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Abstract

We present a new method, called UTAGMS, for multiple criteria ranking of alternatives
from set A using a set of additive value functions which result from an ordinal regression.
The preference information provided by the decision maker is a set of pairwise comparisons
on a subset of alternatives AR ⊆ A, called reference alternatives. The preference model
built via ordinal regression is the set of all additive value functions compatible with the
preference information. Using this model, one can define two relations in the set A: the
necessary weak preference relation which holds for any two alternatives a, b from set A if
and only if for all compatible value functions a is preferred to b, and the possible weak
preference relation which holds for this pair if and only if for at least one compatible value
function a is preferred to b. These relations establish a necessary and a possible ranking
of alternatives from A, being, respectively, a partial preorder and a strongly complete
relation. The UTAGMS method is intended to be used interactively, with an increasing
subset AR and a progressive statement of pairwise comparisons. When no preference
information is provided, the necessary weak preference relation is a weak dominance
relation, and the possible weak preference relation is a complete relation. Every new
pairwise comparison of reference alternatives, for which the dominance relation does not
hold, is enriching the necessary relation and it is impoverishing the possible relation,
so that they converge with the growth of the preference information. Distinguishing
necessary and possible consequences of preference information on the complete set of
actions, UTAGMS answers questions of robustness analysis. Moreover, the method can
support the decision maker when his/her preference statements cannot be represented
in terms of an additive value function. The method is illustrated by an example solved
using the UTAGMS software. Some extensions of the method are also presented.

Keywords: Multiple criteria ranking, Ordinal regression approach, Additive value func-
tion.
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1 Introduction

We are considering a decision situation in which a finite and non-empty set of alternatives (actions)
A = {a, b, c, d, ...} is evaluated on a family of n criteria g1, . . . , gi, . . . , gn, with gi : A 7→ R for all
i ∈ G = {1, . . . , n}. We assume, without loss of generality, that the greater gi(a), a ∈ A, the better
alternative a on criterion gi, for all i ∈ G. A decision maker (DM) is willing to rank the alternatives
in A from the best to the worst, according to his/her preferences. The ranking can be complete or
partial, depending on the preference information supplied by the DM and on the way of using this
information. The family of criteria G is supposed to satisfy the following consistency conditions (see
[25]):

• exhaustivity - any two alternatives having the same evaluations on all criteria from G should
be considered indifferent,

• monotonicity - when comparing two alternatives, an improvement of one of them on at least
one criterion from G should not deteriorate its comparison to the other alternative,

• non-redundancy - deletion of any criterion from G will contradict one of the two above condi-
tions.

Such a decision problem is called multiple criteria ranking problem. It is known that the only
information coming out from the formulation of this problem is the weak dominance relation. Let us
recall that the weak dominance relation is a partial preorder, i.e. it is a reflexive and transitive binary
relation. According to the weak dominance relation, alternative a ∈ A is preferred to alternative
b ∈ A if and only if gi(a) ≥ gi(b) for all i ∈ G, with at least one strict inequality; moreover, a is
indifferent to b if and only if gi(a) = gi(b) for all i ∈ G; finally, a is incomparable with b otherwise,
i.e. if gi(a) > gi(b) for at least one criterion i ∈ G and gj(a) < gj(b) for at least another criterion
j ∈ G. Since incomparability is very often the most frequent situation, the weak dominance relation
is usually very poor.

In order to enrich the weak dominance relation, multiple criteria decision aiding (MCDA) helps
in construction of an aggregation model on the base of preference information provided by the DM.
Such an aggregation model is called preference model - it induces a preference structure in set A

whose proper exploitation permits to work out a ranking proposed to the DM.

The preference information may be either direct or indirect, depending if it specifies directly
values of some parameters used in the preference model (e.g. trade-off weights, aspiration levels,
discrimination thresholds, etc.), or if it specifies some examples of holistic judgments from which
compatible values of the preference model parameters are induced. Direct preference information
is used in the traditional aggregation paradigm, according to which the aggregation model is first
constructed and then applied on set A to rank the alternatives.

Indirect preference information is used in the disaggregation (or regression) paradigm, according
to which the holistic preferences on a subset of alternatives AR ⊆ A are known first, and then a
consistent aggregation model is inferred from this information to be applied on set A in order to rank
the alternatives.

Presently, MCDA methods based on indirect preference information and the disaggregation
paradigm are of increasing interest for they require relatively less cognitive effort from the DM.
Indeed, the disaggregation paradigm is consistent with the “posterior rationality” postulated by
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March [19] and with the inductive learning used in artificial intelligence approaches (see [20]). Typi-
cal applications of this paradigm in MCDA are presented in [30], [23], [10], [13], [1], [22], [7], [8], [9].

Let Xi denote the evaluation scale of criterion gi, i ∈ G. Consequently, X =
∏n

i=1 Xi is the
evaluation space, and x = [x1, ..., xn] ∈ X denotes a profile in the evaluation space.

From a pragmatic point of view, it is reasonable to assume that Xi = [αi, βi], i.e. the evaluation
scale on each criterion gi is bounded, such that αi < βi are the worst and the best (finite) evaluations,
respectively. Thus, gi : A 7→ Xi, i ∈ G, therefore, each alternative a ∈ A is associated with the
profile [g1(a), ..., gn(a)] in the evaluation space X. In consequence, A is obviously associated with a
finite subset of X.

In this paper, we are considering the aggregation model in form of an additive value function
U : X 7→ R, such that, for each x ∈ X,

U(x) =
n

∑

i=1

ui(xi), (1)

where ui are non-decreasing marginal value functions, ui : Xi 7→ R, i = 1, . . . , n.

To simplify notation, when considering any alternative a ∈ A, we shall write U(a) instead of
U(g1(a), ..., gn(a)), and ui(a) instead of ui(gi(a)), even if U : X 7→ R and gi : A 7→ Xi, i ∈ G.

While the additive value function involves compensation between criteria and requires a rather
strong assumption about their independence in the sense of preference [11], it is often used for its in-
tuitive interpretation and relatively easy computation. The weighted-sum aggregation model, which
is a particular case of the additive value function, is used even more frequently, in spite of its sim-
plistic form (see e.g. [1], [26]).

We are using the additive aggregation model in the settings of the disaggregation paradigm, as it
has been proposed in the UTA method (see [10]). In fact, our method generalizes the UTA method
in three aspects:

• it takes into account all additive value functions (1) compatible with indirect preference infor-
mation, while UTA is using only one such function,

• the marginal value functions of (1) are general non-decreasing functions, and not piecewise
linear, as in UTA,

• the DM’s ranking of reference alternatives does not need to be complete.

The preference information used by our method is provided in the form of a set of pairwise
comparisons of some alternatives from a subset AR ⊆ A, called reference alternatives. The method
is producing two rankings in the set of alternatives A, such that for any pair of alternatives a, b ∈ A:

• in the necessary ranking, a is ranked at least as good as b if and only if, U(a) ≥ U(b) for all
value functions compatible with the preference information,

• in the possible ranking, a is ranked at least as good as b if and only if, U(a) ≥ U(b) for
at least one value function compatible with the preference information.
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The necessary ranking can be considered as robust with respect to the indirect preference in-

formation. Such robustness of the necessary ranking refers to the fact that any pair of alternatives
compares in the same way whatever the additive value function compatible with the indirect pref-
erence information. Indeed, when no indirect preference information is given, the necessary ranking
boils down to the weak dominance relation, and the possible ranking is a complete relation. Every
new pairwise comparison of reference alternatives, for which the dominance relation does not hold,
is enriching the necessary ranking and it is impoverishing the possible ranking, so that they converge
with the growth of the preference information.

Another appeal of such an approach stems from the fact that it gives space for interactivity with
the DM. Presentation of the necessary ranking, resulting from an indirect preference information
provided by the DM, is a good support for generating reactions from the DM. Namely, (s)he could
wish to enrich the ranking or to contradict a part of it. This reaction can be integrated in the indirect
preference information in the next iteration.

The organization of the paper is the following. In the next section, we will outline the principle
of the ordinal regression via linear programming, as proposed in the original UTA method (see [10]).
In section 3, we give a brief overview of existing approaches to multiple criteria ranking using a set of
additive value functions, and we provide motivations for our approach. The new UTAGMS method is
presented in section 4. Some extensions are considered in section 5. Section 6 provides an illustrative
example showing how the method can be applied in practice. The last section includes conclusions.

2 Ordinal regression via linear programming - principle of

the UTA method

In the following, we recall the principle of the UTA method as presented recently in [29]. The
indirect preference information is given in the form of a complete preorder % on a subset of reference
alternatives AR ⊆ A, called reference preorder, such that, for all a, b ∈ AR:

a % b ⇔ “a is at least as good as b”.

This weak preference relation can be decomposed into its asymmetric and symmetric parts, as follows:

• a ≻ b ⇔ [a % b and not(b % a)] ⇔ “a is preferred to b”,

• a ∼ b ⇔ [a % b and b % a] ⇔ “a is indifferent to b”.

The reference alternatives are usually those alternatives in set A for which the DM is ready to
express holistic preferences. Let the set of reference alternatives AR = {a1, ..., am} be rearranged
such that ak % ak+1, k = 1, ..., m − 1, where m = |AR|. The disaggregation paradigm consists here
in inferring an additive value function (1) ranking the reference alternatives in exactly the same way
as it was done by the DM. Such a value function U is called compatible. A compatible value function
U is supposed to represent DM’s preferences on the whole evaluation space X. In other words, for
all profiles x, y ∈ X, x is considered at least as good as y according to compatible value function U ,
if U(x) ≥ U(y).

Let us remark that the transition from the preorder % provided by the DM on AR to the com-
patible marginal value functions exploits the ordinal character of the criterion scale Xi. Note, how-
ever, that for the considered additive representation of preferences on X, the scale of the marginal
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value functions is a conjoint interval scale (see e.g. Theorem 13 in Chapter 6 of [16] or Theo-
rem III.4.1 in [31]). More precisely, the admissible transformations on the marginal value functions
ui(xi) have the form u∗

i (xi) = k × ui(xi) + hi, hi ∈ R, i = 1, ..., n, k > 0, such that for all
[x1, ..., xn], [y1, ..., yn] ∈

∏n
i=1 Xi

n
∑

i=1

ui(xi) ≥
n

∑

i=1

ui(yi) ⇔
n

∑

i=1

u∗

i (xi) ≥
n

∑

i=1

u∗

i (yi).

An alternative way of representing the same preference model is:

U(a) =

n
∑

i=1

wiûi(a), where û(αi) = 0, û(βi) = 1, wi ≥ 0 for all i ∈ G, and

n
∑

i=1

wi = 1. (2)

Note that the correspondence between (2) and (1) is such that wi = ui(βi), for all i ∈ G. Due to
the cardinal character of the marginal value function scale, the parameters wi can be interpreted as
tradeoff weights among marginal value functions ûi(a). We will use, however, the preference model
(1) with normalization constraints bounding U(a) to the interval [0, 1].

The ordinal regression consists in the inference of a compatible value function restoring the
reference preorder. The transition from a reference preorder to a value function is done according to
the following equivalence :

U(ak) > U(ak+1) ⇔ ak ≻ ak+1

U(ak) = U(ak+1) ⇔ ak ∼ ak+1
(3)

for k = 1, ..., m − 1.

In the UTA method, the marginal value functions ui are assumed to be piecewise linear, so that
the intervals [αi, βi] are divided into γi ≥ 1 equal sub-intervals: [x0

i , x
1
i ], [x1

i , x
2
i ], . . ., [xγi−1

i , x
γi

i ], where

x
j
i = αi + j(βi−αi)

γi

, j = 0, . . . , γi, i = 1, . . . , n. The marginal value (see Figure 1) of an alternative
a ∈ A is approximated by linear interpolation

ui(a) = ui(x
j
i ) +

gi(a) − x
j
i

x
j+1
i − x

j
i

(

ui(x
j+1
i ) − ui(x

j
i )

)

, for gi(a) ∈ [xj
i , x

j+1
i ] (4)

According to (4), the piecewise linear additive model is completely defined by the marginal values
at the characteristic points, i.e. ui(x

0
i ) = ui(αi), ui(x

1
i ), ui(x

2
i ), . . . , ui(x

γi

i ) = ui(βi).

It is also usual to suppose a kind of normalization, such as, ui(αi) = 0, ∀i ∈ G, and
∑n

i=1 ui(βi) = 1. This will bound the value function U(a) in the interval [0,1].

Therefore, a value function U(a) =
∑n

i=1 ui(a) is compatible if it satisfies the following set of
constraints

U(ak) > U(ak+1) ⇔ ak ≻ ak+1

U(ak) = U(ak+1) ⇔ ak ∼ ak+1

}

k = 1, . . . , m − 1

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1

(5)
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b
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b
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Figure 1: Piecewise linear marginal value function

To verify if a compatible value function U(a) =
∑n

i=1 ui(a) restoring the reference preorder % on
AR exists, one can solve the following linear programming problem, where ui(x

j
i ), i = 1, ..., n, j =

1, ..., γi, are unknown, and σ+(a), σ−(a), a ∈ AR are auxiliary variables:

Min → F =
∑m

k=1 (σ+(ak) + σ−(ak))
s.t.

U(ak) + σ+(ak) − σ−(ak) ≥
U(ak+1) + σ+(ak+1) − σ−(ak+1) + ε ⇔ ak ≻ ak+1

U(ak) + σ+(ak) − σ−(ak) =
U(ak+1) + σ+(ak+1) − σ−(ak+1) ⇔ ak ∼ ak+1















k = 1, . . . , m − 1

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1
σ+(ak), σ−(ak) ≥ 0, k = 1, ..., m

(6)

where ε is an arbitrarily small positive value so that U(ak)+σ+(ak)−σ−(ak) > U(ak+1)+σ+(ak+1)−
σ−(ak+1) in case of ak ≻ ak+1.

If the optimal value of the objective function of the program (6) is equal to zero (F ∗ = 0), then
there exists at least one value function U(a) =

∑n

i=1 ui(a) satisfying (5), i.e. compatible with the
reference preorder on AR. In other words, this means that the corresponding polyhedron (5) of
feasible solutions for ui(x

j
i ), i = 1, ..., n, j = 1, ..., γi, is not empty.

When the optimal value of the objective function of the program (6) is greater than zero (F ∗ > 0),
then there is no value function U(a) =

∑n

i=1 ui(a) compatible with the reference preorder on AR. In
such a case, three possible moves can be considered:

• increasing the number of linear pieces γi for one or several marginal value function ui could
make it possible to find an additive value function compatible with the reference preorder on
AR,

• revising the reference preorder on AR could lead to find an additive value function compatible
with the new preorder,
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• searching over the relaxed domain F ≤ F ∗ + η could lead to an additive value function giving

a preorder on AR sufficiently close to the reference preorder (in the sense of Kendall’s τ).

3 Existing approaches and motivations for a new method

Our work aims at generalizing the UTA method in order to consider the set of all value functions
compatible with the indirect preference information rather than choosing a single value function
within the set of compatible ones. The literature concerning MCDA methods involving a set of
additive value functions can be viewed from three points of view:

• The methods are designed for different problem statements (problematics, see [24]):

– choice of the best alternative (e.g. [2], [14], [17], [5], [27]),

– sorting alternatives into predefined categories (e.g. [15], [4]),

– ranking of alternatives from the best to the worst (e.g. [10], [12])

• The methods also differ with respect to the kind of the set of value functions and the char-
acteristics of these functions: linear (e.g. [14], [12]) or piecewise linear (e.g. [3], [10], [4]) or
monotone (e.g. [1]) value functions.

• The sets of value functions can be:

– explicitly listed (e.g. [28]),

– defined from stated constraints on the functions (e.g. [2], [18]),

– induced from holistic preference statements concerning alternatives (e.g. [15], [32], [1]).

A review of the literature and, particularly, of the methods based on the ordinal regression
approach, shows that these methods fail to consider some important issues :

• If the polyhedron of value functions compatible with the stated preference information is not
empty, then the choice of a single or few representative value functions is either arbitrary or
left to the DM. In the latter case, the DM is supposed to know how to interpret the form of
the marginal value functions in order to choose among them, which is not easy for most DMs.
Therefore, it seems reasonable to accept existence of all value functions compatible with the
preference information provided by the DM and to assess a preference relation in the set of
alternatives A with respect to all these functions.

• In most methods, the class of value functions is limited to linear or piecewise linear marginal
value functions. To specify the number of characteristic points (breakpoints) is arbitrary and
restrictive. It is desirable to consider just monotone marginal value functions which do not
involve any parametrization.

• Most methods require that the DM provides constraints on the range of weights of linear
marginal value functions, or on the range of variation of piecewise linear marginal value func-
tions. The DM may have, however, difficulties to analyze the link between a specific value
function and the resulting ranking. This is why we believe that the DM should be allowed
to express preference information in terms of pairwise comparisons of alternatives rather than
fixing the above constraints. Providing preference information in this way is consistent with
intuitive reasoning of DMs.
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• The methods based on ordinal regression are usually considering the preference information

provided by the DM as a whole. As a consequence, it is difficult for the DM to associate a
piece of his/her preference information with the result and, therefore, to control the impact of
each piece of information (s)he provides on the result. As such a control is desirable for a truly
interactive process, ordinal regression methods should allow the DM to provide incrementally
the preference information by possibly small pieces.

In this paper, we intend to present a new ordinal regression method that accounts for all short-
comings listed above.

4 UTAGMS – a new UTA-like method

4.1 Presentation of the method

The new UTAGMS method is an ordinal regression method using a set of additive value functions
U(a) =

∑n

i=1 ui(a) as a preference model. One of its characteristic features is that it takes into ac-
count the set of all value functions compatible with the preference information provided by the DM.
Moreover, it considers general non-decreasing marginal value functions instead of piecewise linear
only.

We suppose that the DM provides preference information in form of pairwise comparisons of ref-
erence alternatives from AR ⊆ A. This preference information is a partial preorder on AR, denoted
by %. A value function is called compatible if it is able to restore the partial preorder %. Moreover,
each compatible value function induces a ranking on the whole set A.

In particular, for any two alternatives a, b ∈ A, a compatible value function U ranks a and b in
one of the following ways:

• a is preferred to b because U(a) > U(b),

• b is preferred to a because U(a) < U(b),

• a is indifferent to b because U(a) = U(b),

With respect to a, b ∈ A, it is thus reasonable to ask the following two questions:

• are a and b ranked in the same way by all compatible value functions?

• is there at least one compatible value function ranking a at least as good as b (or b at least as
good as a)?

Having answers to these questions for all pairs of alternatives (a, b) ∈ A × A, one gets a necessary
weak preference relation %N , in case U(a) ≥ U(b) for all compatible value functions, and a possible
weak preference relation %P in A, in case U(a) ≥ U(b) for at least one compatible value function.

Let us remark that preference relations %N and %P are meaningful only if there exists at least one
compatible value function. Therefore, wherever the contrary is not explicitly stated, we suppose that
there exists at least one compatible value function. Observe also that in this case, for any a, b ∈ AR,

a % b ⇒ a %N b
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and

a ≻ b ⇒ not(b %P a).

In fact, if a % b, then for any compatible value function, U(a) ≥ U(b) and, therefore, a %N b.
Moreover, if a ≻ b, then for any compatible value function, U(a) > U(b) and, consequently, there is
no compatible value function such that U(b) ≥ U(a), which means that not(b %P a).

Formally, a general additive compatible value function is an additive value function U(a) =
∑n

i=1 ui(a) satisfying the following set of constraints:

U(c) > U(d) ⇔ c ≻ d

U(c) = U(d) ⇔ c ∼ d

}

for all c, d ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m

ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,































(EAR

)

where τi is the permutation on the set of indices of alternatives from AR that reorders them according
to the increasing evaluation on criterion gi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m))

Remark that, due to this formulation of the ordinal regression problem, no linear interpolation
is required to express the marginal value of any reference alternative. Thus, one cannot expect
that increasing the number of characteristic points will bring some “new” compatible additive value
functions. In consequence, UTAGMS considers all compatible additive value functions while classical
UTA ordinal regression (6) deals with a subset of the whole set of compatible additive value func-
tions, more precisely the subset of piecewise linear additive value functions relative to the considered
characteristic points.

4.2 Properties of the relations %N and %P

Binary relations %N and %P satisfy the following interesting properties.

Proposition 4.1. %P ⊇ %N

Proof. If U(a) ≥ U(b) for all compatible value functions U , i.e. a %N b, then there is at least one
compatible value function U ′ such that U ′(a) ≥ U ′(b), i.e. a %P b.

Proposition 4.2. For all a, b ∈ A, a %N b or b %P a.

Proof. Let us denote by U the set of value functions compatible with %. For all a, b ∈ A,

U(a) ≥ U(b) for all U ∈ U or ∃U ∈ U such that U(b) > U(a) ⇒ a %N b or b %P a.

Let us observe that from Proposition 4.2, we can get the following interesting corollary.

8



 

 

 

ACCEPTED MANUSCRIPT 

 
Corollary 4.1. For all a, b ∈ A,

1) not(a %N b) ⇒ b %P a,

2) not(a %P b) ⇒ b %N a.

Proof. 1) Since a %N b or b %P a, if not(a %N b), then b %P a.

2) Since a %P b or b %N a, if not(a %P b), then b %N a.

Proposition 4.3. %N is a partial preorder (i.e. reflexive and transitive).

Proof. For all a ∈ A, U(a) = U(a). This is true also for all U being compatible value functions, such
that a %N a. Let us suppose that for a, b, c ∈ A, we have a %N b and b %N c. This means that for
all compatible value functions U we have U(a) ≥ U(b) and U(b) ≥ U(c), which implies that for all
compatible value functions U we have U(a) ≥ U(c), i.e. a %N c.

Proposition 4.4. %P is strongly complete, i.e. for all a, b ∈ A, a %P b or b %P a, and negatively
transitive, i.e. for all a, b, c ∈ A, not(a %P b) and not(b %P c) ⇒ not(a %P c).

Proof. Consider any compatible value function U . For each pair a, b ∈ A, it holds U(a) ≥ U(b) or
U(b) ≥ U(a), i.e. a %P b or b %P a; therefore %P is strongly complete.
not(a %P b) means that there does not exist any compatible value function U such that U(a) ≥ U(b).
not(b %P c) means that there does not exist any compatible value function U such that U(b) ≥ U(c).
Therefore, there does not exist any compatible value function U such that U(a) ≥ U(c), which means
that not(a %P c).

Observe that while %P is negatively transitive, it is not necessarily transitive, i.e. it is possible
that for a, b, c ∈ A, a %P b, b %P c but not a %P c. This can happen because there could exist
one compatible value function U such that U(a) ≥ U(b) and one compatible value function U ′ such
that U ′(b) ≥ U ′(c), however, there could be no compatible value function U ′′ such that U ′′(a) ≥ U ′′(c).

Notice that it is impossible to infer %N from %P or vice versa, since %N and %P are not dual, i.e.
a %N b ⇔ not(b %P a) does not hold as one could expect. In fact, in case for a, b ∈ A, U(a) = U(b)
for all compatible value functions U , we have a %N b and b %P a.

From the two weak preference relations %N and %P , one can get preference, indifference and
incomparability, in a usual way, i.e.

1) from the necessary weak preference relation %N one obtains:

• preference: a ≻N b ⇔ a %N b and not(b %N a)

• indifference: a ∼N b ⇔ a %N b and b %N a

• incomparability: a?Nb ⇔ not(a %N b) and not(b %N a)

2) from the possible weak preference relation %P one obtains:

• preference: a ≻P b ⇔ a %P b and not(b %P a)

• indifference: a ∼P b ⇔ a %P b and b %P a

9
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Observe that in case of %P , incomparability is not considered because, for proposition 4.3, %P is
strongly complete.

The preference relations obtained from %N constitute the necessary ranking, and the preference
relations obtained from %P constitute the possible ranking; they are presented to the DM as end
results of the UTAGMS method at the current stage of interaction.

4.3 Computation of the relations %N and %P

In order to compute binary relations %P and %N we can proceed as follows. For all alternatives
a, b ∈ A, let πi be a permutation of the indices of alternatives from set AR∪{a, b} that reorders them
according to increasing evaluation on criterion gi, i.e.

gi(aπi(1)) ≤ gi(aπi(2)) ≤ ... ≤ gi(aπi(ω−1)) ≤ gi(aπi(ω))

where

• if AR ∩ {a, b} = ∅, then ω = m + 2

• if AR ∩ {a, b} = {a} or AR ∩ {a, b} = {b}, then ω = m + 1

• if AR ∩ {a, b} = {a, b}, then ω = m.

Then, we can fix the characteristic points of ui, i = 1, ..., n, in

g0
i = αi, g

j
i = gi(aπi(j)) for j = 1, ..., ω, gω+1

i = βi

Let us consider the following set E(a, b) of ordinal regression constraints, with i = 1, ..., n, j =
1, ..., ω + 1, as variables:

U(c) ≥ U(d) + ε ⇔ c ≻ d

U(c) = U(d) ⇔ c ∼ d

}

for all c, d ∈ AR

ui(g
j
i ) − ui(g

j−1
i ) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1

ui(g
0
i ) = 0, i = 1, ..., n

∑n

i=1 ui(g
ω+1
i ) = 1,























(E(a, b))

where ε is an arbitrarily small positive value, as in (6).

The above set of constraints depends on the pair of alternatives a, b ∈ A because their evaluations
gi(a) and gi(b) give coordinates for two of (ω + 1) characteristic points of marginal value function ui,
for each i = 1, . . . , n. Note that for all a, b ∈ A, E(a, b) = E(b, a).

Let us suppose that the polyhedron defined by the set of constraints E(a, b) is not empty. In this
case we have that:

a %N b ⇔ d(a, b) ≥ 0

where: d(a, b) = Min{U(a) − U(b)}
s.t. set E(a, b) of constraints

(7)

and

a %P b ⇔ D(a, b) ≥ 0
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where : D(a, b) = Max{U(a) − U(b)}

s.t. set E(a, b) of constraints
(8)

What are the relations between %P and %N with respect to computation? In other words, is it
necessary to calculate d(a, b) and D(a, b) for all a, b ∈ A? Proposition 4.5 gives a technical result
useful for answering this question.

Proposition 4.5. For all a, b ∈ A, the following equivalences hold:

d(a, b) ≥ 0 ⇔ D(b, a) ≤ 0
D(a, b) ≥ 0 ⇔ d(b, a) ≤ 0
d(a, b) = 0 ⇔ D(b, a) = 0

Proof. The proof results from the following equalities:
d(a, b) = Mins.t.E(a,b){U(a) − U(b)} = −Maxs.t.E(b,a){U(b) − U(a)} = −D(b, a).

According to Proposition 4.5, the relation %N can be computed using either d(a, b) or D(a, b), as
shown in Tables 1 and 2. A similar remark concerns the relation %P which can be computed using
either d(a, b) or D(a, b), as shown in Tables 3 and 4.

a %N b not(b %N a)
d(b, a) > 0 d(b, a) = 0 d(b, a) < 0

a %N b
d(a, b) > 0 a ≻N b

d(a, b) = 0 a ∼N b a ≻N b

not(a %N b) d(a, b) < 0 b ≻N a b ≻N a a?b

Table 1: Necessary ranking computed in terms of d(a, b)

not(a %N b) a %N b

D(b, a) > 0 D(b, a) = 0 D(b, a) < 0

not(b %N a) D(a, b) > 0 a?b a ≻N b a ≻N b

b %N a
D(a, b) = 0 b ≻N a a ∼N b

D(a, b) < 0 b ≻N a

Table 2: Necessary ranking computed in terms of D(a, b)

b %P a not(b %P a)
d(b, a) > 0 d(b, a) = 0 d(b, a) < 0

a %P b
d(a, b) > 0 a ≻P b

d(a, b) = 0 a ∼P b a ∼P b

not(a %P b) d(a, b) < 0 b ≻P a a ∼P b a ∼P b

Table 3: Possible ranking computed in terms of d(a, b)
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not(a %P b) a %P b

D(b, a) > 0 D(b, a) = 0 D(b, a) < 0

not(b %P a) D(a, b) > 0 a ∼P b a ∼P b a ≻P b

b %P a
D(a, b) = 0 a ∼P b a ∼P b

D(a, b) < 0 b ≻P a

Table 4: Possible ranking computed in terms of D(a, b)

Remark 4.1. In the absence of any pairwise comparison of reference alternatives, the necessary
weak preference relation %N boils down to the weak dominance relation ∆ in A (a∆b iff gi(a) ≥ gi(b),
i = 1, .., n). Each pairwise comparison provided by the DM, for which the dominance relation does
not hold, contributes to enrich %N , i.e. it makes the relation %N true for at least one more pair of
alternatives.

Remark 4.2. In the absence of any pairwise comparison of reference alternatives, the possible weak
preference relation %P is a complete relation such that for any pair (a, b) ∈ A × A:

• a ∼P b (i.e. a %P b and b %P a) ⇔ (not(a∆b) and not(b∆a)) or (a∆b and b∆a)

• a ≻P b (i.e. a %P b and not(b %P a)) ⇔ a∆b and not(b∆a)

Each pairwise comparison provided by the DM, for which the dominance relation does not hold,
contributes to impoverish %P , i.e., it makes the relation %P false for at least one more pair of
alternatives.

4.4 Analysis of incompatibility

Let us consider now the case where there is no value function compatible with the preference in-
formation. We say, this is the case of incompatibility. In such a case, the polyhedron generated
by constraints EAR

is empty. Therefore, the polyhedrons generated by constraints E(a, b), for all
a, b ∈ A, are also empty in this case. Such a case may occur in one of the following situations:

• the preferences of the DM do not match the additive model,

• the DM may have made an error in his/her statements; for example stating that a ≻ b while
b∆a,

• the statements provided by the DM are contradictory because his/her preferences are unstable,
some hidden criteria are taken into account, ...

In such a case, the DM may want either to pursue the analysis with such an incompatibility or to
identify its reasons in order to remove it and, therefore, to define a new set of pairwise comparisons
B′R whose corresponding constraints E ′AR

generate a non empty polyhedron. Let us consider below
the two possible solutions.

12
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4.4.1 Situation where incompatibility is accepted

If the DM wants to pursue the analysis with the incompatibility, he/she has to accept that some of
his/her pairwise comparisons of reference alternatives will not be reproduced by any value function.
Note that, from a formal viewpoint, if the polyhedron generated by EAR

is empty, then %N and %P

are meaningless. Thus, the acceptance of the inconsistency means that the DM does not change the
preference information represented by % and computes d(a, b) and D(a, b) on a new set of constraints
E ′AR

differing from the original set EAR

by an additional constraint on the acceptable total error:

U(c) + σ+(c) − σ−(c) > U(d) + σ+(d) − σ−(d) ⇔ c ≻ d

U(c) + σ+(c) − σ−(c) = U(d) + σ+(d) − σ−(d) ⇔ c ∼ d

}

for all c, d ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m

ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,

σ+(c) ≥ 0, σ−(c) ≥ 0, for all c ∈ AR

∑

c∈AR(σ+(c) + σ−(c)) ≤ δ















































(E ′AR

)

where δ > F ∗, with F ∗ = min
∑

c∈AR(σ+(c) + σ−(c)) subject to EAR

, such that the resulting new

set of constraints E ′AR

is not empty.

On the basis of E ′AR

, for any pair (a, b) ∈ A, the set of constraints E ′(a, b) can be built as the union
of the constraints E ′AR

and the constraints relative to the breakpoints introduced by those alterna-
tives a, b that possibly do not belong to AR. Then preference relations %′N and %′P can be computed
by minimizing and maximizing U(a) − U(b) subject to E ′(a, b), rather than to E(a, b), respectively.
In other words, in this case, d(a, b) and D(a, b) are computed considering E ′(a, b) rather than E(a, b).

Obviously, the necessary and possible rankings resulting from these computations will not fully
restore the provided pairwise comparisons, i.e. there is at least one couple a, b ∈ AR such that

• a % b, but it is false that for all the compatible value functions U(a) ≥ U(b) (in other words,
there exists a compatible value function such that U(a) < U(b) and thus not(a %′N b)), or

• a ≻ b, but it is false that for all the compatible value functions U(a) > U(b) (in other words,
there exists also a value function such that U(b) ≥ U(a) and thus b %′P a).

Next result will state that %′N and %′P maintain all the main properties of preference relations
%N and %P .

Proposition 4.6.

• %′N⊆%′P ,

• %′N is a complete preorder (i.e. transitive and strongly complete),

• %′P is strongly complete.

Proof: %′N and %′P are built using the value functions satisfying constraints E ′AR

, in the same
way as %N and %P are built using the value functions satisfying constraints EAR

. Thus the proof is
analogous to the proof of Propositions 4.1, 4.3 and 4.4.
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4.4.2 Situation where incompatibility is not accepted

If the DM does not want to pursue the analysis with the incompatibility, it is necessary to identify the
troublesome pairwise comparisons responsible for this incompatibility, so as to remove some of them.
Remark that there may exist several sets of pairwise comparisons which, once removed, make set
EAR

of constraints non-empty. Hereafter, we outline the main steps of a procedure which identifies
these sets.

Recall that the pairwise comparisons of reference alternatives are represented in the ordinal regres-
sion constraints EAR

by linear constraints. Hence, identifying the troublesome pairwise comparisons
of reference alternatives amounts at finding a minimal subset of constraints that, once removed from
EAR

, leads to a set of constraints generating a non-empty polyhedron of compatible value functions.
The identification procedure is to be performed iteratively since there may exist several minimal
subsets of this kind.

Let associate with each pairwise comparison of reference alternatives a and b a new binary variable
va,b. Using these binary variables, we rewrite the first two constraints of set EAR

as follows:

a ≻ b ⇔ U(a) − U(b) + Mva,b > 0

a ∼ b ⇔

{

U(a) − U(b) + Mva,b ≥ 0
U(b) − U(a) + Mva,b ≥ 0

(9)

where M > 1. Remark that if va,b = 1, then the corresponding constraint is satisfied whatever
the value function is, which is equivalent to elimination of this constraint. Therefore, identifying
a minimal subset of troublesome pairwise comparisons can be performed by solving the following
mixed 0-1 linear program:

Min → f =
∑

a,b∈AR: a%b va,b

s. t.
a ≻ b ⇔ U(a) − U(b) + Mva,b ≥ ε

a ∼ b ⇔

{

U(a) − U(b) + Mva,b ≥ 0
U(b) − U(a) + Mva,b ≥ 0







for all a, b ∈ AR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 2, ..., m

ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,

va,b ∈ {0, 1}

(10)

The optimal solution of (10) indicates one of the subsets of smallest cardinality being the cause
of incompatibility. Alternative subsets of this kind can be found by solving (10) with additional
constraint that forbids finding again the same solution. Let f ∗ be the optimal value of the objective
function of (10) and v∗

a,b the values of the binary variables at the optimum. Let also S1 = {(a, b) ∈
AR × AR : a % b and v∗

a,b = 1}. The additional constraint has then the form

∑

(a,b)∈S1

va,b ≤ f ∗ − 1 (11)

Continuing in this way, we can identify other subsets, possibly all of them. These subsets of pair-
wise comparisons are to be presented to the DM as alternative solutions for removing incompatibility.
Such a procedure has been described in [21].

14



 

 

 

ACCEPTED MANUSCRIPT 

 
5 Extensions

5.1 Specification of pairwise comparisons with gradual confidence levels

The UTAGMS method presented in the previous section is intended to support the DM in an interac-
tive process. Indeed, defining a large set of pairwise comparisons of reference alternatives at once can
be difficult for the DM. Therefore, one way to reduce the difficulty of this task would be to permit
the DM an incremental specification of pairwise comparisons. This way of proceeding allows the DM
to control the evolution of the necessary and possible weak preference relations.

Another way of reducing the difficulty of the task is to extend the UTAGMS method so as to
account for different confidence levels assigned to pairwise comparisons. Let %1 ⊆ %2 ⊆ ... ⊆ %s be
embedded sets of DM’s partial preorders of reference alternatives. To each set of partial preorders
%t, t = 1, . . . s, corresponds a set of constraints EAR

t generating a polyhedron of compatible value
functions P AR

t . Polyhedrons P AR

t , t = 1, . . . s, are embedded in the inverse order of the related
partial preorders %t, i.e. P AR

1 ⊇ P AR

2 ⊇ ... ⊇ P AR

s . We suppose that P AR

s 6= ∅ and, therefore, due
to the fact that partial preorders %t are embedded, P AR

t 6= ∅, for all t = 1, . . . , s. If P AR

s = ∅ we

consider only embedded partial preorders until %p with p = max
{

t : P AR

t 6= ∅
}

and relabel p by

s. For all a, b ∈ A, we say that there is a necessary weak preference relation of level t, denoted by
a %N

t b (t = 1, ..., s), if for all value functions U compatible with the partial preorder %t, we have
U(a) ≥ U(b). Analogously, for all a, b ∈ A, we say that there is a possible weak preference relation
of level t, denoted by a %P

t b (t = 1, ..., s), if for at least one value function U compatible with the
partial preorder %t, we have U(a) ≥ U(b).

In order to compute possible and necessary weak preference relations %P
t and %N

t , we can proceed
as follows. For all a, b ∈ A, set of constraints Et(a, b) can be obtained from set EAR

t by adjoining
the constraints relative to the breakpoints introduced by those alternatives a, b that possibly do not
belong to AR. For each t = 1, . . . , s, and binary preference relations %N

t and %P
t , we have

a %N
t b ⇔ dt(a, b) ≥ 0

where: dt(a, b) = Min{U(a) − U(b)}
s.t. set Et(a, b) of constraints

(12)

and

a %P
t b ⇔ Dt(a, b) ≥ 0

where : Dt(a, b) = Max{U(a) − U(b)}
s.t. set Et(a, b) of constraints

(13)

Each time we pass from %t−1 to %t, t = 1, . . . , s − 1, we add to EAR

t−1 and, consequently, to
Et−1(a, b), new constraints concerning pairs (c, d) ∈ AR × AR, such that c %t d but not c %t−1 d,
thus the computations of dt(a, b) and Dt(a, b), for all a, b ∈ A × A proceed iteratively.

The following result states that binary preference relations %N
t and %P

t , t = 1, . . . , s, inherit
properties of %N and %P .

Proposition 5.1.

• %N
t ⊆%P

t ,
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• %N

t is a complete preorder (i.e. transitive and strongly complete),

• %P
t is strongly complete and negatively transitive.

Proof. Analogous to the proof of Propositions 4.1, 4.3 and 4.4

An important property of preference relations %N
t and %P

t , t = 1, . . . , s, is stated by the following
proposition.

Proposition 5.2. %N
t and %P

t , t = 1, . . . , s, are nested partial preorders: %N
t−1 ⊆ %N

t and %P
t ⊇

%P
t−1, t = 2, . . . , s.

Proof. a %N
t−1 b, a, b ∈ A, means that U(a) ≥ U(b) for all value functions U satisfying EAR

t−1. Since

each value function U satisfying EAR

t satisfies also EAR

t−1, we have that U(a) ≥ U(b) for all value

functions U satisfying EAR

t , from which we get a %N
t b. Thus a %N

t−1 b ⇒ a %N
t b, i.e. %N

t−1 ⊆ %N
t .

a %P
t b, a, b ∈ A, means that there exists at least one value function U satisfying EAR

t such that
U(a) ≥ U(b). Let us denote one of these value functions by U∗. Since each value function U

satisfying EAR

t satisfies also EAR

t−1, we have that U∗ satisfies EAR

t−1. Therefore, from U∗(a) ≥ U∗(b), we
get a %P

t−1 b. Thus, a %P
t b ⇒ a %P

t−1 b, i.e. %P
t−1 ⊇ %P

t .

Let λt be the confidence level assigned to pairwise comparisons concerning pairs (c, d) ∈ AR×AR,
such that c %t d but not(c %t−1 d), %0= ∅, t = 1, ..., s, 1 = λ1 > λ2 > . . . > λs > 0. Using
partial preorders %1, . . . %s and corresponding λ1, λ2, . . . , λs, a valued necessary preference relation
RN : A×A 7→ [0, 1] or, more precisely, RN : A×A 7→ {λ1, λ2, . . . , λs, 0}, can be built as follows: for
all a, b ∈ A

• if there exists one t (t = 1, . . . , s) such that a %N
t b,

then RN(a, b) = max
{

λt, t = 1, . . . , s, such that a %N
t b

}

• if there exists no t (t = 1, . . . , s) for which a %N
t b, then RN(a, b) = 0.

Analogously, a valued possible preference relation RP : A × A 7→ [0, 1] or, more precisely, RP :
A × A 7→ {1 − λ1, 1 − λ2, . . . , 1 − λs, 1}, can be built as follows: for all a, b ∈ A

• if there exists one t (t = 1, . . . , s) such that a %P
t b,

then RP (a, b) = min
{

1 − λt, t = 1, . . . , s, such that not(a %P
t b)

}

• if a %P
t b for all t (t = 1, . . . , s), then RP (a, b) = 1.

Proposition 5.3. For all a, b ∈ A

RN (a, b) = λt∗ ⇔ a %N
r b for all r ≥ t∗ and not(a %N

r b) for all r < t∗;

RP (a, b) = 1 − λt∗ ⇔ a %P
r b for all r < t∗ and not(a %P

r b) for all r ≥ t∗.

Proof. Since RN(a, b) = max
{

λt, t = 1, . . . , s, such that a %N
t b

}

, then RN (a, b) = λt∗ implies a %N
t∗ b.

Taking into account that, for Proposition 5.2, a %N
t−1 b ⇒ a %N

t b, we have a %N
r b for all r ≥ t∗.

Moreover, RN(a, b) = λt∗ implies not(a %N
r b) for all r such that λr > λt∗ . Taking into account that

λt > λt+1 (t = 1, ..., s − 1), we get that RN(a, b) = λt∗ implies not(a %N
r b) for all r < t∗. Thus, we

proved that

RN(a, b) = λt∗ ⇒ a %N
r b for all r ≥ t∗ and not(a %N

r b) for all r < t∗.
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For all a, b ∈ A,

a %N
r b for all r ≥ t∗ and not(a %N

r b) for all r < t∗ ⇒ t∗ = min{t, t = 1, . . . , s, such that a %N
t b}. (i)

Remembering that λt > λt+1 (t = 1, ..., s − 1), from (i) we get

λt∗ = max
{

λt, t = 1, . . . , s, such that a %N
t b

}

,

and for the definition of RN(a, b), RN (a, b) = λt∗ . Thus, we proved that

a %N
r b for all r ≥ t∗ and not(a %N

r b) for all r < t∗ ⇒ RN (a, b) = λt∗ ,

which concludes the proof of

RN(a, b) = λt∗ ⇔ a %N
r b for all r ≥ t∗ and not(a %N

r b) for all r < t∗.

Analogous proof holds for

RP (a, b) = 1 − λt∗ ⇔ a %P
r b for all r < t∗ and not(a %P

r b) for all r ≥ t∗.

Proposition 5.3 states that RN(a, b) = λt means that a %N
r b holds only for r ≥ t, while, for the

definition, RN (a, b) = 0 means that a %N
t b does not hold for any t (t = 1, . . . , s). Proposition 5.3

also expresses that RP (a, b) = 1−λt means that a %P
r b holds only for r < t, while, for the definition,

RP (a, b) = 1 means that a %P
t b for all t (t = 1, . . . , s).

It is interesting to investigate the properties of valued binary relations RN and RP (for an intro-
duction to valued binary relations and their properties see [6]). Let us remind that a valued binary
relation R defined on a set Y , i.e. R : Y × Y 7→ [0, 1], is

• reflexive, if for all α ∈ Y , R(α, α) = 1,

• min-transitive, if for all α, β, γ ∈ Y, min(R(α, β), R(β, γ)) ≤ R(α, γ),

• strongly complete, if for all α, β ∈ Y, max(R(α, β), R(β, α)) = 1,

• negatively transitive, if for all α, β, γ ∈ Y, min((1 − R(α, β)), (1 − R(β, γ))) ≤ (1 − (α, γ)).

A valued binary relation which is reflexive and min-transitive is called fuzzy partial preorder.

Proposition 5.4. Valued binary relation RN is reflexive and min-transitive and, therefore, it is a
fuzzy partial preorder. Valued binary relation RP is strongly complete and negatively transitive.

Proof. For all a ∈ A, for all value functions U compatible with the partial preorder %s, we have
U(a) = U(a), which implies a %N

s a and RN(a, a) = 1, i.e. RN is reflexive.

For all a, b, c ∈ A, two cases are possible:
a) min(RN (a, b), RN(b, c)) = 0,
b) min(RN (a, b), RN (b, c)) > 0.

Considering that always RN (a, c) ≥ 0, in case a) we have

RN(a, c) ≥ min(RN (a, b), RN(b, c)). (i)
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In case b), for the definition of RN , we have

min(RN (a, b), RN(b, c)) =

= min
{

max
{

λt, t = 1, . . . , s, such that a %N
t b

}

, max
{

λt, t = 1, . . . , s, such that b %N
t c

}}

=

= max
{

λt, t = 1, . . . , s, such that a %N
t b and b %N

t c
}

.

Thus, if min(RN (a, b), RN(b, c)) = λr, then U(a) ≥ U(b) and U(b) ≥ U(c) for all value functions U

compatible with %r. Thus, for all value functions U compatible with %r we have U(a) ≥ U(c) and,
consequently, a %N

r c. This implies that

RN (a, c) = max
{

λt, t = 1, . . . , s, such that a %N
t c

}

≥ λr = min(RN (a, b), RN(b, c)). (ii)

For (i) and (ii), valued binary relation RN is min-transitive.

Let us suppose that a %P
s b, a, b ∈ A. In this case, for Proposition 5.2, a %P

t b for all t (t = 1, . . . , s)
and, therefore, RP (a, b) = 1. If, instead, not (a %P

s b), then for Proposition 4.2, b %N
s a and, there-

fore, for Property 1, b %P
s a. In consequence, for Proposition 5.2, b %P

t a for all t (t = 1, . . . , s) and,
thus, RP (b, a) = 1. This proves completeness of valued binary relation RP .

For all a, b, c ∈ A, two cases are possible:
a) max(RP (a, b), RP (b, c)) = 1,
b) max(RP (a, b), RP (b, c)) < 1.

In case a), we have RP (a, b) = 1 or RP (b, c) = 1, and thus 1−RP (a, b) = 0 or 1−RP (b, c) = 0, such
that min((1 − RP (a, b)), (1 − RP (b, c))) = 0 and considering that always 1 − RP (a, c) ≥ 0, we get

min((1 − RP (a, b)), (1 − RP (b, c))) ≤ 1 − RP (a, c).

In case b), RP (a, b) < 1 and RP (b, c) < 1, for definition of RP , we have

1 − RP (a, b) = 1 − min
{

1 − λt, t = 1, . . . , s, such that not(a %P
t b)

}

) =

= max
{

λt, t = 1, . . . , s, such that not(a %P
t b)

}

)

as well as

1 − RP (b, c) = 1 − min
{

1 − λt, t = 1, . . . , s, such that not(b %P
t c)

}

) =

= max
{

λt, t = 1, . . . , s, such that not(b %P
t c)

}

).

Thus,
min((1 − RP (a, b)), (1 − RP (b, c)))

=

min
{

max
{

λt, t = 1, . . . , s, such that not(a %P
t b)

}

, max
{

λt, t = 1, . . . , s, such that not(b %P
t c)

}}

=

max
{

λt, t = 1, . . . , s, such that not(a %P
t b) and not(b %P

t c)
}

,

=

max{λt, t = 1, . . . , s, such that, U(b) > U(a) and U(c) > U(b)

for all value functions U compatible with %t}.
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If min((1 − RP (a, b)), (1 − RP (b, c))) = λr, then U(a) < U(c) for all value functions compatible
with %r, which means that there does not exist any value function U compatible with %r such that
U(a) ≥ U(c). Thus, min{t, t = 1, . . . , s, such that not(a %P

t c)} ≤ r and, therefore,

max{λt, t = 1, . . . , s, such that not(a %P
t c)} ≥ λr.

Since
max{λt, t = 1, . . . , s, such that not(a %P

t c)} =

= 1 − min{1 − λt, t = 1, . . . , s, such that not(a %P
t c)} = 1 − RP (a, c),

we conclude that (1 − RP (a, c)) ≥ λr = min((1 − RP (a, b)), (1 − RP (b, c))).

5.2 Accounting for intensity of preference

Another preference information that can be provided by the DM concerns the intensity of preference
among two pairs of reference alternatives. Given two pairs of reference alternatives (c, d) ∈ % and
(c′, d′) ∈ %, such that c ≻ d and c′ ≻ d′, the DM can state : “c is preferred to d at least as much as
c′ is preferred to d′”. Such statement means that for all compatible value functions U :

U(c) − U(d) > U(c′) − U(d′). (14)

To account for the above preference information, it is sufficient to include condition (14) in set
EAR

of constraints. Of course, consequently, condition (14) will be included in constraints E(a, b)
for all a, b ∈ A.

Conversely, for all a, b, a′, b′ ∈ A, it is possible to check whether or not condition

U(a) − U(b) > U(a′) − U(b′) (15)

holds for all compatible value functions U .
In order to do so, it is sufficient to check the feasibility of constraints E(a, b) and (15). Such

information may enrich the DM’s knowledge of his/her preferences.

6 Illustrative example

In this section, we illustrate how a decision aiding process can be supported by the UTAGMS method.
We consider the following hypothetical decision problem. AGRITEC is a medium size firm (350
persons approx.) producing some tools for agriculture. The C.E.O., Mr Becault, intends to double the
production and multiply exports by 4 within 5 years. Therefore, he wants to hire a new international
sales manager. A recruitment agency has interviewed 17 potential candidates which have been
evaluated on 3 criteria (sales management experience, international experience, human qualities)
evaluated on a [0,100] scale. The evaluations of candidates are provided in Table 5. Without any
further information, the computed partial preorder %N

0 corresponds to the weak dominance relation
∆ on the set of alternatives (See Figure 2).

The C.E.O. has attended 4 interviews and can express a confident judgement about theses can-
didates: Ferret and Frechet are equally good, Fourny is less acceptable than Ferret and Frechet,
and Fleichman is even less acceptable than Fourny. This means that the initial reference ranking is
the following: Ferret ∼ Frechet ≻ Fourny ≻ Fleichman. For this initial preference information, the
partial preorder %N

1 has been computed using UTAGMS (See Figure 3).
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Figure 2: Partial preorder %N
0 corresponding to the weak dominance relation ∆

Figure 3: Partial preorder %N
1

Considering this first result, Mr Becault is willing to add further preference information. This
results in the following new reference ranking: Ferret ∼ Frechet ≻ Martin ≻ Fourny ∼ El Mrabat ≻
Fleichman. However, as he did not attend the interview of El Mrabat and Martin, his opinion about
the relative ranking of these candidates is not as certain as the initial preference information.

It appears that for the provided information, no additive value function fits the last reference
ranking. The analysis of this incompatibility reveals that the statement Ferret ∼ Frechet cannot be
represented together with the statement Fourny ∼ El Mrabat by an additive value function. In other
words, it is necessary for Mr Becault to revise one of these statements. As he did not interview El
Mrabat, he decides to remove him from the reference ranking which becomes Ferret ∼ Frechet ≻
Martin ≻ Fourny ≻ Fleichman. This reference ranking is compatible with a representation by an
additive value function. Figure 4 represents two nested partial preorders:
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Crit 1 Crit 2 Crit 3

Alexievich 4 16 63
Bassama 28 18 28
Calvet 26 40 44
Dubois 2 2 68
El Mrabat 18 17 14
Feeret 35 62 25
Fleichman 7 55 12
Fourny 25 30 12
Frechet 9 62 88
Martin 0 24 73
Petron 6 15 100
Psorgos 16 9 0
Smith 26 17 17
Varlot 62 43 0
Yu 1 32 64

Table 5: Evaluation Table

• bold arrows represent partial preorder %N
2 obtained for the most certain preference information

only, i.e., Ferret ∼ Frechet ≻ Fourny ≻ Fleichman,

• dashed arrows represent partial preorder %N
3 obtained for the consistent preference informa-

tion composed of the most certain preference information and the less confident preference
information about Martin, i.e., Ferret ∼ Frechet ≻ Martin ≻ Fourny ≻ Fleichman.

Figure 4: Nested partial preorders %N
2 (bold) and %N

3 (dashed)

The interactive process can be pursued, Mr Becault adding in iteration t some new pairwise
comparisons of reference alternatives, thus enriching the resulting partial preorder %N

t , until it is
decisive enough for the C.E.O. to make his choice.
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7 Conclusion

The new UTAGMS method presented in this paper is an ordinal regression method supporting multiple
criteria ranking of alternatives; it is distinguished from previous methods of this kind by the following
new features:

• the method considers general additive value functions rather than piecewise linear ones,

• the final rankings are defined using all value functions compatible with the provided preference
information,

• the method provides two final rankings: the necessary ranking identifies “sure” preference
statements while the possible ranking identifies “possible” preference statements,

• distinguishing necessary and possible consequences of using all value functions compatible with
preference information, UTAGMS includes a kind of robustness analysis instead of using a single
“best-fit” value function,

• the necessary and possible preference relations considered in UTAGMS have several properties
of general interest for MCDA,

• when the DM provides preference information that cannot be represented by an additive model,
the method identifies which pieces of the information underly this impossibility,

• the method does not require the DM to interpret (and even look at) the marginal value func-
tions,

• the DM can assign confidence levels to pieces of preference information, which yields a valued
necessary preference relation (proved to be a fuzzy partial preorder) and a valued possible
preference relation (proved to be a strongly complete and negatively transitive valued binary
relation).

We envisage the following future developments of the presented methodology:

• application to multicriteria sorting problems,

• application to group decision problems,

• application to interactive multiobjective optimization.
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[10] E. Jacquet-Lagrèze and Y. Siskos. Assessing a set of additive utility functions for multicriteria
decision making: the UTA method. European Journal of Operational Research, 10:151–164,
1982.

[11] R.L. Keeney and H. Raiffa Decisions with multiple objectives: Preferences and value tradeoffs.
J. Wiley, New York, 1976.

[12] C.W. Kirkwood and R.K. Sarin. Ranking with partial information: A method and an applica-
tion. Operations Research, 33(1):38–48, January-February 1985.

[13] L. Kiss, J.M. Martel, and R. Nadeau. ELECCALC - an interactive software for modelling the
decision maker’s preferences. Decision Support Systems, 12(4-5):757–777, November 1994.

[14] M. Koksalan and V. Taner. An approach for finding the most preferred alternative in the
presence of multiple criteria. European Journal of Operational Research, 60(1):53–60, 1992.

[15] M. Koksalan and C. Ulu. An interactive approach for placing alternatives in preference classes.
European Journal of Operational Research, 144:429–439, 2003.

[16] D. Krantz, D. Luce, P Suppes and A Tversky. Foundations of measurement: Vol. 1. Additive
and polynomial representations , New York, Academic Press, 1971.

23



 

 

 

ACCEPTED MANUSCRIPT 

 
[17] R. Lahdelma, J. Hokkanen and P. Salminen, SMAA - Stochastic multiobjective acceptability

analysis, European Journal of Operational Research , 106:137-143, 1998.

[18] K.S. Lee, K.S. Park, and S.H. Kim. Dominance, potential optimality, imprecise information, and
hierarchical structure in multi-criteria analysis. Computers and Operations Research, 29:1267–
1281, 2002.

[19] J.G. March. Bounded rationality, ambiguity and the engineering of choice. Bell Journal of
Economics, 9:587–608, 1978.

[20] R.S. Michalski, I. Bratko, and M. Kubat (eds.). Machine learning and datamining - Methods
and applications. J. Wiley, New York, 1998.

[21] V. Mousseau, J. Figueira, L.C. Dias, C. Gomes da Silva, and J.N. Cĺımaco. Resolving in-
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