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ABSTRACT

Given a finite set of alternatives, the sorting (or assignment) problem consists in the assignment of each alternative to
one of the predefined categories. In this paper, we are interested in multiple criteria sorting problems and, more
precisely, in the existing method ELECTRE TRI. This method requires the elicitation of preferential parameters
(importance coefficients, thresholds, profiles, etc.) in order to construct the decision-maker’s (DM) preference model.
A direct elicitation of these parameters being sometimes difficult, Mousseau and Slowinski proposed an interactive

aggregation–disaggregation approach that infer ELECTRE TRI parameters indirectly from holistic information, i.e.
assignment examples. In this approach, the determination of ELECTRE TRI parameters that best restore the
assignment examples is formulated through a non-linear optimization program. Also in this direction, Mousseau
et al. considered the subproblem of the determination of the importance coefficients only (the thresholds and
category limits being fixed). This subproblem leads to solve a linear program (rather that non-linear in the global
inference model).
We pursue the idea of partial inference model by considering the complementary subproblem which determines

the category limits (the importance coefficients being fixed). With some simplification, it also leads to solve a linear
program. Together with the result of Mousseau et al., we have a couple of complementary models which can be
combined in an interactive approach inferring the parameters of an ELECTRE TRI model from assignment
examples. In each interaction, the DM can revise his/her assignment examples, to give additional information and to
choose which parameters to fix before the optimization phase restarts. Copyright # 2002 John Wiley & Sons, Ltd.
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1. INTRODUCTION

According to Roy (1985), real-world decision
problem using multiple criteria decision aid can
be classified in three basic problematics:choice,
sorting and ranking (see also, Bana e Costa, 1996).
The sorting problematic consists in formulating
the decision problem in terms of the assignment of
a set of alternatives A={a1, a2, . . ., an} to one of
the predefined categories C1, C2, . . . Cp, Cp+1. The
assignment of an alternative a to the appropriate
category relies on the intrinsic value of a, and not
on the comparison of a with other alternatives.

In this paper, we are interested in the multiple
criteria sorting problematic and, more precisely, in

the ELECTRE TRI method (see Yu, 1992;
Mousseau et al., 2000; Roy and Bouyssou, 1993).
The implementation of this method requires the
determination of several parameters such as:limit
profiles between consecutive categories, impor-
tance coefficients of criteria, discrimination thresh-
olds, etc.

The set of these parameters (that we will call an
ELECTRE TRI model in this paper) is used to
construct a preference model that the decision-
maker (DM) accept as a working hypothesis. In
many situations, it is difficult for the DM to
determine these values; a direct evaluation of these
parameters require an important cognitive effort.

To overcome this difficulty, Mousseau and
Slowinski (1998) proposed an indirect approach
in order to infer these parameters from assignment
examples through a certain form of regression on
assignment examples. This approach corresponds
to an aggregation–disaggregation methodology
(see Jacquet-Lagr"eeze and Siskos, 1982, 2001) to
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elicit preferences by interaction on holistic prefer-
ences.

Mousseau and Slowinski (1998) propose a
global inference model which infers all ELECTRE
TRI parameters simultaneously starting from
assignment examples. In this approach, the deter-
mination of the parameters’ values that best fit the
assignment examples results from the resolution of
a non-linear mathematical program. This optimi-
zation procedure is integrated in an interactive
tool that enable the DM to react on the set of
obtained parameters and to get insights on his/her
preferences. In the continuation of this idea,
Mousseau et al. (2001) proposed a partial in-
ference approach consisting in the introduction of
a subproblem that infers the importance coeffi-
cients and the cutting level only. In this case, the
mathematical program to be solved becomes
linear. Dias and Mousseau (2002) considers the
inference of veto-related parameters only.

Our work also account for the idea of inferring a
subset of ELECTRE TRI parameters from assign-
ment examples. We consider the problem of
determining the definition of categories (limit
profiles and discrimination thresholds), the im-
portance coefficients being fixed. Subject to some
restrictions, the corresponding mathematical pro-
gram to be solved in linear. Following Mousseau
et al. (2001) and Mousseau and Slowinski, (1998),
we aim at enriching the approaches to determine
parameters of an ELECTRE TRI model (see
Figure 1).

Figure 1 reveals the fact that the use of our
inference model can be considered in a broader
scheme where all ELECTRE TRI parameters are
to be inferred. In such a situation, the partial

inference models (the inference of importance
coefficients, Mousseau et al., 2001, inference of
veto thresholds Dias and Mousseau, 2002) and
inference of category limits (this paper) can be
used iteratively. At each iteration, the DM can
revise his/her assignment examples, give additional
information and choose which parameters to fix
before the optimization phase restarts.

This paper presents a new inference procedure
that determine the category limits from assignment
examples. This procedure is validated by numer-
ical results obtained in a laboratory experiment
aiming at testing the operational usefulness of the
category limits’ inference procedure in an inter-
active process. The paper is organized as follows.
In Section 2, we recall briefly the ELECTRE TRI
method and the general approach used by the
inference tool. In the next two sections, we present
the two phases of the category limit inference
model. In Section 5, we consider some variations
of the model when more information is available
or when a strong consistency is required. Section 6
is dedicated to the experimental design and the
empirical results. Section 7 groups conclusions.

2. THE INFERENCE PROCEDURE

2.1. Brief presentation of the ELECTRE TRI
method
We give here a very brief overview of the
ELECTRE TRI method and define some nota-
tions that will be used. A complete description can
be found in Roy and Bouyssou (1993). The
corresponding software is described in Mousseau
et al. (2000).

ELECTRE TRI Model

Inferred from examples Direct elicitation by the DM

Partial inference Global inference (Mousseau & Slowinski, 1998)

Infer weights (Mousseau et al., 2001) Infer category limitsInfer veto (Dias & Mousseau, 2002)

Figure 1. Different approaches to determine ELECTRE TRI parameters.
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ELECTRE TRI is a multiple criteria sorting
method used to assign alternatives to predefined
ordered categories. The assignment of an alter-
native a results from the comparison of a with the
profiles defining the limits of the categories. Let A
denote the set of alternatives to be assigned and
A*�A, A*={a1, a2, . . ., an} denote a subset of
alternatives that the DM intuitively assigns to a
category or a range of categories (A* contains the
assignment examples given by the DM) and let
K={1, 2, . . ., n} be the set of indices of the
alternatives for A*. Let F denote the set of the
indices of the criteria g1, g2, . . ., gm (F={1, 2,
. . ., m}), kj the importance coefficient of the
criterion gj, B the set of indices of the profiles
defining p+1 categories (B={1, 2, . . ., p}), bh
being the upper limit of category Ch and the lower
limit of category Ch+1, h=1, 2, . . ., p. Each
profile bh is characterized by its performances
gj(bh) and its thresholds pj(bh) (preference thresh-
olds), qj(bh) (indifference thresholds) and vj(bh)
(veto thresholds). In what follows, we will assume,
without any loss of generality, that preferences
increase with the value on each criterion and thatP

j2F kj ¼ 1:
Further on, we use a!Ch to denote that the

alternative a is assigned to the category Ch, when
necessary, a!DM Ch is used to highlight the fact
that the assignment is stated by the DM.

ELECTRE TRI builds a fuzzy outranking
relation S whose meaning is ‘at least as good as’.
Preferences restricted to the significance axis of
each criterion are defined through pseudo-criteria
(see Roy and Vincke, 1984) for details on this
double thresholds preference representation). Be-
side the intra-criterion preferential information,
represented by the indifference and preference
thresholds, qj(bh) and pj(bh), the construction of S
also makes use of two types of inter-criterion
preferential information:

* the set of weight-importance coefficients ({kj, j 2
F}) is used in the concordance test when
computing the relative importance of the
coalitions of criteria being in favour of the
assertion aSbh (and bhSa);

* the set of veto thresholds ({vj(bh), j 2 F, h 2 B}) is
used in the discordance test; vj(bh) represents the
smallest difference gj(bh)�gj(a) incompatible
with the assertion aSbh (and bhSa).

As the assignment of alternatives to categories
does not result directly from the relation S, an

exploitation phase is necessary; it requires the
relation S to be ‘defuzzyfied’ using a so-called l-
cut: the assertion aSbh (bhSa, respectively) is
considered to be valid if the credibility index of
the fuzzy outranking relation is greater than a
‘cutting level’ l such that l 2 (0.5, 1]. This l-cut
determines the preference situation between
a and bh.

Two assignment procedures (optimistic an
pessimistic) are available, their role being to
analyse the way in which an alternative a compares
to the profiles so as to determine the category to
which a should be assigned. The result of these two
assignment procedures differs when the alternative
a is incomparable with at least one profile bh.

2.2. Scheme of the general inference procedure
The general scheme of the inference procedure (see
Figure 2) is to find an ELECTRE TRI model as
compatible as possible with the assignment exam-
ples (A*) given by the DM. The compatibility
between the ELECTRE TRI model and the
assignment examples is understood as an ability
of the ELECTRE TRI method using this model to
reassign the alternatives from A* in the same way
as the DM did.

In order to minimize the differences between the
assignments made by ELECTRE TRI and the
assignments by the DM, an optimization proce-
dure is used. The DM can tune up the model in the
course of an interactive procedure. He/she may
either revise the assignment examples or fix values
(or intervals of variation) for some model para-
meters. The DM may modify A* as well as
introduce some more constraints concerning the
profiles.

When the model is not perfectly compatible with
the assignment examples, the procedure should be
able to detect all ‘hard cases’, i.e. the alternatives
for which the assignment computed by the model
strongly differs for the DM’s assignment. The DM
could then be asked to reconsider his/her judg-
ment. This general scheme is applicable for the
global inference (Mousseau and Slowinski, 1998)
as well as partial inference procedures. (Mousseau
et al., 2001 and this paper). For more discussion
on the procedure and its interest, see Mousseau
and Slowinski (1998) and Mousseau et al. (2001).

Almost all disaggregation procedures (including
ours) are grounded on mathematical programs in
which various objective functions can be consid-
ered as equally acceptable to infer the values of the
preference parameters. Moreover, there might be
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multiple optimal solutions to the program. It is
possible to deal with such difficulty by performing
(near) post-optimal analysis. This enables to
identify several solutions to be presented to the
decision maker, rather than presenting a single
solution.

In our work, we propose to deal with this issue
in a slightly different and complementary way. We
consider the inference procedure as a tool to be
integrated in an interactive process in which the
decision maker should react to the output of the
inference procedure by stating some additional
constraints on the parameter values, modifying the
assignment examples, etc. In such an interactive
process, the DM will get insights on the possible
values for the preference parameters in relation
with the assignment examples the model should
restitute.

2.3. Formulation of the problem
In what follows, we will confine our analysis to the
case were the pessimistic assignment procedure is
used and no veto phenomenon occurs (vj(bh)=1,
8j 2 F, 8h 2 B). As the importance coefficients are
fixed, the inferred parameters are the category
limits (i.e. the limit profiles: gj(bh) as well as the
thresholds qj(bh) and pj(bh), j 2 F, h 2 B) and the
cutting level l.

It is difficult to infer the ELECTRE TRI
category limits directly, therefore, the computation
is de-composed in two phases:

* Phase 1: Partial concordance indices cj(a, bh),
cj(bh, a), j 2 F, h 2 B are determined by means of
a linear program

* Phase 2: gj(bh), pj(bh), qj(bh), 8j 2 F, 8h 2 B, will
then be reconstructed from the indices com-
puted in phase 1.

3. PHASE 1: DETERMINATION OF
PARTIAL CONCORDANCE INDICES

3.1. Notations and hypothesis
In the ELECTRE TRI method, the construction
of the outranking relation S is based on the
aggregation–disaggregation paradigm which is
materialized by the partial concordance indices,
cj(ak, bh), cj(bh, ak), j 2 F, k 2 K, h 2 B, and then by
the global concordance indices s(ak, bh), s(bh, ak),
k 2 K, h 2 B. We recall that the hypothesis of no
veto is assumed in our approach. The following
observations are straightforward from ELECTRE
TRI:

s ak; bhð Þ ¼ c ak; bhð Þ ¼
P

j2F kjcj ak; bhð Þ

s bh; akð Þ ¼ c bh; akð Þ ¼
P

j2F kjcj bh; akð Þ

8k 2 K ; 8h 2 B ð1Þ

Start

Choose A*

Assign alternatives
from A* to the categories

Optimize to
obtain a model

Model accepted ?

Stop

assignment
examples

nono

yes

Fix value or interval
of variation for one or

several parameters

Revise

Additional information on
some model parameters ?

no

yes

Figure 2. General scheme of the inference procedure.
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cj ak; bhð Þ; cj bh; akð Þ 2 0; 1½ �

8j 2 F ; 8k 2 K ; 8h 2 B ð2Þ

When gj is a quasi-criterion (i.e. pj=qj),
(2) becomes

cj ak; bhð Þ; cj bh; akð Þ 2 0; 1f g

8j 2 F ; 8k 2 K ; 8h 2 B ð3Þ

The ELECTRE TRI pessimistic assignment rule
proceeds as follows:

(a) compare a successively to bi, for i=p, p�1,
. . ., 0, and

(b) bh being the first profile such that aSbh,
assign a to category Ch+1 (a ! Ch+1).

Hence, the pessimistic assignment rule assigns
the alternative ak to the category Chk (ak ! Chk) iff

c ak; bhk�1

� �
� l

c ak; bhk
� �

5l ð7Þ

3.2. Results justifying the inference model

Definition 3.1
For each criterion gj, j 2 F and each profile bh,
h 2 B, the function fjh (x) is called the category
limit characterization function

It is obvious from Definition 3.1 that

fjh akð Þ ¼ min cj ak; bhð Þ; cj bh; akð Þ
� �

ð9Þ

(Formally, we should write fjh gj akð Þ
� �

instead of
fjh akð Þ:) This function plays a central role in our
approach. As illustrated in Figure 3, it represents

a fuzzy membership of the relation (akIjbh). It
also represents all the partial concordance
indices that can be used to reconstruct the
category limits. All proofs are given in the
appendix.

Proposition 3.1
The category limit characterization function
fjh akð Þ is symmetrical through the vertical line
x=gj(bh) (symmetry condition).

To ensure the consistency of the categories, we
base on the condition ‘No alternative should be
indifferent to more than one profiles’ (see Mous-
seau et al. 2000; Yu, 1992). We have to express this
condition by constraints concerning partial con-
cordance indices in order to introduce it into our

gj akð Þ5gj alð Þ )
cj ak; bhð Þ � cj al ; bhð Þ

cj bh; akð Þ � cj bh; alð Þ

(

gj akð Þ ¼ gj alð Þ )
cj ak; bhð Þ ¼ cj al ; bhð Þ

cj bh; akð Þ ¼ cj bh; alð Þ

( 8j 2 F ; 8k; l 2 K ; 8h 2 B ð4Þ

cj ak; bhþ1ð Þ � cj ak; bhð Þ

cj bh; akð Þ � cj bhþ1; akð Þ
8j 2 F ; 8k 2 K ; h ¼ 1; 2; . . . ; p� 1 ð5Þ

c ak; bhþ1ð Þ ¼
P

j2F kjcj ak; bhþ1ð Þ �
P

j2F kjcj ak; bhð Þ ¼ c ak; bhð Þ

c bh; akð Þ ¼
P

j2F kjcj bh; akð Þ �
P

j2F kjcj bhþ1; akð Þ ¼ c bhþ1; akð Þ
8k 2 K ; h ¼ 1; 2; . . . ; p� 1 ð6Þ

fjh xð Þ ¼

0 if x � gj bhð Þ � pj bhð Þ

x� gj bhð Þ þ pj bhð Þ
pj bhð Þ � qj bhð Þ

if gj bhð Þ � pj bhð Þ5x5gj bhð Þ � qj bhð Þ

1 if gj bhð Þ � qj bhð Þ � x � gj bhð Þ þ qj bhð Þ

gj bhð Þ þ pj bhð Þ � x

pj bhð Þ � qj bhð Þ
if gj bhð Þ þ qj bhð Þ5x5gj bhð Þ þ pj bhð Þ

0 otherwise

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ
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program. We have the following results:

Proposition 3.2
When using the ELECTRE TRI pessimistic
procedure, if ak ! Chk then:

(i) 8h 5 hk, :akIbh, and
(ii) 8h 5 hk�1, bhSak ) bhIak,

i.e. The indifference between ak and bh appears
only for h 4 hk�1 when bhSak takes place.

Proposition 3.3
If 9h0 s.t. :bh0 Sak then 8h 4 h0, :bh Sak.

Proposition 3.4
Conditions (i) and (ii) are equivalent using the
pessimistic assignment procedure:

(i) No alternative in A* is indifferent to more
than on profiles.

(ii) 8ak 2 A*, ak ! Chk then :bhk�2Sak.

Remark
This condition ensures only the consistency in the
set A*, not in A. It is weaker than the following
condition:

gj bh þ 1ð Þ � gj bhð Þ þ pj bhð Þ þ pj bh þ 1ð Þ ð10Þ

which is too strong (sufficient but not necessary) to
ensure the consistency in A. Furthermore, this
condition is impossible to express using the partial
concordance indices.

3.3. Variables of the problem
In ELECTRE TRI pessimistic assignment proce-
dure, an alternative ak is assigned to category Ch

(ak!Ch) iff c(ak, bh–1) 5 l and c(ak, bh) 5 l. To
ensure the consistency of the profiles, we need the
condition c bhk�2; ak

� �
5l. Let us suppose that the

DM has assigned the alternative ak 2 A* to
category Chkðak !DM ChkÞ. Let us define the slack
variables xk, yk and zk unrestricted in sign such
that cðak; bhk�1Þ � xk ¼ l; cðak; bhkÞ þ yk ¼ l and
cðbhk�2; akÞ þ zk ¼ l.

These slack variables are used only as an aid to
construct the objective function. Then, we can
eliminate them easily by using b=minak2A* {xk, yk,
zk}. So they are not introduced explicitly in the
program. Therefore, the optimization problem will
include the following variables (2mnp+2):

cj ak; bhð Þ; cj bh; akð Þ; partial concordance

8k 2 K ; 8h 2 B indices 2mnpð Þ

l cutting level 1ð Þ

b 1ð Þ

For technical reasons (see Section 3.6), we
introduce two fictitious alternatives in A*: a� (ideal
alternative) and a� (anti-ideal) defined as follows:

a� : 8j 2 F ; gj a�
� �

5minak2A� gj akð Þ
� �

a� : 8j 2 F ; gj a�
� �

5maxak2A� gj akð Þ
� �

8j 2 F ; 8h 2 B ð11Þ

where a� is obviously assigned to the best category
(Cp+1) and an a� to the worst category (C1). These
two alternatives ensure that there is always a
transition between 0 and 1 in the set of the partial
concordance indices within each criterion. Indeed,
from the definition of a� and a�, it is obvious that:

cj a�; bh
� �

¼ 0 and cj bh; a�
� �

¼ 1

cj a�; bh
� �

¼ 1 and cj bh; a�
� �

¼ 0

8j 2 F ; 8h 2 B ð12Þ

3.4. Accuracy criterion
If the values of the slack variables xk, yk and zk are
all positive, then ELECTRE TRI pessimistic
assignment procedure will assign alternative ak to

Figure 3. Partial concordance indices and category limits characterized by fjh(ak).
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the ‘correct’ category and the consistency of
categories is respected. If, however, xk or yk is
negative, the ELECTRE TRI pessimistic assign-
ment procedure will assign alternative ak to a
‘‘wrong’’ category. If zk is negative, the consistency
of categories is not respected. The lower the
minimum of these values, the less adapted is
the ELECTRE TRI model to give an account of
the assignment of ak made by the DM. Moreover,
if xk, yk and zk are all positive, then ak is assigned
consistently with the DM’s statement, and the
consistency is respected for all l0 2 [l�min {yk, zk},
l+xk].

Let us consider now the set of alternatives
A*={a1, a2, . . ., ak, . . ., an} and suppose that the
DM has assigned the alternative ak to the category
Chk , 8ak 2 A*. The ELECTRE TRI model will be
consistent with the DM’s assignments iff xk 5 0,
yk 5 0 and zk 5 0, 8ak 2 A*. Consistently with the
preceding argument, an accuracy criterion to be
maximized can be defined as: b=minak2A*(xk,
yk, zk}.

3.5. Optimization problem to be solved
In order to avoid strict inequalities, we introduce
an arbitrary small positive constant e. From the
results provided in Sections 3.1 and 3.2, we obtain
the following constraints:

Bounds of variables

0.5 4 l 4 1
0 4 cj(ak, bh) 4 1 8j 2 F, 8k 2 K, h 2 B
0 4 cj(bh, ak) 4 1 8j 2 F, 8k 2 K, h 2 B

These constraints suffer from two limitations:

* They do not take into account the symmetric
condition (see Proposition 3.1).

* Condition max {cj (ak, bh), cj (ah, bk)}=1 is non-
linear.

Here, (see Naux, 1996), by observing that
most of the values of cj (ak, bh), cj (bh, ak) are 0
or 1, we accept the hypothesis of integrity to
obtain a rough preliminary solution of the
problem. Under this hypothesis, we replace
cj (ak, bh), cj (bh, ak) 2 [0, 1] by cj (ak, bh),
cj (bh, ak) 2 {0, 1}. The constraint max{cj (ak,
bh), cj (bh, ak)}=1 becomes cj (ak, bh)+cj (bh, ak)
5 1. This hypothesis helps to over-come these
two limitations as the program turns out to be a
linear one and the verification of the condition
of symmetric can be postponed to the next phase
which determines the profiles and the thresholds.
As a consequence, the optimization problem P1

to be solved is represented in Equations (13)–(26).
The program obtained is a mixed integer

program which contains 2mnp+2 variables
and 4n+3mp+2 constraints. As we mentioned
previously, the slack variables xk, yk, zk
can be eliminated from the problem formulation
since they are defined by the constraints
(14)–(16).

3.6. Refinement of the result
We introduced the integrity hypothesis to simplify
the problem. It is important to check whether it is
possible to improve the result by relaxing the
integrity condition for some values cj (ak, bh) or
cj (bh, ak).

Other constraints

max{cj (ak, bh), cj (ah, bk)}=1 8j 2 F, 8k 2 K, h 2 B (mnp)

cj ak; bhð Þ � cj al ; bhð Þ if gj akð Þ5gj alð Þ
cj ak; bhð Þ ¼ cj al ; bhð Þ if gj akð Þ ¼ gj alð Þ

8j 2 F ; 8k; l 2 K ; h 2 B (m(n�1)p)

cj bh; akð Þ � cj bh; alð Þ if gj akð Þ5gj alð Þ
cj bh; akð Þ ¼ cj bh; alð Þ if gj akð Þ ¼ gj alð Þ

8j 2 F ; 8k; l 2 K ; h 2 B (m(n�1)p)

cj ak; bhþ1ð Þ � cj ak; alð Þ 8j 2 F ; 8k 2 K ; h ¼ 1; 2; . . . ; p� 1 (mn(p� 1))

cj bh; akð Þ � cj bhþ1; alð Þ 8j 2 F ; 8k 2 K ; h ¼ 1; 2; . . . ; p� 1 (mn(p� 1))

b �
P

j2F kjcj ak; bhk�1

� �
� l 8k 2 K (n�1)

bþ e � l�
P

j2F kjcj ak; bhk
� �

8k 2 K (n)

bþ e � l�
P

j2F kjcj bhk�2; ak
� �

8k 2 K (n�2)
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We solve the same problem, except the integrity
conditions cj (ak, bh), cj (bh, ak) 2 {0, 1} is replaced
by the initial condition cj (ak, bh), cj (bh, ak) 2 {0, 1}
for values to relax, other values become constants
(already determined by program (P1)). It is quite
natural to consider the points to relax in the
neighbourhood of the transition between 0 and 1.
For each criterion gj and each profile bh, we define
the following values:

z2jh ¼ max gj ak=ak 2 A�; cj ak; bhð
� �

¼ 0
� �

z1jh ¼ max gj ak=ak 2 A�; gj akð
� �

5z2jh
� �

or�1 if the set is empty

z3jh ¼ min gj ak=ak 2 A�; cj ak; bhð
� �

¼ 1
� �

t2jh ¼ min gj ak=ak 2 A�; cj bh; akð
� �

¼ 0
� �

z1jh ¼ max gj ak=ak 2 A�; cj bh; akð
� �

¼ 1
� �

z3jh ¼ min gj ak=ak 2 A�; cj akð
� �

> t2jh
� �

orþ1 if the set is empty

ð27Þ

with the insertion of the ideal alternative a*

and the anti-ideal alternative a*, the existence of
the values z2jh, z3jh, t1jh, t2jh is ensured (see
Figure 4).

The values z2jh and t2jh are to be relaxed
according to the following rules:

* if z1jh > –1 and t1jh 5 t1jh then z2jh will be
relaxed, and

* if t3jh 5 +1 and z3jh 5 t1jh then t2jh will be
relaxed.

This choice ensure the symmetric condition and
is rather technically complicated, see Ngo The,
(1998) for more details.

The indices cj(ak, bh), cj(bh, ak) corresponding to
relaxed values z2jh and t2jh are variables to
determine of the new program, and will be denoted
as cz2jh, ctjh. Other values for cj(ak, bh), cj(bh, ak)
become constants (0 or 1) determined in the
previous program. However, this refinement fails

max b ð13Þ

s:t: b �
X
j2F

kjcj ak; bhk�1
� �

� l; 8k 2 K ð14Þ

bþ e � l�
X
j2F

kjcj ak; bhk
� �

; 8k 2 K ð15Þ

bþ e � l�
X
j2F

kjcj bhk�2; ak
� �

; 8k 2 K ð16Þ

1 � cj ak; bhð Þ þ cj bh; akð Þ 8j 2 F ; 8k 2 K ; h 2 B ð17Þ

cj ak; bhþ1ð Þ � cj ak; bhð Þ; 8j 2 F ; 8k 2 K ; h ¼ 1; 2; . . . ; p� 1 ð18Þ

cj bhþ1; akð Þ � cj bh; akð Þ; 8j 2 F ; 8k 2 K ; h ¼ 1; 2; . . . ; p� 1 ð19Þ

cj ak; bhð Þ � cj al ; bhð Þ; 8j 2 F ; 8k; l 2 K ; h 2 B if gj akð Þ5gj alð Þ ð20Þ

cj ak; bhð Þ ¼ cj al ; bhð Þ; 8j 2 F ; 8k; l 2 K ; h 2 B if gj akð Þ ¼ gj alð Þ ð21Þ

cj bh; akð Þ � cj bh; alð Þ; 8j 2 F ; 8k; l 2 K ; h 2 B if gj akð Þ5gj alð Þ ð22Þ

cj bh; akð Þ ¼ cj bh; alð Þ; 8j 2 F ; 8k; l 2 K ; h 2 B if gj akð Þ ¼ gj alð Þ ð23Þ

0:5 � l � 1 ð24Þ

cj ak; bhð Þ 2 0; 1f g 8j 2 F ; 8k 2 K ; h 2 B ð25Þ

cj bh; akð Þ 2 0; 1f g 8j 2 F ; 8k 2 K ; h 2 B ð26Þ
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to show any improvement in the experiments
realized.

4. PHASE 2: DETERMINATION OF
CATEGORY LIMITS FROM PARTIAL

CONCORDANCE INDICES

Once all partial concordance indices cj(ak, bh), and
cj(bh, ak) are determined, so are xk, yk, zk as well as
b. All values of gj(bh), pj(bh), qj(bh) satisfying the
following conditions can be accepted:

(D1) cj ak; bhð Þ ¼ 0 ) gj bhð Þ � pj bhð Þ � gj akð Þ:
(D2) cj ak; bhð Þ ¼ 1 ) gj bhð Þ � qj bhð Þ � gj akð Þ:
(D3) Otherwise; cj ak; bhð Þ ¼ gj akð Þ þ pj bhð Þ

�
�gj bhð ÞÞ=pj bhð Þ � qj bhð Þ:

(D4) cj bh; akð Þ ¼ 0 ) gj bhð Þ þ pj bhð Þ � gj akð Þ:
(D5) cj bh; akð Þ ¼ 1 ) gj bhð Þ þ qj bhð Þ � gj akð Þ:
(D6) Otherwise; cj bh; akð Þ ¼ gj bhð Þ þ pj bhð Þ

�
�gj akð ÞÞ=pj bhð Þ � qj bhð Þ:

(D7) gj bhþ1ð Þ � gj bhð Þ:
(D8) pj bhð Þ � qj bhð Þ:
(D9) qj bhð Þ � 0:

Under the integrity hypothesis, conditions (D3)
and (D6) are not considered, there exists a certain
degree of freedom in the determination of gj(bh),
pj(bh), qj(bh). To determine these values, intuitively,
we consider an ideal solution as one that haves the
following two characteristics:

* the profile characterization function fjh (ak)
has a reasonable form which depends on the
ratio qj(bh)/pj(bh), and

* for each criterion gj, the profiles gj(bh), h 2 K
are well ‘distributed’ along the scale.

These two characteristics can be used as a
guideline for an multi-objective optimization
program, or least, an optimization program with
an objective function which aggregates these two
characteristics. In this paper, we propose a direct
computation of these values in which we try to

position gj(bh) as close as possible to the centre of
the ‘plateau’ of the profile characterization func-
tion fjh(gj(ak)), and then establish pj(bh) the largest
possible. Finally, qj(bh) will be fixed ‘approxima-
tively’ to pj (bh)/2.

It is obvious that the determination of these
values also concerns the transitions between 0 and
1 of the partial concordance indices. Therefore, we
will make use of the values zijh, tijh, i=1, 2, 3, j 2 F,
h 2 B defined in (27). For each j 2 F, we proceed by
decreasing order of the categories (h=p, p�1, . . .)
assuming that gj (bp+1)=+1.

Algorithm 4.1

For j=1..m do
For h=p..1 do

gj bhð Þ ¼ min
t2jh þ z2jh

2
; gj bhþ1ð Þ

n o
pj bhð Þ ¼ min t2jh � gj bhð Þ; gj bhð Þ � z2jh

� �
qj bhð Þ ¼

max
pj bhð Þ
2

t1jh � gj bhð Þ; gj bhð Þ � z3jh

� �
Let us now prove that conditions (D1)–(D9) are

satisfied. To simplify the notation, we use cj (z2jh,
bh) instead of cj (ak, bh) where gj (ak)=z2jh.

Proposition 4.1

8j in F, 8h in B, it holds

(i) z3jh > z2jh > z1jh;
(ii) t3jh > t2jh > t1jh;
(iii) t1jh � z2jh;
(iv) t2jh � z3jh;
(v) :9ak such that gj(ak) is in the intervals

limited by z1jh, z2jh, z3jh, or t1jh, t2jh, t3jh, and
(vi) �zrjh 4 zrj(h+1), trjh� trj(h+1), r=1, 2, 3.

Proposition 4.2

8h 2 B; z2jh � t1jh þ z2jh
� �

=25 t2jh þ z3jh
� �

=2 � t2jh:

Figure 4. Values around the transition between 0 and 1.
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All conditions (D1)–(D9) can be verified easily
from Propositions 4.1 and 4.2.

5. HOW TO DEAL WITH ADDITIONAL
INFORMATION

In the course of the interactive process, the DM
may want to add information concerning the
category limits (which can take the form of upper
and/or lower bounds for gj(bh), qj(bh), pj(bh)) as
well as the nature of the criteria. While such
information can be taken into account directly in
the second phase, it is not the case with the first
phase as gj(bh), pj(bh), qj(bh) do not intervene
explicitly (through variables). We will discuss
hereafter how to integrate these constraints in
the first phase.

5.1. Constraints on the profiles and the thresholds
In order to integrate constraints on the profiles
and the thresholds in the first phase, we construct
rules generating constraints on cj(ak, bh), cj(bh, ak)
from given constraints on gj(bh), pj(bh), qj(bh).
These rules are resumed in Proposition 5.1.

Proposition 5.1
We have the following rules which hold 8j 2 F, 8k,
l 2 K, 8h 2 B.

Whenever we have an additional constraint, we
add the corresponding generated constraints into
the program. However, it should be noticed that
the generated constraints are not equivalent
(necessary but not sufficient) to the original
constraints as we can see in the demonstration.

5.2. Constraints on the nature of criteria

The DM may want to build a model in which the
nature of the criteria is specified, i.e. less general
than the pseudo-criterion considered in our gen-
eral. This information leads to some more
constraints to add into the program.

* Quasi-criterion p=q. We have cj(ak, bh),
cj(ah, bk) 2 {0, 1}, i.e. we do not have to
introduce the integrity hypothesis as it is
already satisfied.

* Pre-criterion q=0. In this case, we can
introduce these constraints into the program
P1: cj(ak, bh)+cj(ah, bk)=1 8j 2 F, 8h 2 B
8k, l 2 K. This is a special case of qjh 4 qj (bh)
4 Qjh where qjh=Qjh=0.

* True-criterion p=q=0. The same as with
precriterion and quasi-criterion, i.e.
* there is no need of the integrity

hypothesis
* the constraints cj (ak, bh)+cj (bh, ak)=1,

8j 2 F, 8h 2 B, 8k, l 2 K will be inserted
into the program.

5.3. How to get a strong consistency
If we want to always ensure the consistency of the
categories in A, independently of the set A*, we
must base on the following condition (see Mous-
seau et al., 2000, Yu, 1992): gj bhþ1ð Þ � gj bhð Þ þ
pj bhð Þ þ pj bhþ1ð Þ 8j 2 F ; h 2 B:

Original constraints Rules generating constraints Rule No.
bjh 4gj(bh) If gj(ak) 4 bjh then cj(bh, ak)=1 R1
gj (bh) 4 Bjh If gj(ak) 5 Bjh then cj (ak, bh)=1 R2
qjh 4 qj(bh) If gj alð Þ � gj akð Þ

�� ��52qjh then cj ak; bhð Þ þ cj bh; alð Þ � 1 R3
qj (bh) 4 Qjh If gj alð Þ � gj akð Þ > 2Qjh then cj ak; bhð Þ þ cj bh; alð Þ � 1 R4
pj (bh) 4 Pjh If gj alð Þ � gj akð Þ > 2Pjh then cj ak; bhð Þ þ cj bh; alð Þ � 1 R5
pjh 4 pj(bh) If gj alð Þ � gj akð Þ52pjh then cj ak; bhð Þ þ cj bh; alð Þ � 1 R6
bjh 4 gj(bh) 4 Bjh gj akð Þ � bjh � Pjh ) cj ak; bhð Þ ¼ 0 R7.1
qjh 4 qj(bh) 4 Qjh gj akð Þ � Bjh � qjh ) cj ak; bhð Þ ¼ 1 R7.2
pjh 4 pj(bh) 4 pjh gj akð Þ � bjh þ qjh ) cj bh; akð Þ ¼ 1 R7.3

gj akð Þ � Bjh � Pjh ) cj bh; akð Þ ¼ 0 R7.4
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This condition is indeed a sufficient condition
to ensure the consistency in A (but not
necessary). To introduce this condition into
program P1, we have to represent it by means
of the partial concordance indices. As we know,
in the reconstruction of a continuous function
(cj(x, bh) for example, here x is concretized by
gj(ak)) from a set of discrete points (cj(ak, bh)), a
loss of information is unavoidable. In our case,
we do not have an equivalence condition but
only either a necessary condition (stated in
Proposition 5.2(i) or a sufficient condition
(Proposition 5.2(ii)).

For each j 2 F, consider a permutation sj(k),
k 2 K such that gj(asj(k)

) 4 gj(asj(k+1)).

Proposition 5.2
It holds:

(i) if gj (bh+1) 5 gj (bh)+pj (bh)+pj (bh+1) then
min {cj (bh, ak), cj (ak, bh+1)}=0.

(ii) if min {cj (bh, as(k)), cj (as(k+1), bh+1)}=0
then gj (bh+1) 5 hj (bh)+pj (bh)+pj (bh+1).

To ensure the consistency of categories in A
despite the set A* given, we have to introduce the
constraints given by Proposition 5.2(ii) into
program P1.

6. EMPIRICAL VALIDATION OF THE
INFERENCE PROCEDURE

The experimental issues in which we are interested
are the following:

* Are the assignments of alternatives from A*

more stable when using the results of the
program than when considering the profiles
give by the DM? The term stable is used as
unsensitive of the assignments to changes of the
profiles. In other words, is the tool able to
increase the stability of assignments of alter-
natives in a set A*?

* The results depend on the information given as
input, i.e. on the set A* of assignment examples.
How large should A* be in order to derive the
profiles in a reliable manner?

* In practical decision situations, real DMs do
not always provide reliable information. The
tool should be able to highlight the assignment
examples that are contradictory or not repre-

sentable through the ELECTRE TRI prefer-
ence model. Therefore, a question to consider
concerns the reliability of the optimization
procedure to identify inconsistencies in the
DM’s judgments?

It should be highlighted that the empirical work
presented is based on a single dataset and should
be extended (varying the number of criteria, of
categories, etc). Such extended empirical work
hardly fits in this paper and should be considered
as another paper.

6.1. Experimental design
In this experiment, we consider only program P1
without additional conditions, and the construc-
tion of the profiles. This experiment is a laboratory
work, i.e. it takes its material in a past real-world
case study to perform a posteriori computation in
order to test the operational validity of the
optimization model proposed. The data consid-
ered are taken from Mousseau et al. (2001) which,
in turn, comes from the real-world application
described in Yu (1992).

This application considers the problem of
assigning a set A of 100 alternatives to three
ordered categories C1, C2 and C3 on the basis of
seven criteria (preferences on all criteria are
decreasing with the evaluations, i.e. the lower the
better).

As no interaction with the DM is possible, we
consider the assignment of ELECTRE TRI
pessimistic procedure (with the parameters given
in Yu (1992) as assignment examples expressed by
a ‘fictitious’ DM. Concerning the importance
coefficients, we take the mean value of the
coefficients inferred for the group of Aj

48 (the one
with the largest size) which are in the results of the
procedure of inference of importance coefficients
presented in Mousseau et al. (2001).

We randomly generate 80 subsets of A, the
cardinality of these subsets being respectively 6,
12, 18, 24, 30, 36, 42, 48 (10 sets of each size)
denoted by Aj

i the jth subset of size i. Each of these
subsets is conceived so that the alternatives are
assigned uniformly on the three categories.

Let us define the stability of assignments as the
variation of the cutting level l leaving the assign-
ments of alternatives unchanged. The ability to
improve the ‘stability’ of the assignment of the
alternatives is observed through the value
b0(i)�bd(i) where i 2 {6, . . ., 48} is the size of the
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subsets A* chosen. bo(i), bd(i) are, respectively, the
mean stability (for all subset Aj

i) of assignments
resulting from our procedure and that computed
from the initial model given in Yu (1992)
(representing the ‘fictitious’ DM).

To determine the minimum required size of A*,
we compute Err100, the percentage of assignment
errors resulting from the use of the obtained
profiles on the whole set A.

To estimate the capacity to identify the incon-
sistencies in the assertions of the DM, we
intentionally introduce in A* an ‘assignment

error’. Let b the resulting stability of assignment
(usually 50), an inconsistency is identified if the
alternative under consideration is found in the set
E of alternatives which are the most difficult to
assign (E={ak, min{xk, yk, zk}=b}). We will
observe b(i) (mean stability of the subsets having
size i), n (i) (mean cardinalities of E). For this
question, we consider 48 subsets Ej

i (i={6, . . ., 48},
j=1..6, each with one assignment error of which
the type is j (Table I).

6.2. Results

6.2.1. Ability to improve the stability of the
assignment The results of the test are summarized
in Table II. Considering these results, we can
observe:

* Firstly, the results show that the larger that
set of assignment example, the less stable the
assignments, i.e. the more sensitive are these
assignments to a change in profiles. This is
evident as each assignments example adds
3+5mp constraints to the program.

* Within this set of data, there is a considerable
improvement of the stability of the assign-
ments whatever the size of the set of
examples.

6.2.2. The amount of information necessary We
observe now the means of assignment errors in A
when different sizes of A* are considered. The
parameters to be inferred, gj(bh), pj(bh), qj(bh),
(there are 3mp parameters) depend on the number
of criteria as well as the number of categories.
Considering the above results, it seems that 2mp
(28=2� 7� 2 in this example) is a reasonable

Table I. Types of errors introduced.

Type j Initial cat. Erronous cat.

1 C1 C2

2 C2 C1

3 C2 C3

4 C3 C2

5 C1 C3

6 C3 C1

Table II. Improvement of the stability of the solution

Size: i b0(i) bd(i) bd(i)}b0(i)

6 0.2692 0.0723 0.1969

12 0.2288 0.0059 0.2229

18 0.2019 0.0636 0.1383

24 0.2019 0.0616 0.1403

30 0.1966 0.0563 0.1403

36 0.1966 0.0611 0.1355

42 0.2019 0.0298 0.1721

48 0.1913 0.0490 0.1423

Mean 0.1611

Figure 5. Amount of information necessary to infer category limits.
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balance for the estimation of the number of
assignment examples to infer weights in a reliable
way (see Figure 5). However, it is important to
notice that, in this example, we have to accept a
certain tolerance of errors, approximately 1.5%.

6.2.3. Ability to identify inconsistencies in assign-
ments The results of the test are summarized in
Table III. In all the tests, the ‘wrongly’ assigned
alternative is found in the alternatives being the
most difficult to assign (min{xk, yk, zk}= b).
However, within this experiment, the model does
not seem to be very efficient in identifying errors as
the most difficult example represent a large
proportion of A*n(i)/i.

7. CONCLUSION

This paper presents an inference procedure aiming
at inferring the category limits of the ELECTRE
TRI method on the basis of assignment examples.
This procedure is grounded on a mathematical
programming formulation and is validated
through a laboratory experiment. This inference
procedure is intended to be used interactively in an
aggregation–disaggregation process. Moreover,
this procedure complements previous results on
partial inference models, namely the weight
inference procedure (Mousseau et al., 2001) and
veto inference procedure (Dias and Mousseau,
2002). Such partial inference procedures can be
used in conjunction (e.g. fixing weights and veto so
as to infer category limits, and then fixing category
limits and veto so as to infer weights).

The proposed inference procedure is suitable for
a DM to define category limits of ELECTRE TRI
method providing assignment examples. More-
over, we believe that such procedure is helpful in

order to provide a formal framework for the DM
to learn about the relation between the category
limits and his/her preference in a constructive
learning process.

Appendix. Proofs

Proof of Proposition 3.2

ak ! Chk ,
c ak; bhk
� �

5l and c ak; bhk�1

� �
� l

� 	
(i) c ak; bhk

� �
5l ) :akSbhk

) 8h > hk; c ak; bhð Þ � c ak; bhk
� �

5l ) :akSbh
) 8h > hk;:akIbh

(ii) c ak; bhk�1

� �
� l ) akSbhk�1

) 8h � hk � 1; c ak; bhð Þ � c ak; bhk�1

� �
� l ) akSbh
) 8h � hk � 1; bhSak ) bhIak &

Proof of proposition 3.3

:bh0Sak ) c bh0 ; ak
� �

5l
) 8h � h0; c bh; akð Þ � c bh0 ; ak

� �
5l ) :bhSak .

&

Proof of Proposition 3.4

(i)) (ii): Let bh1 the profile (unique if exist) s.t.
akIbh1 .
By 3.2, h � hk ) :akIbh; therefore akIbh1 ) h1 �
hk � 1
By definition, akSbh1 ) akSbh1 and bh1Sak
If h15hk � 1 then c bhk�1;ak

� �
� c bh1;ak

� �
� l )

bhk�1Sak ) akIbhk�1; contradictory to the unicity
of h1.
Therefore, h1 ¼ hk � 1:As hk � 25hk � 1 )
½:akIbhk�2 and akSbhk�2� ) :bhk�2Sak:
(i)) (ii): :bhk�2Sak

) 8h � hk � 2;:bhSak
Let h1 the profile s.t. akIbh1 . Then, h1 > hk � 2 and
h1 � hk � 1 ) h1 ¼ hk � 1: &

Proof of Proposition 4.1

(i), (ii) Obvious from definitions.
(iii) By definition, cj z2jh; bh

� �
¼ 0 ) cj bh; z2jh

� �
¼ 1 ) z2jh � t1jh ¼ max gj akð Þ ak 2 A* ;j

�
cj bh; akð Þ: ¼ 1g.

(iv) Similar to (iii).
(v) Obvious from definition.
(vi) We demonstrate only for z2jh; the other cases

are similar.

Table III. Identification of ‘errors’

Size: i b(i) n(i) n(i)/i

6 0.10 3.36 0.56

12 0.13 7.68 0.64

18 0.04 6.30 0.35

24 0.03 7.68 0.32

30 0.04 13.80 0.46

36 0.01 12.96 0.36

42 0.02 11.34 0.27

48 0.00 25.92 0.54
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By definition, 0 ¼ cj z2jh; bh
� �

� cj z2jh; bhþ1

� �
) cj z2jh; bhþ1

� �
¼ 0 ) z2jh � z2j hþ1ð Þ

¼ max gj akð Þ ak 2 A* ; cj ak; bhþ1ð Þ
�� ¼ 0

� �
: &

Proof of Proposition 4.2

From Proposition 4.1, we have:

z2jh �
t1jh þ zjh

2
5

t2jh þ z3jh

2
� t2jh

And from the procedure gj bhð Þ � t2jh þ z2jh
� �

=2

z2jh5z3jh ) gj bhð Þ5
t2jh þ z3jh

2

For the first category bp we have gj b pþ1ð Þ
� �

¼ þ1
then

gj bp
� �

¼
t2jp þ z2jp

2

t2jp > t1jp ) gj bp
� �

>
t1jp þ z2jp

2

Suppose that the inequality gj bið Þ > t1ji þ z2ji
� �

=2
holds i=h+1.

gj bhð Þ ¼ min
t2jh þ z2jh

2
; gj bhþ1ð Þ

n o
t2jh þ z2jh

2
>
t1jh þ z2jh

2
and

gj bhþ1ð Þ >
t1j hþ1ð Þ þ z2j hþ1ð Þ

2
�

t1jh þ z2jh

2

) gj bhð Þ >
t1jh þ z2jh

2
.

Therefore, the inequality holds for i=h.
By induction, the inequality holds for
8m 2 B. &

Proof of proposition 5.1

* R1ð Þgj akð Þ � bjh ) gj akð Þ � gj bhð Þ
) cj bh; akð Þ ¼ 1.

* R2ð Þgj akð Þ � Bjh ) gj akð Þ � gj bhð Þ
) cj ak; bhð Þ ¼ 1.

* R3ð Þ cj ak; bhð Þ51
� �

and cj bh; alð Þ51
� �� 	

) gj akð Þ5gj bhð Þ � qj bhð Þ
� ��

and: gj alð Þ > gj bhð Þ þ qj bhð Þ
� �	

.
) gj alð Þ � gj akð Þ � 2gj bhð Þ � 2qjh.
We have
gj alð Þ � gj akð Þ
�� ��52qjh ) not
cj ak; bhð Þ51
�
and cj bh; alð Þ51� ) cj ak; bhð Þ þ cj bhalð Þ � 1.

* R4ð Þ cj ak; bhð Þ ¼ 1
� �

and cj bh; alð Þ ¼ 1
� �� 	

) gj akð Þ > gj bhð Þ � qj bhð Þ
� ��

and gj alð Þ5gj bhð Þ
�

þqj bhð ÞÞ� ) gj alð Þ � gj akð Þ � 2qj bhð Þ � 2Pjh

We have
gj alð Þ � gj akð Þ > 2Qjh )
not cj ak; bhð Þ ¼ 1

��
and cj bh; alð Þ ¼ 1Þ� ) cj ak; bhð Þ
þcj bh; alð Þ � 1
under integrity hypothesisð Þ:

* R5ð Þ cj ak; bhð Þ > 0
� �

and cj bh; alð Þ > 0
� �� 	

) gj akð Þ > gj bhð Þ � pj bhð Þ
� �

and
�
qj alð Þ5gj bhð Þ þ pj bhð Þ
� �	

) gj alð Þ � gj akð Þ � 2pj bhð Þ � 2Pjh

So we have
gj alð Þ � gj akð Þ > 2Pjh )
not cj ak; bhð Þ > 0

� ��
and cj bh; alð Þ > 0

� �
� ) cj ak; bhð Þ

þcj bh; alð Þ � 1
* R6ð Þ cj ak; bhð Þ ¼ 0

� �
and cj bh; alð Þ ¼ 0

� �� 	
) gj akð Þ5gj bhð Þ � pj bhð Þ

� �
and

�
gj alð Þ > gj bhð Þ þ pj bhð Þ
� �	
) gj alð Þ � gj akð Þ � 2pj bhð Þ � 2pjh
So we have
gj alð Þ � gj akð Þ52pjh )
not cj ak; bhð Þ ¼ 0

� ��
and cj bh; alð Þ ¼ 0

� �
� ) cj ak; bhð Þ þ cj bh; alð Þ51

under integrity hypothesisð Þ.
* (R7)

1=gj akð Þ � bjh � Pjh � gj bhð Þ � pj bhð Þ
) cj ak; bhð Þ ¼ 0

2=gj akð Þ � Bjh � qjh � gj bhð Þ � qj bhð Þ
) cj ak; bhð Þ ¼ 1

3=gj akð Þ � bjh þ qjh � gj bhð Þ þ qj bhð Þ
) cj bh; akð Þ ¼ 1

4=gj akð Þ � Bjh þ Pjh � gj bhð Þ þ pj bhð Þ
) cj bh; akð Þ ¼ 0 &

Proof of proposition 5.2

(i) cj bh; akð Þ > 0 ) gj akð Þ5gj bhð Þ þ pj bhð Þ
� gj bhþ1ð Þ � pj bhþ1ð Þ ) cj ak; bhþ1ð Þ ¼ 0.

(ii) Let as(k*) the first alternative such that cj
(bh, as(k*))=0 then cj (bh, as(k*–1)) > 0, the
existence of these two alternatives is en-
sured by the two additional fictious alter-
natives a*, a*. Replace k by k*�1 in the
condition min cj bh; as kð Þ

� �
; cj

�
ðas kþ1ð Þ;

bhþ1Þg ¼ 0.
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We obtain cj bh; as k��1ð Þ
� �

> 0 )
cj as k�ð ; bhþ1

� �
¼ 0:

We have

cj bh; as k�ð Þ
� �

¼ 0 ) gj as k�ð Þ
� �

�
gj bhð Þ þ pj bhð Þ
cj as k�ð Þ; bhþ1

� �
¼ 0 ) gj as k�ð Þ

� �
5gj bhþ1ð Þ � pj bhþ1ð Þ

Therefore,
gj bhð Þ þ pj bhð Þ � gj as k�ð Þ

� �
5gj bhþ1ð Þ

�pj bhþ1ð Þ ) gj bhþ1ð Þ
� gj bhð Þ þ pj bhð Þ þ pj bhþ1ð Þ &
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