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†LAMSADE, Université Paris Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France,

e-mail: mousseau@lamsade.dauphine.fr
‡Institute of Computing Science, Poznań University of Technology, 60-965 Poznań, and Institute for Systems

Research, Polish Academy of Sciences, 01-447 Warsaw, Poland, e-mail: roman.slowinski@cs.put.poznan.pl

i



Contents

Table of Contents ii

Abstract iii

1 Introduction 1

2 Ordinal regression via linear programming - principle of the UTA method 2

3 Existing approaches and motivations for a new method 5

4 The new UTAGMS method 6

5 Extensions 17

5.1 Specification of pairwise comparisons with gradual confidence levels . . . . . . . . . . 17
5.2 Accounting for ordinal intensity of preference . . . . . . . . . . . . . . . . . . . . . . . 20

6 Illustrative example 21

7 Conclusion 22

ii



Abstract

We present a new method (called UTAGMS) for multiple criteria ranking using strongly
and weakly established weak preference relations which result from an ordinal regression.
The preference information supplied by the decision maker is a set of pairwise compar-
isons of reference alternatives. The preference model built via ordinal regression is a set
of general additive value functions. The method provides two final rankings: a strong
ranking identifying “sure” preference statements, and a weak ranking identifying “possi-
ble” preference statements. In order to build these two rankings, the method takes into
account all value functions compatible with the preference information. The UTAGMS

method is intended to be used interactively, with progressive statement of pairwise com-
parisons. Moreover, the method can support the decision maker also when his/her pref-
erence statements cannot be represented in terms of an additive value function. The
method is illustrated by an example solved using the UTAGMS software. Some extensions
of the method are also presented.

Keywords: Multiple criteria ranking, Ordinal regression approach, Additive value func-
tion.
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1 Introduction

We are considering a decision situation in which a finite set of alternatives (actions) A is evaluated
on a family of n criteria g1, g2, . . . , gi, . . . , gn, with gi : A → R for all i ∈ G = {1, 2, . . . , n}. We
assume, without loss of generality, that the greater gi(a), the better alternative a on criterion gi,
for all i ∈ G. A decision maker (DM) is willing to rank the alternatives in A from the best to the
worst, according to his/her preferences. The ranking can be complete or partial, depending on the
preference information supplied by the DM and on the way of exploiting this information. The family
of criteria G is supposed to satisfy following consistency conditions (see [19]):

• exhaustivity - any two alternatives having the same evaluations on all criteria from G should
be considered indifferent,

• monotonicity - when comparing two alternatives, an improvement of one of them on at least
one criterion from G should not deteriorate its comparison to the other alternative,

• non-redundancy - deletion of any criterion from G will contradict one of the two above condi-
tions.

Such a decision problem is called multiple criteria ranking problem. It is known that the only
information coming out from the formulation of this problem is the dominance ranking. Let us recall
that in the dominance ranking, alternative a ∈ A is preferred to alternative b ∈ A (denotation a ≻ b)
if and only if gi(a) ≥ gi(b) for all i ∈ G, with at least one strict inequality; moreover, a is indifferent
to b (denotation a ∼ b) if and only if gi(a) = gi(b) for all i ∈ G; hence, for any two alternatives
a, b ∈ A, one of the four situations may arise in the dominance ranking: a ≻ b, b ≺ a, a ∼ b and a?b,
where the last one means that a and b are incomparable. Usually, the dominance ranking is very
poor, i.e. the most frequent situation is a?b.

In order to enrich the dominance ranking, multiple criteria decision aiding (MCDA) helps in con-
struction of an aggregation model on the base of preference information supplied by the DM. Such
an aggregation model is called preference model - it induces a preference structure in set A whose
proper exploitation permits to work out a ranking proposed to the DM.

The preference information may be either direct or indirect, depending if it specifies directly
values of some parameters used in the preference model (e.g. trade-off weights, aspiration levels,
discrimination thresholds, etc.), or if it specifies some examples of holistic judgments from which
compatible values of the preference model parameters are induced. Direct preference information
is used in the traditional aggregation paradigm, according to which the aggregation model is first
constructed and then applied on set A to rank the alternatives.

Indirect preference information is used in the disaggregation (or regression) paradigm, according
to which the holistic preferences on a subset of alternatives AR ⊆ A are known first and then a
consistent aggregation model is inferred from this information to be applied on set A in order to rank
the alternatives.

Presently, MCDA methods based on indirect preference information and the disaggregation par-
adigm are of increasing interest for they require relatively less cognitive effort from the DM. Indeed,
the disaggregation paradigm is consistent with the “posterior rationality” postulated by March [13]
and with the inductive learning used in artificial intelligence approaches (see [14]). Typical appli-
cations of this paradigm in MCDA are presented in [23], [17], [7], [9], [1], [16], [4], [5], [6]. In this
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paper, we are considering the aggregation model in form of an additive value function:

U(a) =

n
∑

i=1

ui(a) (1)

where ui(a) ≥ 0, i = 1, . . . , n, are nondecreasing marginal value functions. We are using this
aggregation model in the settings of the disaggregation paradigm, as it has been proposed in the
UTA method (see [7]). In fact, our method generalizes the UTA method by considering the set of
all additive value functions (1) compatible with indirect preference information having the form of a
set of pairwise comparisons of some reference alternatives AR ⊆ A. As a result, we will obtain two
rankings in the set of alternatives A, such that for any pair of alternatives a, b ∈ A:

• in the first (strong) ranking, a is ranked at least as good as b if and only if, U(a) ≥ U(b) for
all value functions compatible with the indirect preference information,

• in the second (weak) ranking, a is ranked at least as good as b if and only if, U(a) ≥ U(b) for
at least one value function compatible with the indirect preference information.

The first (strong) ranking can be considered as robust with respect to the indirect preference
information. Such robustness of the strong ranking refers to the fact that any pair of alternatives
compares in the same way whatever the additive value function compatible with the indirect pref-
erence information. Indeed, when no indirect preference information is given, the strong ranking
corresponds to the dominance ranking.

Another appeal of such an approach stems from the fact that it gives space for interactivity with
the DM. Considering an indirect preference information provided by the DM, the presentation of the
strong ranking is a good support for generating reactions from the DM. Namely, (s)he could wish
to enrich the ranking or to contradict a part of it. This reaction would be integrated in the indirect
preference information in the next iteration.

The organization of the paper is the following. In the next section, we will outline the principle
of the ordinal regression via linear programming, as proposed in the original UTA method (see [7]).
In section 3, we give a brief overview of existing approaches to multiple criteria ranking with a set of
additive value functions, and we provide motivations for our approach. The new UTAGMS method
is presented in section 4. The illustrative example provided in section 6 shows how the method can
be applied in practice. Some extensions are considered in section 5 and the last section includes
conclusions.

2 Ordinal regression via linear programming - principle of

the UTA method

Let Xi denote the domain of criterion gi, i ∈ G. Consequently, X =
∏n

i=1 Xi is the evalua-
tion space, and x, y ∈ X denote profiles of alternatives in this space. We consider an outrank-
ing (weak preference) relation % on X that states for each pair of vectors x, y ∈ X: x % y ⇔
”x is at least as good as y”. This outranking relation can be decomposed into its asymmetric and
symmetric parts, as follows:

• x ≻ y ⇔ [x % y and not(y % x)] ⇔ ”x is preferred to y”,

• x ∼ y ⇔ [x % y and y % x] ⇔ ”x is indifferent to y”
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From a pragmatic viewpoint, it is reasonable to assume that Xi ⊂ R , for all i = 1, . . . , n.
More specifically, we will assume that the evaluation scale on each criterion gi is bounded, such
that Xi = [αi, βi] where αi < βi are the worst and the best (finite) evaluations, respectively. Thus,
gi : A 7→ Xi, i ∈ G, therefore, each alternative a ∈ A is associated with an evaluation vector denoted
by g(a) ∈ X.

The additive value function is defined on X such that for each a ∈ A

U(g(a)) =
n

∑

i=1

ui(gi(a)) (2)

where ui are non-decreasing marginal value functions, ui : Xi 7→ R, i = 1, . . . , n. For simplicity, we
will write (2) as (1), i.e. U(a) =

∑n

i=1 ui(a).

In the following, we present the principle of the UTA method as presented recently in [22]. The
indirect preference information is given in form of a complete preorder on a subset of reference alter-
natives AR ⊆ A, called reference preorder. The reference alternatives are usually those alternatives
in set A for which the DM is ready to express holistic preferences. Let the set of reference alternatives
AR = {a1, a2, ..., am} be rearranged such that ak % ak+1, k = 1, ..., m − 1, where m = |AR|. The
disaggregation paradigm consists here in inferring an additive value function (1) compatible with
this reference preorder. The inferred value of each reference alternative a ∈ AR is:

U ′(a) =
n

∑

i=1

ui(a) + σ+(a) − σ−(a) (3)

where σ+(a) and σ−(a), σ+(a) ≥ 0 and σ−(a) ≥ 0 for all a ∈ AR, are potential errors of over-
and under-estimation of the “correct” value U(a) =

∑n
i=1 ui(a), respectively. In the UTA method,

the marginal value functions ui are assumed to be piecewise linear, so that the intervals [αi, βi] are

divided into γi ≥ 1 equal sub-intervals: [x0
i , x

1
i ], [x1

i , x
2
i ], . . ., [xγi−1

i , xγi

i ], where xj
i = αi + j(βi−αi)

γi
,

j = 0, . . . , γi, i = 1, . . . , n. The marginal value (see Figure 1) of an alternative a ∈ A is approximated
by linear interpolation

ui(a) = ui(x
j
i ) +

gi(a) − xj
i

xj+1
i − xj

i

(ui(x
j+1
i ) − ui(x

j
i )), for gi(a) ∈ [xj

i , x
j+1
i ] (4)

According to (4), the piecewise linear additive model is completely defined by the marginal values
at the breakpoints, i.e. ui(x

0
i ) = ui(αi), ui(x

1
i ), ui(x

2
i ), ..., ui(x

γi

i ) = ui(βi).

The ordinal regression consists in the inference of a value function restoring the reference preorder.
We call compatible any value function obtained by ordinal regression. The transition from a reference
preorder to a value function is done according to the following equivalence :

U ′(ak) > U ′(ak+1) ⇔ ak ≻ ak+1

U ′(ak) = U ′(ak+1) ⇔ ak ∼ ak+1
(5)

for k = 1, ..., m − 1.
Let us remark that the transition from the preorder to the marginal value function exploits the

ordinal character of the criterion scale Xi even if the scale is richer (interval or ratio scale). Note,
however, that the scale of the marginal value function is an interval scale and thus its nature is
cardinal.
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Figure 1: Piecewise linear marginal value function

The above transition requires, moreover, the marginal value functions to be monotonic with
respect to each criterion gi, ∀i ∈ G, i.e.:

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, j = 0, ..., γi − 1, i = 1, ..., n (6)

It is also usual to suppose a kind of normalization such as ui(αi) = 0 ∀i ∈ G, and
∑n

i=1 ui(βi) = 1.
This will bound the value function U(a) in the interval [0,1].

An alternative way of representing the same preference model is:

U(a) =
n

∑

i=1

wiûi(a), where û(αi) = 0, û(βi) = 1, wi ≥ 0 ∀i ∈ G, and
n

∑

i=1

wi = 1 (7)

Note that the correspondence between (7) and (1) is such that wi = ui(βi), ∀i ∈ G. Due to
the cardinal character of the marginal value function scale, the parameters wi can be interpreted as
tradeoff weights among marginal value functions ûi(a). We will use, however, the preference model
(1) with normalization constraints bounding U(a) to the interval [0, 1].

Consequently, the piecewise linear additive value model is inferred through the resolution of the
following mathematical program, called ordinal regression problem (8):

Min → F =
∑

a∈AR(σ+(a) + σ−(a))
s.t.

U ′(ak) > U ′(ak+1) ⇔ ak ≻ ak+1

U ′(ak) = U ′(ak+1) ⇔ ak ∼ ak+1

}

k = 1, ..., m − 1

ui(x
j+1
i ) − ui(x

j
i ) ≥ 0, i = 1, ..., n, j = 1, ..., γi − 1

ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1
σ+(ak), σ−(ak) ≥ 0, k = 1, ..., m































(C)
(8)

Remark that (8) is a linear program if the first constraint U ′(ak) > U ′(ak+1) is rewritten as
U ′(ak) ≥ U ′(ak+1) + ε where ε is an arbitrarily small positive value.
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If the optimal value of the objective function of the program (8) is equal to zero (F ∗ = 0), then
there exists at least one value function U ′(a) = U(a), compatible with the reference preorder on AR

which means that the corresponding polyhedron of feasible solutions for ui(x
j
i ), i = 1, ..., n, j =

1, ..., γi is not empty.

When the optimal value of the objective function of the program (8) is greater than zero (F ∗ > 0),
then there is no value function U(a) compatible with the reference preorder on AR. In such a case,
four possible moves can be considered:

• accepting the value function inferred even if it does not represent perfectly the DM’s preferences,

• increasing the number of linear pieces γi for one or several marginal value function ui: this could
make it possible to find an additive value function compatible with the reference preorder on
AR,

• revising the reference preorder on AR: this could lead to find an additive value function com-
patible with the new preorder,

• searching over the relaxed domain F ≤ F ∗ + η: this could lead to an additive value functions
giving a preorder on AR sufficiently close to the reference preorder (in the sense of Kendall’s
τ).

3 Existing approaches and motivations for a new method

Our work aims at generalizing the UTA method in order to consider the set of all utility functions
compatible with the indirect preference information rather than choosing a single utility function
within the set of compatible ones. The literature concerning MCDA methods involving a set of
additive value functions can be viewed from three points of view:

• The methods are designed for different problem statements (problematics, see [18]):

– choice of the best alternative (e.g. [2], [10], [20]),

– sorting alternatives into predefined categories (e.g. [11], [3]),

– ranking of alternatives from the best to the worst (e.g. [7], [8])

• The methods also differ with respect to the kind of the set of value functions and the charac-
teristics of these functions: linear (e.g. [10], [8]) or piecewise linear (e.g. [7], [3]) or monotonic
(e.g. [1]) value functions.

• The sets of value functions can be:

– explicitly listed (e.g. [21]),

– defined from stated constraints on the functions (e.g. [2], [12]),

– induced from holistic preference statements concerning alternatives (e.g. [11], [24], [1]).

A review of the literature and, particularly, of the methods based on the ordinal regression
approach, shows that these methods fail to consider some important issues :
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• If the polyhedron of value functions compatible with the stated preference information is not
empty, then the choice of a single or few representative value functions is either arbitrary or
left to the DM. In the latter case, the DM is supposed to know how to interpret the form of
the marginal value functions in order to choose among them, which is not easy for most DMs.
Therefore, it seems reasonable to accept existence of all value functions compatible with the
preference information provided by the DM and to assess a preference relation in the set of
alternatives A with respect to all these functions.

• In most methods, the class of value functions is limited to piecewise linear marginal value
functions. To specify the number of breakpoints is arbitrary and restrictive. It is desirable to
consider just monotonic marginal value functions which do not involve any parametrization.

• Most methods require that the DM provides constraints on the range of “weights” or on the
range of marginal value functions. The DM may have, however, difficulties to analyze the link
between a specific value function and the resulting ranking. This is why we believe that the
DM should be allowed to express preference information in terms of pairwise comparisons of
alternatives rather than fixing the above constraints. Providing preference information in this
way is consistent with intuitive reasoning of DMs.

• The methods based on ordinal regression are usually considering the preference information
provided by the DM as a whole. As a consequence, it is difficult for the DM to associate a
piece of his/her preference information with the result and, therefore, to control the impact of
each piece of information (s)he provides on the result. As such a control is desirable for a truly
interactive process, ordinal regression methods should allow the DM to provide incrementally
the preference information by possibly small pieces.

In this paper, we intend to present a new ordinal regression method that accounts for all short-
comings listed above.

4 The new UTAGMS method

The new UTAGMS method is another ordinal regression method using a set of additive value functions
U(a) =

∑n
i=1 ui[gi(a)] as a preference model. One of its characteristic features is that it takes into

account the set of all value functions compatible with the preference information provided by the
DM. Moreover, it considers any monotonic marginal value function instead of piecewise linear only.

We suppose the DM provides preference information in form of pairwise comparisons of reference
alternatives from AR ⊆ A (a preorder, not necessarily complete). By BR ⊆ AR × AR we denote
the set of pairs of reference alternatives compared by the DM. A value function is called compatible
if it is able to restore all pairwise comparisons from BR. Each compatible value function induces,
moreover, a ranking on the whole set A.

In particular, for any two alternatives x, y ∈ A, a compatible value function ranks x and y in one
of the following ways: x ≻ y, y ≻ x, x ∼ y. With respect to x, y ∈ A, it is thus reasonable to ask
the following two questions:

• are x and y ranked in the same way by ALL compatible value functions?

• is there AT LEAST ONE compatible value function ranking x at least as good as y (or y at
least as good as x)?

6



Having answers to these questions for all pairs of alternatives (x, y) ∈ A×A, one gets a strongly
established weak preference relation %S , whose semantics is that for all compatible value functions
U(x) ≥ U(y), and a weakly established weak preference relation %W in A, whose semantics is that
for at least one compatible value functions U(x) ≥ U(y).

Let us remark that preference relation %S and %W are meaningful only if there is at least one
compatible value function.

Observe also that in this case for any (x, y) ∈ BR

x % y ⇒ x %S y.

and
x ≻ y ⇒ not y %W x.

In fact, as x % y, for any compatible value function U(x) ≥ U(y), and therefore x %S y. More-
over, as x ≻ y, for any compatible value function U(x) > U(y); consequently there is no compatible
value function such that U(y) ≥ U(x) and therefore not y %W x.

%S and %W will constitute basic results of the UTAGMS method.

In order to consider general additive compatible value functions, we propose to fix the breakpoints
of marginal value functions ui(gi), i = 1, ..., n, in points corresponding to evaluations on criterion
gi of all reference alternatives and of the two other considered alternatives x, y /∈ BR. Let πi be
a permutation on the set of alternatives AR ∪ {x, y} that reorders them according to increasing
evaluation on criterion gi, i.e.

gi(aπi(1)) ≤ gi(aπi(2)) ≤ ... ≤ gi(aπi(ω−1)) ≤ gi(aπi(ω))

where

• if AR ∩ {x, y} = ∅, then
ω = m + 2

• if AR ∩ {x, y} = {x} or AR ∩ {x, y} = {y}, then

ω = m + 1

• if AR ∩ {x, y} = {x, y}, then
ω = m.

Then, we can fix the breakpoints of ui(gi), i = 1, ..., n, in

g0
i = αi, gj

i = gi(aπi(j)) for j = 1, ..., ω, gω+1
i = βi

Remark that, due to this definition of the breakpoints, no linear interpolation is required to ex-
press the marginal value of any reference alternative considered in the ordinal regression problem (8).
Thus, one cannot expect that increasing the number of breakpoints will bring some “new” compatible
additive value functions. In consequence, fixing the breakpoints in this way ensures that we consider
all compatible additive value functions.
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For any pair of alternatives x, y ∈ A and for the available preference information about compar-
isons of pairs of reference alternatives from set BR, preference with respect to x and y is determined
by compatible value functions, that is functions U verifying the following set E(x, y) of ordinal
regression constraints:

U ′(a) > U ′(b) ⇔ a ≻ b
U ′(a) = U ′(b) ⇔ a ∼ b

}

∀(a, b) ∈ BR

ui(g
j
i ) − ui(g

j−1
i ) ≥ 0, i = 1, ..., n, j = 1, ..., ω + 1

ui(g
0
i ) = 0, i = 1, ..., n

∑n

i=1 ui(g
ω+1
i ) = 1,

σ+(a) = 0, σ−(a) = 0, ∀a ∈ AR































(E(x, y))

Note that for all x, y ∈ A, E(x, y) = E(y, x).
Let us suppose that the polyhedron defined by the set of constraints E(x, y) is not empty. In the

two following definitions, we define formally a strongly established weak preference relation %S and
a weakly established weak preference relation %W on A, which were announced above.

Definition 4.1. %S (strongly established weak preference relation) is defined as follows: for all
x, y ∈ A

x %S y ⇔ d(x, y) ≥ 0

where: d(x, y) = Min{U(x) − U(y)}
s.t. set E(x, y) of constraints

(9)

Definition 4.2. %W (weakly established weak preference relation) is defined as follows: for all x, y ∈
A

x %W y ⇔ D(x, y) ≥ 0

where : D(x, y) = Max{U(x) − U(y)}
s.t. set E(x, y) of constraints

(10)

The discussion of some properties of the two preference relations %S and %W requires some pre-
liminary results relative to the set of constraints E(x, y).

Let us consider the following two further sets of constraints:

•
U ′(a) > U ′(b) ⇔ a ≻ b
U ′(a) = U ′(b) ⇔ a ∼ b

}

∀(a, b) ∈ BR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 1, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
σ+(a) = 0, σ−(a) = 0, ∀a ∈ AR







































(EAR

)

where τi is the permutation on the set of alternatives AR that reorders them according to the
increasing evaluation on criterion gi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m));
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•
U ′(a) > U ′(b) ⇔ a ≻ b
U ′(a) = U ′(b) ⇔ a ∼ b

}

∀(a, b) ∈ BR

ui(gi(aρi(j))) − ui(gi(aρi(j−1))) ≥ 0, i = 1, ..., n, j = 1, ..., m′

ui(gi(aρi(1))) ≥ 0, ui(gi(aρi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
σ+(a) = 0, σ−(a) = 0, ∀a ∈ AR







































(EA)

where m′ = |A| and ρi is the permutation on the set of alternatives A that reorders them
according to the increasing evaluation on criterion gi, i.e.

gi(aρi(1)) ≤ gi(aρi(2)) ≤ . . . ≤ gi(aρi(m′−1)) ≤ gi(aρi(m′)).

Let us remark that set of constraints EAR

is the basic one. In fact, for any pair (x, y) ∈ A, E(x, y)
can be seen as the union of the constraints in EAR

with the constraints relative to the breakpoints
relative to alternatives x, y /∈ AR, i.e.

•
ui(gi(x)) − max {ui(gi(a)) : gi(a) ≤ gi(x)} ≥ 0,

and
min {ui(gi(a)) : gi(a) ≥ gi(x)} − ui(gi(x)) ≥ 0,

if x /∈ AR;

•
ui(gi(y)) − max {ui(gi(a)) : gi(a) ≤ gi(y)} ≥ 0,

and
min {ui(gi(a)) : gi(a) ≥ gi(y)} − ui(gi(y)) ≥ 0,

if y /∈ AR.

Analogously, set of constraints EA can be seen as the union of the constraints in EAR

with the
constraints relative to the break points relative to all alternatives x /∈ AR. Let us observe that the
sets of vectors uA = [uA

i (gi(aρi(j)), i = 1, ..., n, i = 0, ..., n, j = 1, ..., m′ + 1] satisfying constraint EA

gives all the compatible additive value functions on alternatives from A.

Proposition 4.1. Consider

uE(x,y) = [u
E(x,y)
i (gj

i ), i = 1, ..., n, j = 1, ..., ω + 1],

uAR

= [uAR

i (gi(aτi(j)), i = 1, ..., n, i = 0, ..., n, j = 1, ..., m + 1],

uA = [uA
i (gi(aρi(j)), i = 1, ..., n, i = 0, ..., n, j = 1, ..., m′ + 1]

with
gi(aτi(0)) = gi(aρi(0)) = αi

and
gi(aτi(m+1)) = gi(aρi(m′+1)) = βi.

Moreover, consider the following conditions:
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1. for all a ∈ AR, if a = aσi(j) = aτi(j) = aρi(j), then u
E(x,y)
i (gj

i ) = uAR

i (gi(aτi(j)) = uA
i (gi(aρi(j)),

2. u
E(x,y)
i (g1

i ) = uAR

i (gi(aτi(0)) = uA
i (gi(aρi(0)) = 0, i = 1, . . . , n

(u
E(x,y)
i (g(αi) = uAR

i (gi(αi) = uA
i (gi(αi) = 0),

3. u
E(x,y)
i (gω + 1i) = uAR

i (gi(aτi(m+1)) = uA
i (gi(aρi(m′+1)), i = 1, . . . , n

(u
E(x,y)
i (g(βi) = uAR

i (gi(βi) = uA
i (gi(βi) = 0),

4. for all j=1,...,m′ + 1 , uA
i (gi(aρi(j+1)) ≥ uA

i (gi(aρi(j)).

If conditions 1)-4) are satisfied then the following propositions are equivalent:

a) uAR

satisfies constraints EAR

,

b) uE(x,y) satisfies constraints E(x, y),

c) uA satisfies constraints EA.

Proof: a)⇒ b). For a) and conditions 1, 2 and 3, uE(x,y) satisfies constraints in EAR

. Due to
condition 1 and condition 4, for all a, b ∈ AR ∪ {x, y}

gi(a) ≥ gi(b) ⇒ uE(x,y)(gi(a)) ≥ uE(x,y)(gi(a))

and therefore uE(x,y) satisfies also all the constraints present in E(x, y) but not in EAR

.
b)⇒ c). For b) and conditions 1, 2, and 3, uA satisfies constraints in E(x, y). For condition 4,

uA satisfies also all the constraints present in EA but not in E(x, y).
c)⇒ a). For c) and conditions 1, 2 and 3, uA satisfies constraints in EAR

.

Proposition 4.2. Consider the following value dA(x, y) and DA(x, y)

dA(x, y) = Min{U(x) − U(y)}
s.t. set EA of constraints

(11)

DA(x, y) = Max{U(x) − U(y)}
s.t. set EA of constraints

(12)

For all x, y ∈ A dA(x, y) = d(x, y) and DA(x, y) = D(x, y).

Proof: Given uA satisfying set of constraints EA and uE(x,y) satisfying set of constraints E(x, y),
we say that they are corresponding if for all a ∈ AR ∪ {x, y} and for all i = 1, ..., n

uE(x,y)(gi(a)) = uA(gi(a)).

Let us remark that for each uA there is only one corresponding uE(x,y), while , in general, for each
uE(x,y) there are infinite corresponding uA.

We prove that U(x) − U(y) subject to constraints EA reaches its minimum for uA if and only if
U(x) − U(y) subject to constraints E(x, y) reaches its minimum for the corresponding uE(x,y).

For contraddiction, suppose that U(x) − U(y) subject to constraints EA reaches its minimum
in uA, but U(x) − U(y) subject to constraints E(x, y) reaches its minimum in u′E(x,y) which is not
corresponding to uA, i.e. for at least one a ∈ AR ∪ {x, y} and for at least one i = 1, ..., n we have
u′E(x,y)(gi(a)) 6= uA(gi(a)). Two cases are possible:

10



• dA(x, y) > d(x, y): in this case consider u′A such that for all i = . . . n

– u′A(αi) = u′E(x,y)(αi) = 0, u′A(βi) = u′E(x,y)(βi),

– for all a ∈ AR ∪ {x, y}
u′A(gi(a)) = u′E(x,y)(gi(a))

– for all a /∈ AR ∪ {x, y}

u′A(gi(a)) = min
{

u′E(x,y)(gi(b)) : b ∈ AR ∪ {x, y} such that gi(b) ≥ gi(a)
}

Note that u′E(x,y) and u′A satisfies conditions 1-4 of above proposition 4.1 and, as for hypothesis
u′E(x,y) satisfies constraints E(x, y), then u′A satisfies constraints EA. Calculating U(x)−U(y)
in correspondence of u′A we obtain U(x) −U(y) = d(x, y). Observe that in uA U(x) −U(y) =
dA(x, y). But dA(x, y) > d(x, y) and therefore it is false that U(x)−U(y) reaches its minimum
in EA in uA. Thus if dA(x, y) > d(x, y), then the minimum of U(x) − U(y) in EA would not
be dA(x, y), and this is absurd.

• dA(x, y) < d(x, y): consider uE(x,y) such that for all i = . . . n

– uE(x,y)(αi) = uA(αi) = 0, uE(x,y)(βi) = uA(βi),

– for all a ∈ AR ∪ {x, y}
uE(x,y)(gi(a)) = uA(gi(a))

Note that uE(x,y) and uA satisfies conditions 1-4 of above proposition 4.1 and, as for hypothesis
uA satisfies constraints EA, then uE(x,y) satisfies constraints E(x, y).

Calculating U(x)−U(y) in correspondence of uE(x,y) we obtain U(x)−U(y) = dA(x, y). Observe
that in u′E(x,y) U(x) − U(y) = d(x, y). But dA(x, y) < d(x, y) and therefore it is false that
U(x) − U(y) reaches its minimum in E(x, y) in u′E(x,y). Thus if dA(x, y) < d(x, y), then the
minimum of U(x) − U(y) in E(x, y) would not be d(x, y), and this is absurd.

As dA(x, y) > d(x, y) and dA(x, y) < d(x, y) are both absurd then dA(x, y) = d(x, y). An analogous
proof holds for DA(x, y) = D(x, y).

Now we are ready to make clear the semantics of the two relations %S and %W by giving hereafter
some of their properties.

Proposition 4.3. %W ⊇ %S

Proof: If for x, y ∈ A, we have that x %S y, then d(x, y) ≥ 0. As

D(x, y) = Maxs.t.E(x,y) {U(x) − U(y)} ≥ Mins.t.E(x,y) {U(x) − U(y)} = d(x, y) ≥ 0,

then x %W y.

In more intuitive terms, on the basis of the semantics of %W and %S, proposition 4.3 says that
if U(x) ≥ U(y) for all compatible value functions U , i.e. x %S y, then there is at least one value
function U ′ such that U ′(x) ≥ U ′(y), x %W y.
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Proposition 4.4. %S is a partial preorder (i.e, reflexive and transitive)

Proof: For all x ∈ A U(x) = U(x) such that Mins.t.E(x,y){U(x) − U(x)} = d(x, x) ≥ 0 and thus
x %S x, i.e. %S is reflexive.
Suppose %S is not transitive, i.e, ∃x, y, z ∈ A such that x %S y and y %S y but not x %S z. This
means d(x, y) ≥ 0, d(y, z) ≥ 0 and d(y, z) < 0 which, for above proposition 4.2, gives dA(x, y) ≥ 0,
dA(y, z) ≥ 0 and dA(y, z) < 0. This means that U(x) − U(z) takes its minimum value subject to
constraints EA in u∗A to which corresponds a value function denoted by U∗ such that U∗(x) < U∗(z).
But as we are supposing that dA(x, y) = mins.t.EAU(x) − U(y) ≥ 0 and dA(y, z) = mins.t.EAU(y) −
U(z) ≥ 0, then U(x) ≥ U(y) and U(y) ≥ U(z) for all the compatible value functions corresponding
to some uA satisfying constraints EA . Therefore we have also U∗(x) ≥ U∗(y) and U∗(y) ≥ U∗(z)
for the specific value function U∗. Consequently, one should get: U∗(x) ≥ U∗(y) ≥ U∗(z) > U∗(x),
which is absurd and therefore %S is transitive.

Proposition 4.5. %W is strongly complete (i.e, ∀x, y ∈ A, x %W y or y %W x)

Proof: Observe that

not x %W y ⇔ D(x, y) < 0 ⇔ Maxs.t.E(x,y) {U(x) − U(y)} < 0 (i)

but
Maxs.t.E(x,y) {U(x) − U(y)} = −Mins.t.E(x,y) {U(y) − U(x)}

and thus, after noting that E(x, y) = E(y, x)

Maxs.t.E(x,y) {U(x) − U(y)} < 0 ⇔ Mins.t.E(y,x) {U(y) − U(x)} > 0. (ii)

As
Maxs.t.E(y,x) {U(y) − U(x)} ≥ Mins.t.E(y,x) {U(y) − U(x)}

from (i) and (ii) we obtain

D(y, x) = Maxs.t.E(y,x) {U(y) − U(x)} > 0 ⇒ y %W x (iii)

In conclusion, from (i), (ii) and (iii) we get

not x %W y ⇒ y %W x

which is the thesis.

We can express the proof of proposition 4.5 in more intuitive terms as follows. Consider any
compatible value function U . For each pair x, y ∈ A, it holds U(x) ≥ U(y) or U(y) ≥ U(x), i.e.,
x %W y or y %W x.

Observe that %W is not necessarily transitive. In fact it is possible that for x, y, z ∈ A, x %W y,
y %W z but not x %W z. This can happen because there is no relation between

D(x, y) = Maxs.t.E(x,y) {U(x) − U(y)} ,

D(y, z) = Maxs.t.E(y,z) {U(y) − U(z)} ,

and
D(x, z) = Maxs.t.E(x,z) {U(x) − U(z)} .

In more intuitive terms, this means that there could exist one compatible value function U such that
U(x) ≥ U(y) and one compatible value function U ′ such that U ′(y) ≥ U ′(z), and nevertheless there
could be no value function U ′′ such that U ′′(x) ≥ U ′′(z).

Let us now explain how to exploit the two weak preference relations %S and %W :
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1. We get the strong ranking defined by:

• preference: x ≻S y ⇔ x %S y and not y %S x

• indifference: x ∼S y ⇔ x %S y and y %S x

• incomparability: x?Sy ⇔ not x %S y and not y %S x

2. We get the weak ranking defined by:

• preference: x ≻W y ⇔ x %W y and not y %W x

• indifference: x ∼W y ⇔ x %W y and y %W x

What are the relations between the %W and %S? Following proposition 4.6 gives a technical
result useful to discuss this point.

Proposition 4.6. The following equivalences hold: for all x, y ∈ A
d(x, y) ≥ 0 ⇔ D(y, x) ≤ 0
D(x, y) ≥ 0 ⇔ d(y, x) ≤ 0
d(x, y) = 0 ⇔ D(y, x) = 0

Proof: Let us remark that
d(x, y) = Mins.t.E(x,y){U(x) − U(y)} = −Maxs.t.E(y,x){U(y) − U(x)} = −D(y, x)
from which we obtain the thesis.

Note that it is impossible to infer one ranking from the other. One could think that %S and %W

could be dual, i.e., for all x, y ∈ A,

x %S y ⇔ not y %W x (i)

or, equivalently,
not x %S y ⇔ y %W x. (ii)

Taking into account the semantics of %S and %W , this would mean that for all compatible value
functions U(x) ≥ U(y) if and only if there would be no value function for which U(y) ≥ U(x), or,
equivalently, there would be no value function for which U(x) ≥ U(y) if and only if for all compatible
value functions U(y) ≥ U(x).
In fact, we have that

not x %W y ⇒ y %S x

because, for above proposition 4.6, one can get

not x %W y ⇔ D(x, y) < 0 ⇒ d(y, x) ≥ 0 ⇔ y %S x.

However we have not that

not x %W y ⇐ y %S x

because, for above proposition 4.6, one can get only

D(x, y) ≤ 0 ⇐ d(y, x) ≥ 0 ⇔ y %S x,

and not
not x %W y ⇔ D(x, y) < 0 ⇐ d(y, x) ≥ 0 ⇔ y %S x
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which is false in case D(x, y) = d(x, y) = 0 (i.e. in case U(x) = U(y) for all compatible value
functions U). Therefore above (i) is false.
Analogously, we have

not x %S y ⇒ y %W x

but we have not

not x %S y ⇐ y %W x.

Therefore also above (ii) is false.
In more intuitive terms, taking into account the semantics of %W and %S, (i) is false because we

can have that for all compatible value functions U(x) = U(y), such that it is true that for all com-
patible value functions U(x) ≥ U(y) (i.e. x %S y is true) but it is false that there is no compatible
value function such that U(y) ≥ U(x) (i.e. “not x %S y” is false). Analogously, one can see that in
case U(x) = U(y) for all compatible value functions, also (ii) is false.

Observe also that the fact that %W and %S are not related each other, does not imply that to
define both of them, and consequently the related weak and strong ranking, one needs to calculate
both d(x, y) and D(x, y), x, y ∈ A. In fact, according to proposition 4.6, the strong ranking can be
computed using either d(x, y) or D(x, y) as shown in Table 1 and 2. A similar remark concerns the
weak ranking which can be computed using either d(x, y) or D(x, y), as shown in Table 3 and 4.

y %S x not y %S x
d(y, x) > 0 d(y, x) = 0 d(y, x) < 0

x %S y
d(x, y) > 0 x ≻S y
d(x, y) = 0 x ∼S y x ≻S y

not x %S y d(x, y) < 0 y ≻S x y ≻S x x?y

Table 1: Strong ranking in terms of d(x, y)

not x %S y x %S y
D(y, x) > 0 D(y, x) = 0 D(y, x) < 0

not y %S x D(x, y) > 0 x?y x ≻S y x ≻S y

y %S x
D(x, y) = 0 y ≻S x x ∼S y
D(x, y) < 0 y ≻S x

Table 2: Strong ranking in terms of D(x, y)

Remark 4.1. In the absence of any pairwise comparison of reference alternatives, the strongly es-
tablished weak preference relation %S boils down to the weak dominance relation ∆ in A (a∆b iff
gi(a) ≥ gi(b), i = 1, .., n). Each pairwise comparison provided by the DM contributes to enrich %S,
i.e., it makes the relation %S true for at least one more pair of alternatives.

Remark 4.2. In the absence of any pairwise comparison of reference alternatives, the weakly estab-
lished weak preference relation %W is a complete relation such that for any pair (a, b) ∈ A × A
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y %W x not y %W x
d(y, x) > 0 d(y, x) = 0 d(y, x) < 0

x %W y
d(x, y) > 0 x ≻W y
d(x, y) = 0 x ∼W y x ∼W y

not x %W y d(x, y) < 0 y ≻W x x ∼W y x ∼W y

Table 3: Weak ranking in terms of d(x, y)

not x %W y x %W y
D(y, x) > 0 D(y, x) = 0 D(y, x) < 0

not y %W x D(x, y) > 0 x ∼W y x ∼W y x ≻W y

y %W x
D(x, y) = 0 x ∼W y x ∼W y
D(x, y) < 0 y ≻W x

Table 4: Weak ranking in terms of D(x, y)

• a %W b and b %W a ⇔ {[not(a∆b) and not(b∆a)] or (a∆b and b∆a)}

• a %W b and not(b %W a) ⇔ (a∆b and not b∆a)

Each pairwise comparison provided by the DM contributes to impoverish %W , i.e., it makes the
relation %W false for at least one more pair of alternatives.

Let us now consider the case where the polyhedron generated by EAR

of constraints is empty.
Let us remember that for proposition 4.1, in this case also the polyhedrons generated by E(x, y), for
all x, y ∈ A, and EA are empty. Such case may occur in one of the following situations:

• the preferences of the DM do not match the additive model;

• the DM may have made an error in his/her statements; for example stating that a ≻ b while b
dominates a;

• the statements provided the DM are in conflict because of his/her preferences are unstable,
some hidden criteria are taken into account, ...

In such case, the DM may want either to pursue the analysis with such an “inconsistency”(the
polyhedron generated by EAR

is empty) or to identify its reasons in order to remove it, and therefore
to define a new B′R whose corresponding corresponding E ′AR

generates a non empty polyhedron.
Let us consider the two cases.

Analysis with inconsistency

If the DM wants to pursue the analysis with the inconsistency he/she has to accept that some of
his/her pairwise comparisons of reference alternatives will not be reproduced by any utility function.
Note that, from a formal viewpoint, if the polyhedron generated by EAR

is empty, then %S and
%W cannot be determined according to the above definitions 4.1 and 4.2 which require that the
polyhedron of compatible value function is not empty as a prerequisite. Thus the acceptance of the
inconsistency means to mantain the set of exemplary pairwise comparisons BR, computing d(x, y)
and D(x, y) in a new set of constraints E ′AR

that “minimally” differs from the original EAR

. The
most straightforward solution is to replace the constraints

σ+(a) = 0, σ−(a) = 0, a ∈ AR
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with the constraint
∑

a∈AR

(σ+(a) + σ−(a)) ≤ δ,

where δ > 0 corresponds to an acceptable total error such that the resulting new set of constraints
E ′AR

is not empty.

On the basis of E ′AR

, for any pair (x, y) ∈ A, the set of constraints E ′(x, y) can be built as
the union of the constraints in E ′AR

with the constraints relative to the break points relative to
alternatives x, y /∈ AR. Thus preference relation %′S and %′W can be defined according to the above
definitions 4.1. and 4.2 with the difference that d(x, y) and D(x, y) are computed minimizing and
maximizing U(x) − U(y) on E ′(x, y) rather than on E(x, y).

Obviously, the strong and weak rankings resulting from these computations will not fully restore
the provided pairwise comparisons, i.e. there is at least one pair (x, y) ∈ BR such that

• x % y, but it is false that for all the compatible value functions U(x) ≥ U(y) (thus there is also
a compatible value function such that U(x) < U(y) and therefore not x %′S y), or

• x ≻ y, but it is false that for all the compatible value functions U(x) > U(y) (thus there is also
a value function such that U(y) ≥ U(x) and therefore y %′W x).

Next result stated that %′S and %′W mantain all the main properties of preference relations %S

and %W .

Proposition 4.7.

• %′S⊆%′W ,

• %′S is a complete preorder (i.e. transitive and strongly complete),

• %′W is strongly complete.

Proof: Analogous to the proof of propositions 4.3, 4.4 and 4.5.

Analysis removing the inconsistency

if the DM does not want to pursue the analysis with the inconsistency, it is necessary to identify
the inconsistent pairwise comparisons, so as to remove them. Remark that there may exist several
sets of pairwise comparisons which, once removed, make set EAR

of constraints non-empty. Here-
after, we outline the main steps of a procedure which identifies these sets.

Recall that the pairwise comparisons of reference alternatives are represented in the ordinal regres-
sion constraints (EAR

) by linear constraints. Hence, identifying inconsistent pairwise comparisons of
reference alternatives amounts at finding a minimal subset of constraints that, once removed from
EAR

, leads to a set of constraints generating a non-empty set polyhedron of feasible value functions.
The identification procedure is to be performed iteratively since there may exist several minimal
subsets of this kind.

Let associate with each pairwise comparison concerning reference alternatives a and b a new
binary variable va,b. Using these binary variables, we rewrite the first two constraints of set (E) as
follows:
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a ≻ b ⇔ U ′(a) − U ′(b) + Mva,b > 0

a ∼ b ⇔

{

U ′(a) − U ′(b) + Mva,b ≥ 0
U ′(b) − U ′(a) + Mva,b ≥ 0

(13)

where M is an arbitrary large positive number. Remark that if va,b = 1, then the corresponding
constraint is satisfied whatever the value function is, which is equivalent to deletion of this constraint.
Therefore, identifying a minimal subset of inconsistent pairwise comparisons can be performed by
solving the following mixed 0-1 linear program:

Min → f =
∑

(a,b)∈BR va,b

s. t.
a ≻ b ⇔ U ′(a) − U ′(b) + Mva,b ≥ ε

a ∼ b ⇔

{

U ′(a) − U ′(b) + Mva,b ≥ 0
U ′(b) − U ′(a) + Mva,b ≥ 0







∀(a, b) ∈ BR

ui(gi(aτi(j))) − ui(gi(aτi(j−1))) ≥ 0, i = 1, ..., n, j = 1, ..., m
ui(gi(aτi(1))) ≥ 0, ui(gi(aτi(m))) ≤ ui(βi), i = 1, ..., n,
ui(αi) = 0, i = 1, ..., n
∑n

i=1 ui(βi) = 1,
σ+(a) = 0, σ−(a) = 0, ∀a ∈ AR

(14)

where τi, already introduced in defining set of constraints EAR

, is the permutation on the set of
alternatives AR that reorders them according to the increasing evaluation on criterion gi, i.e.

gi(aτi(1)) ≤ gi(aτi(2)) ≤ . . . ≤ gi(aτi(m−1)) ≤ gi(aτi(m)).

The optimal solution of (14) indicates one of the subsets of smallest cardinality being the cause of
inconsistency. Alternative subsets of this kind can be found by solving (14) with additional constraint
that forbids finding again the same solution. Let f ∗ be the optimal value of the objective function of
(14) and v∗

a,b the values of the binary variables at the optimum. Let also S1 = {(a, b) ∈ BR : v∗

a,b = 1}.
The additional constraint has then the form

∑

(a,b)∈S1

va,b < f ∗ (15)

Continuing in this way, we can identify other subsets, possibly all of them. These subsets of pair-
wise comparisons are to be presented to the DM as alternatives solutions for removing inconsistency.
Such procedure has been described in [15]

5 Extensions

5.1 Specification of pairwise comparisons with gradual confidence levels

The UTAGMS method presented in the previous section is intended to support the DM in an inter-
active process. Indeed, defining a large set of pairwise comparisons of reference alternatives can be
difficult for the DM. Therefore, one way to reduce the difficulty of this task would be to permit the
DM an incremental specification of pairwise comparisons. This way of proceeding allows the DM to
control the evolution of the strongly and weakly established weak preference relations.

Another way of reducing the difficulty of the task is to extend the UTAGMS method so as to
account for different confidence levels assigned to pairwise comparisons. Let BR

1 ⊆ BR
2 ⊆ ... ⊆ BR

s be
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embedded sets of pairwise comparisons of reference alternatives. To each set of pairwise comparison
BR

t , t = 1, . . . s corresponds a set of constraints EAR

t generating polyhedrons of compatible value
functions P AR

t which are embedded in the inverse order of the related sets BR
t , i.e. P AR

1 ⊇ P AR

2 ⊇
... ⊇ P AR

s . We suppose that P AR

s 6= ∅ and therefore, due the fact that sets BR
t are embedded, P AR

t 6= ∅,

for all t = 1, . . . , s. If P AR

s = ∅ we consider only embedded sets until BR
p with p = max

{

t : P AR

t 6= ∅
}

and relabel p as s. For all x, y ∈ A, set of constraints Et(x, y) can be obtained from the set EAR

t

by adjoining the constraints relative to the breakpoints of x, y /∈ AR. For each t = 1, . . . , s, binary
preference relations %S

t and %W
t can be defined as follows.

Definition 5.1. %S
t (strongly established weak preference relation of level t, t=1,...,s) is defined as

follows: for all x, y ∈ A
x %S

t y ⇔ dt(x, y) ≥ 0

where: dt(x, y) = Min{U(x) − U(y)}
s.t. set Et(x, y) of constraints

(16)

Definition 5.2. %W
t (weakly established weak preference relation of level t, t=1,...,s) is defined as

follows: for all x, y ∈ A
x %W

t y ⇔ Dt(x, y) ≥ 0

where : Dt(x, y) = Max{U(x) − U(y)}
s.t. set Et(x, y) of constraints

(17)

Each time we pass from BR
t−1 to BR

t , t = 1, . . . , s − 1, we add to EAR

t−1, and consequently to
Et−1(x, y), new constraints concerning pairwise comparisons from BR

t \BR
t−1, thus the computations

of dt(x, y) and Dt(x, y), for all x, y ∈ A × A, using (16) and (17), respectively, proceeds iteratively.

The following result states that binary preference relations %S
t and %W

t , t = 1, . . . , s, inherit
properties of %S and %W .

Proposition 5.1.

• %S
t ⊆%W

t ,

• %S
t is a complete preorder (i.e. transitive and strongly complete),

• %W
t is strongly complete.

Proof: Analogous to the proof of propositions 4.3, 4.4 and 4.5.

A specific property of binary preference relations %S
t and %W

t , t = 1, . . . , s, is that, due to the
fact that P AR

t−1 ⊇ P AR

t , t = 2, . . . , k, they are nested partial preorders, i.e., %S
t−1⊇%S

t and %W
t ⊇%W

t−1,
t = 2, . . . , s.

Let λt be the confidence level assigned to pairwise comparisons from BR
t \B

R
t−1, BR

0 = ∅, t = 1, ..., s,
0 < λ1 < λ2 < . . . < λs = 1, t = 1, ..., s.

Using sets BR
1 , . . . BR

s and corresponding λ1, λ2, . . . , λs, a valued binary preference relations RS :
A × A → [0, 1] (more precisely RS : A × A → {0, λ1, λ2, . . . , λs}) can be build as follows: for all
x, y ∈ A
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• if there exists one t = 1, . . . , s such that x %S
t y, then

RS(x, y) = max
{

λt, t = 1, . . . , s : such that x %S
t y

}

• if not x %S
t y for all t = 1, . . . , s, then RS(x, y) = 0.

Analogously, a valued binary preference relations RW : A × A → [0, 1] (more precisely RW :
A × A → {λ1, λ2, . . . , λs, 0}) can be build as follows: for all x, y ∈ A

• if there exists one t = 1, . . . , s such that x %W
t y, then

RW (x, y) = max
{

λt, t = 1, . . . , s : such that x %W
t y

}

• if not x %W
t y for all t = 1, . . . , s, then RW (x, y) = 0.

It is interesting to investigate the properties of valued binary relations RS and RW . Let us
remember that a valued binary relation R defined on a set X, i.e. R : X × X → [0, 1], is

• reflexive, if for all x ∈ X, R(x, x) = 1,

• min-transitive, if for all x, y, z ∈ X

min(R(x, y), R(y, z)) ≤ R(x, z),

• strongly complete, if for all x, y ∈ X

max(R(x, y), R(y, x)) = 1.

A valued binary relation reflexive and min-transitive is defined fuzzy preorders.

Proposition 5.2. Valued binary relation RS is reflexive and min-transitive, and therefore it is a
fuzzy preorder. Valued binary relation RW is strongly complete.

Proof: For all x ∈ A and for all value functions U , therefore also for the value functions compatible
with Es(x, y), U(x) = U(x). Thus ∀x ∈ A ds(x, x) = Mins.t.Es(x,x) {U(x) − U(x)} = 0 and in con-
clusion ds(x, x) ≥ 0, which implies x %S

s x and therefore RS(x, x) = 1, i.e. RS is reflexive.

For all x, y, z ∈ X, two cases are possible:

• a) min(RS(x, y), RS(y, z)) = 0,

• b) min(RS(x, y), RS(y, z)) > 0.

Considering that anyway RS(x, z) ≥ 0, in case a), clearly,

RS(x, z) ≥ min(RS(x, y), RS(y, z)). (i)

In case b), for the definition of RS, we have that

min(RS(x, y), RS(y, z)) =

= min
{

max
{

λt, t = 1, . . . , s : such that x %S
t y

}

, max
{

λt, t = 1, . . . , s : such that y %S
t z

}}

=

= max
{

λt, t = 1, . . . , s : such that x %S
t y and y %S

t z
}

.
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Thus if
min(RS(x, y), RS(y, z)) = λr, (ii)

then, for definition of RS and for proposition 4.2, dr(x, y) = mins.t.EA
r
{U(x) − U(y)} ≥ 0 and

dr(y, z) = mins.t.EA
r
{U(y) − U(z)} ≥ 0. This means that U(x) ≥ U(y) and U(y) ≥ U(z) for all

the value functions compatible with BR
r , i.e. for all value functions U corresponding to some uA

satisfying constraints EA
r . Thus for all these value functions we have U(x) ≥ U(y) ≥ U(z), such that

dr(x, z) = mins.t.EA
r
{U(x) − U(z)} ≥ 0 and consequently x %S

r y. This implies that

max
{

λt, t = 1, . . . , s : such that x %S
t z

}

≥ λr.

and remembering the definition of RS and (ii) we obtain again (i). This means that valued binary
relation RS is min-transitive.

Observe that RW (x, y) < 1 means that

Ds(x, y) < 0 (iii)

From definition of Ds(x, y), (iii) gives

Maxs.t.Es(x,y) {U(x) − U(y)} < 0 (iv)

Remember that Es(x, y) = Es(y, x) and observe that

Maxs.t.Es(y,x) {U(y) − U(x)} = −Mins.t.Es(x,y) {U(x) − U(y)} (v)

From (iv), (v) and defintition of Ds(y, x) we get

Ds(y, x) = Maxs.t.Es(y,x) {U(y) − U(x)} ≥

≥ Mins.t.Es(y,x) {U(y) − U(x)} = −Maxs.t.Es(x,y) {U(x) − U(y)} > 0

which, for the definition of valued preference relation RW , gives RW (y, x) = 1. Thus we proved that,
if RW (x, y) < 1, then RW (y, x) = 1, i.e.

max(RW (x, y), RW (y, x)) = 1

which is the thesis.

5.2 Accounting for ordinal intensity of preference

Another preference information that can be provided by the DM concerns the intensity of preference
among two pairs of reference alternatives. Given two pairs of alternatives (a, b) ∈ BR and (c, d) ∈ BR

such that a ≻ b and c ≻ d, the DM can state : “a is preferred to b at least as much as c is preferred
to d”. Such statement means that for all compatible value functions U :

U(a) − U(b) > U(c) − U(d) (18)

To account for the above preference information, it is sufficient to include condition (18) in set
EAR) of constraints. Of course, consequently, condition (18) will be included in sets of constraints
E(x, y) for all x, y ∈ A and in set of constraints EA.

Conversely, ∀x, y, w, z ∈ A, it is possible to check whether or not condition

U(x) − U(y) > U(w) − U(z) (19)

hold for all compatible value functions U .
In order to do so, it is sufficient to check the feasibility of constraints E(x, y) and (19). Such

information may enrich the DM’s knowledge her preferences.
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6 Illustrative example

In this section, we illustrate how a decision aiding process can be supported by the UTAGMS method.
We consider the following hypothetical decision problem. AGRITEC is a medium sized firm (350
persons approx.) producing technical products for agriculture. The C.E.O., Mr Becault, intends
to double the production and multiply exports by 4 within 5 years. Therefore, he wants to hire
a new international sales manager. A recruitment agency has interviewed 17 potential candidates
which have been evaluated on 3 criteria (sales management experience, international experience,
human qualities) evaluated on a [0,100] scale. The evaluations of candidates are provided in Table
5. Without any further information, the computed partial preorder %S

0 corresponds to the strict
dominance relation on the set of alternative (See Figure 2).

Crit 1 Crit 2 Crit 3
Alexievich 4 16 63
Bassama 28 18 28
Calvet 26 40 44
Dubois 2 2 68
El Mrabat 18 17 14
Feeret 35 62 25
Fleichman 7 55 12
Fourny 25 30 12
Frechet 9 62 88
Martin 0 24 73
Petron 6 15 100
Psorgos 16 9 0
Smith 26 17 17
Varlot 62 43 0
Yu 1 32 64

Table 5: Evaluation Table

The C.E.O. has attended 4 interviews and can express a confident judgement about theses can-
didates: Mr Ferret and Frechet are equally good, Mrs Fourny is less acceptable and Mrs Fleichman
even less acceptable. Considering such initial information, the partial preorder %S

1 can be computed
(See Figure 3).

Considering this first result, Mr Becault is wishing to add further information, i.e., Ferret ∼
Frechet ≻ Martin ≻ Fourny ∼ El Mrabat ≻ Fleichman. However, as he did not attend the interview
of Mr El Mrabat and Mr Martin, his opinion about the relative ranking of these candidates is not
definitive.

It appears that the provided information is inconsistent, i.e., no additive model fits the provided
ranking. The analysis of the inconsistency reveals that the statement Ferret ∼ Frechet is incompatible
with the statement Fourny ∼ El Mrabat. In other words, it is necessary for Mr Becault to revise
one of these statements. As he did not interviewed Mr El Mrabat, he decides to remove him from
the reference ranking. The resulting reference ranking is compatible with an additive representation.
Figure 4 represents two embedded partial preorders:
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Figure 2: Partial preorder %S
0 corresponding to the dominance relation

• in bold arrows, the partial preorder computed from sure statements only, i.e., Ferret ∼ Frechet
≻ Fourny ≻ Fleichman

• in dashed arrows, the partial preorder computed from the consistent set of sure and less con-
fident statements (sure and less confident but without considering Mr El Mrabat), i.e., Ferret
∼ Frechet ≻ Martin ≻ Fourny ≻ Fleichman

The process can be pursued, Mr Becault adding in iteration t some new pairwise comparisons
of reference alternatives, thus enriching the resulting strong partial preorder, until %S

t is decisive
enough for the C.E.O. to make his decision.

7 Conclusion

The new UTAGMS method presented in this paper is an ordinal regression method supporting multiple
criteria ranking of alternatives; it is distinguished from previous methods of this kind by the following
new features:

• the method considers general additive value functions rather than piecewise linear ones,

• the final rankings are defined using all value functions compatible with the provided preference
information,

• the method provides two final rankings: the strong ranking identifies “sure” preference state-
ments while the weak ranking identifies “possible” preference statements,

• when the DM provides preference information that cannot be represented by an additive model,
the method identifies which pieces of the information underly this impossibility,
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Figure 3: Partial preorder %S
1

• the method does not require the DM to interpret (and even look at) the marginal value func-
tions,

• the DM can assign confidence levels to pieces of preference information,

• the method can account for ordinal intensity of preference, both a priori and a posteriori.
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Figure 4: Nested partial preorders %S
3 corresponding to confidence levels
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