denumerable) or infinite. The MCA methods are categorized
on basis of set A into discrete and continuous. In this paper we are concerned with
the first category. Let A = {x1, x2, · · · , xn} denotes a set of n alternatives. The
evaluation criteria are factors on which alternatives are evaluated and compared.
Formally, a criterion is a function gj , defined on A, taking its values in an ordered
set, and representing the DM’s preferences according to some points of view.
The evaluation of an alternative x according to criterion gj is written gj(x). Let
F = {1, 2, · · · ,m} denotes the set of criteria indices.

To compare alternatives in A, we need to aggregate the partial evaluations
(i.e. in respect to each criterion) into a global one by using a given aggregation
function. Within discrete family, there are usually two aggregation approaches:
(i) utility function-based approach, and (ii) outranking relation-based approach.
In the rest of this paper we focalize on the second approach. Outranking methods
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use partial aggregation functions. Indeed, criteria are aggregated into partial bi-
nary relation S, such that aSb means that “a is at least as good as b”. The binary
relation S is called outranking relation. The most known method in this family
is ELECTRE (see [4]). To construct the outranking relation S, we compute for
each pair of alternatives (x, y), a concordance indices C(x, y) ∈ [0, 1] measuring
the power of criteria that are in favor of the assertion xSy and a discordance
indices ND(x, y) ∈ [0, 1] measuring the power of criteria that oppose to xSy.
Then, the relation S is defined as follows:{

C(x, y) ≥ ĉ

ND(x, y) ≤ d̂

where ĉ and d̂ and a concordance and a discordance threshold, respectively.
Often an exploitation phase is needed to “extract”, form S, information on how
alternatives compare to each other. At this phase, the concordance and discor-
dance indices (C(x, y) and ND(x, y)) are used to construct indices σ(x, y) ∈ [0, 1]
representing the credibility of the proposition xSy, ∀(x, y) ∈ A×A. The propo-
sition xSy holds if σ(x, y) is greater or equal to a given cutting level, λ.

In spatial contexts, alternatives are often modeled through one of three spa-
tial entities, namely point (P ), line (L), or area (or polygon) (Q). For instance,
in a facility location problem potential alternatives take the form of points rep-
resenting different possible sites. This way of modeling generates a rich set of
spatial alternatives. As consequence, outranking-based methods quickly reach
their computational limits. Evaluation criteria are associated with geographical
entities and relationships between entities and therefore can be represented in
the form of maps. A criterion map is composed of a collection of spatial units;
each of which is characterized with one value relative to the concept modeled.
Mathematically, a criterion map cj is the set {(s, gj(s)) : s ∈ Sj} where Sj is a
set of spatial units and gj is a mono-valued criterion function defined as follows:

gj : Sj → E
s → gj(s)

E is an ordinal (or cardinal scale). One should distinguish a simple map
layer from a criterion map. In fact, a criterion map models the preferences of the
DM concerning a particular concept, which is often with no real existence while
a simple map layer is a representation of some spatial real data. In practice,
criteria are often of different types and may be evaluated according to different
scales. Here we suppose that criteria are evaluated on the same ordinal scale.

4 Concept of decision map

4.1 Definition

A decision map is a planar subdivision represented as a set of non-overlapping
polygonal spatial units that are assigned using a multicriteria sorting model, Γω,
into an ordered set of categories representing evaluation levels. More formally, a
decision map M is defined as M = {(u, Γω(u)) : u ∈ U, ω ∈ Ω}, where U is a set
of homogenous spatial units and Γω is defined as follows:
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Γω : U → E
u → Γω[g1(u), · · · , gm(u), w]

where: (i) E : [e1, e2, · · · , ek]: (with ei Â ej , ∀i > j) is an ordinal scale defined
such that ei, for i = 1..k, represents the evaluation of category Ci; (ii) gj(u):
is the performance of spatial unit u in respect to criterion gj associated with
criteria map cj ; (iii) Ω: is the space of possible values for preference parameters
vector τ = (τ1, τ2, · · · , τv) associated with Γω; and (iv) ω ∈ Ω: a single vector of
preference parameters values.

Spatial units need to be non-overlapping and together constitue M. Let I =
{1, 2, · · · , n} be the set of the indices of the spatial units composing M. Then,
two conditions need to be verified:

M =
⋃

i∈I

ui, and u◦i ∩ u◦j = ∅, ∀i, j ∈ I ∧ i 6= j.

The first condition ensures that the partition is total. The second one ensures
that spatial units are non-overlapping. In addition, we generally suppose that
the evaluations of connected spatial units are distinct, that is:

∂ui ∩ ∂uj 6= ∅ ⇔ Γw(ui) 6= Γw(uj), ∀i, j ∈ I and i 6= j.

4.2 Construction of the planar subdivision

The construction of a decision map needs the superposition of a set of criteria
maps. The result is an intermediate map I composed of a new set of spatial units
that result from the intersection of the boundaries of the features in criteria
maps. Each spatial unit u is characterized with a vector g(u) of m evaluations:

I = ⊕(c1, c2, · · · , cm)
= {(u,g(u)) : g(u) = (g1(u), g2(u), · · · gm(u))}.

where ⊕ is the union variant of GIS overlay operation that yields a new
map by combining all involved features in the input maps; and for j = 1 · · ·m,
gj(u) is the criterion function associated with criterion map cj. Intuitively, cri-
teria maps must represent the same territory and must be defined according to
the same spatial scale and the same coordinate system. Note also that overlay
operation may generate silver polygons which should be eliminated. In addition,
we mention that criteria maps must be polygonal ones. However, input datasets
may be sample data points, raster maps, contour lines lines, etc. We need to
transform all non-polygonal input datasets into polygonal ones. For example, a
set of sample points may be transformed into a TIN by computing the triangu-
lation having vertices at data points or contour lines may be transformed into a
polygonal map by a constrained Delaunay triangulation (see, for e.g., [5]).

The first version of M is then obtained by applying the multicriteria sorting
model Γω to associate each spatial unit u in I to a category in E:
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M : I −→ E
u −→ Γω(u)

The multicriteria sorting model Γω used here will be detailed in §4.3. To
generate the final decision map M, we need to group, using Algorithm 1 below,
the neighbors spatial units which are assigned to the same category. There are
different ways to define the “neighbors” concept. Here, we consider that two
spatial units ui and uj are neighbors only and only if they share at least one
segment: (∂ui ∩ ∂uj 6= ∅) = true. Other neighboring models may also apply.
Note that υ(u) in Algorithm 1 denotes the set of “neighbors” of u.

Algorithm 1 GROUPING (M)
begin
u ← u1

Z ← ∅
While (∃u ∈ I ∧ u /∈ Z)

For each s ∈ υ(u)
If Γω(s) = Γω(u) Then

MERGE(u, s)
End If

End For
Z ← Z ∪ {u}

End While
end.

MERGE is a map algebra operator permitting to combine two or more spatial
units.

4.3 Multicriteria sorting model

The multicriteria sorting model Γω used is ELECTRE TRI (see [4]). The levels
of scale E represents the evaluations of p categories defined in termes of a set
of p − 1 profiles. Let B = {b1, b2, · · · , bp−1} be the set of indices of the profiles,
bh being the upper limit of category Ch and the lower limit of category Ch+1,
h = 1, 2, · · · , p. Each profile bh is characterized by its performances gj(bh) and its
thresholds pj(bh) (preference thresholds representing, for two alternatives x and
y, the smallest difference compatible with a preference in favor of x in respect to
criterion gj), qj(bh) (indifference thresholds representing, for two alternatives x
and y, the largest difference preserving an indifference between x and y in respect
to criterion gj) and vj(bh) (veto thresholds representing, for two alternatives x
and y, the smallest difference gj(y)− gj(x) incompatible with xSy).

The preference parameters vector associated with ELECTRE TRI is τ =
(k,q,p,v,B), where: (i) k = (k1, · · · , km) is the weights vector associated with
evaluation criteria reflecting their importance for the DM; (ii) q = [qj(bh)],
j ∈ F , h ∈ B is the indifference thresholds parameters; (iii) p = [pj(bh)],
j ∈ F , h ∈ B is the preference thresholds parameters; (iv) v = [vj(bh)], j ∈
F , h ∈ B is the veto thresholds parameters; and (v) B= (b0,b1, · · · ,bp)T
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is the profiles evaluation matrix with bh= (g1(bh), · · · , gn(bh)). Note that b0

and bp are defined as follows: b0 = (minu∈U (g1(u), · · · , minu∈U (gm(u)) and
bp(maxu∈U (g1(u), · · · , maxu∈U (gm(u)). It is obvious that different values for w
may lead to different assignment results.

ELECTRE TRI has two assignment algorithms: pessimistic and optimistic.
Algorithm 2 provides the pessimistic version.

Algorithm 2 ASSIGNMENT (Γω(u), ∀u ∈ I)
begin
For each u ∈ I

h ← p
g(u) ← (g1(u), · · · , gm(u))
assigned ← False
While h ≥ 0 and ¬(assigned)

g(bh) ← (g1(bh), · · · , gm(bh))
w′ ← (q(bh),p(bh),v(bh))
If SIGMA(g(u),g(bh),k, w′) ≥ λ Then

Γω(u) ← eh+1

assigned ← True
End If
h ← h− 1

End While
End For
end.

The boolean variable assigned is used to avoid unnecessary loops. The algo-
rithm SIGMA permits to compute credibility index σ(u, bh) measuring the degree
to which spatial unit u outranks profile bh: uSbh. The complexity of SIGMA is
O(m); where m is the number of evaluation criteria (see [4] for more informa-
tion). The parameter λ ∈ [0.5, 1] is the cutting level representing the minimum
value for σ(u, bh) so that uSbh holds.

5 Generating spatial decision alternatives

As mentioned earlier, spatial decision alternatives are often modeled through
punctual, linear or areal features. This may generate a large set of alternatives
which makes outranking methods non practical since they quickly reach their
computational limitations. To avoid this problem, we propose in this section dif-
ferent solutions to generate these alternatives based on the decision map concept
introduced in §4. The basic idea of our solutions consists in “emulate” punctual,
linear and areal decision alternatives through one or several spatial units with
some additional topological relationships.

– Punctual alternative : One spatial unit.
– Linear alternative : A collection of linearly adjacent spatial units.
– Areal alternative : A collection of contiguous spatial units
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5.1 Generating punctual alternatives

Punctual alternatives apply essentially to location problems. They may be mod-
eled as individual spatial units. Thus, the set of potential alternatives A is sim-
ply the set of spatial units. Theoretically, any spatial unit may serve as an
alternative. However, in practice the DM may wish to exclude some specific spa-
tial units from consideration. Let X ⊂ U be the set of excluded spatial units:
X = {u′i : u′i ∈ U and that DM states that u′i /∈ A}. Thus, the set of potential
alternatives is: A = {ai : ai ∈ U \ E}.

5.2 Generating linear alternatives

Linear alternatives are often used to model linear infrastructures as highways,
pipelines, etc. They may be modeled as a collection of linearly adjacent spatial
units. The generation of this type is more complex than the punctual ones. In this
paper, these alternatives are generated basing on the connexity graph resulting
from the decision map. The connexity graph G = (U, V ) is defined such that :
U = {u : u ∈ M} and V = {(ui, uj) : ui, uj ∈ U ∧ ∂ui ∩ ∂uj 6= ∅ ∧ u◦i ∩ u◦j = ∅}.
Each vertices x in G is associated with the evaluation vE(u) of the spatial unit u
it represents. In practice, the DM may impose that the linear alternative t must
pass through some spatial units or avoid some other ones. Let Y = {u ∈ U :
(t ∩ u = u) ∧ (t◦ ∩ u◦ 6= ∅)} be the set of spatial units that should be included
and X = {u ∈ U : (t ∩ u = ∅)} be the set of spatial units to be avoided. The
conditions in the definition of set Y signify that (u, in, t) is true and the one in
the definition of X means that (u, disjoint, t) is true. Let also f(t) and t(t)
denote the start and end spatial units for an alternative t. A linear alternative t
is defined as follows:

t = {u1, · · · , uq : ui ∈ U \X, i = 1..q}

with: (i) f(t) = u1 and t(t) = uq; (ii) (∂ui ∩ ∂ui+1) 6= ∅ ∧ u◦i ∩ u◦i+1 = ∅, ∀i =
1..q−1; and (iii) t∩Y = Y . The first condition set the origin and end spatial units.
The second condition ensures that spatial units in t are linearly adjacent. The
last one ensures that all spatial units in set Y are included in t. Alternatives are
then generated based on G′(U \X,V ′) with the condition that these alternatives
should pass through spatial units uj , ∀uj ∈ Y . To generate alternatives, we
apply the following idea. A linear alternative is defined above as a collection of
linear adjacent spatial units. Let (vE(u1), vE(u2), · · · , vE(uq)) be the set of the
evaluations of all spatial units composing t. Then, to evaluate an alternative t
we need to map a vector of q evaluations to a vector of k evaluations using a
transformation rule ϕ:

ϕ : Eq → E′

(vE(u1), vE(u2), · · · , vE(uq)) → (e′1, e
′
2, · · · , e′k)

where E′ : [e′1, e
′
2, · · · , e′k] is an ordinal evaluation scale with e′1 ≺ e′2 ≺ · · · ≺

e′k (E′ can be the same one used in decision map generation). The level e′i may
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be the number of nodes xj (i.e. spatial unit uj) such that vE(xj) = ei, the area
of spatial units uj evaluated ei, or any other spatial criterion. Before performing
the global evaluation, dominated corridors need to be eliminated from consider-
ation. The dominance relation 4 can not be defined directly on the initial eval-
uation vector (vE(xo), · · · , vE(xn)) since alternatives may have different lengths
(in terms of the number of spatial units). It can be expressed on the transformed
evaluation vector as follows. Let t and t′ be two linear alternatives with trans-
formed evaluation vectors (r1, r2, · · · , rk) and (r′1, r

′
2, · · · , r′k), respectively. Then

t dominates t′, denoted t4 t′, holds only and only if: t4 t′ ⇔ ri º r′i,∀i = 1..k
with at least one strict inequality. The global evaluation of an alternative t is
v(t) = Θ(r1, r2, · · · , rk) where Θ is an aggregation mechanism.

5.3 Generating areal alternatives

In several problems, alternatives are often modeled as a collection of contiguous
spatial units. To generate this type of alternatives, we use the following idea.
Let Tα = {uj ∈ U : vE(uj) = α} be the set of spatial units in U with level
α; α = 1..k. Let T β

i = {uj ∈ U : ∂ui ∩ ∂uj 6= ∅ ∧ vE(uj) = maxl∈E∧l<β l} be
the set of spatial units that are contiguous to ui and having the best evaluation
strictly inferior to α. Next, we construct a tree T defined as follows. To each
spatial unit ui in Tα associate spatial units in T β

i ; β ≺ α, as suns. Note that if
|T k| > 1, we need to create a hypothetic node r having as suns the spatial units
in T k. Then, an areal alternative a may be constructed as a collection of spatial
units in an elementary path starting in a spatial unit in T k (or r if |T k| > 1)
and continues until some conditions (e.g. the total surface of spatial units in the
path) are verified.

6 Implementation

We have developed a prototype on ArcGIS 9.1 by using VBA. The prototype
permits to create criteria maps, infer preference parameters for ELECTRE TRI,
assigning spatial units to categories, and generate decision alternatives. We have
used real data relative to Ile-De-France (Paris and its suburban) region in France
and three illustrative problems of location, corridor generation and zoning have
been considered. Here we briefly comment the second problem. Three criteria
maps (land-use, sol type and administrative limitations) and four categories have
considered. Figure 1 presents two corridors generated using the idea described
in §5.2.

7 Conclusion and future work

We have proposed an approach to generate spatial decision alternatives in mul-
ticriteria spatial decision making contexts. The proposed approach uses a planar
subdivision of the study area, called decision map, composed of a set of non-
overlapping set of spatial units. These spatial units are then used to “emulate”
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Fig. 1. A screen from the prototype showing two corridors.

punctual, linear and areal decision alternatives often used as input for MCA
methods. This way of modeling permits to reduce significantly the number of
alternatives to be evaluated enabling outranking methods to be used. The pro-
posed solutions have been implemented on ArcGIS 9.1 by using real data relative
to Ile-De-France region in France.
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