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Abstract

ELECTRE TRI is a well-known method to assign a set of alternatives to a set of predefined categories, considering

multiple criteria. Using this method requires setting many parameters, which is often a difficult task. We consider the

case where the decision makers (DMs) in the decision process are unsure of which values should each parameter take,

which may result from uncertain, imprecise or inaccurately determined information, as well as from lack of consensus

among them. This paper discusses the synergy between two approaches developed independently to deal with this

difficulty. The first approach infers the value of parameters from assignment examples provided by the DMs, as an

elicitation aid. Each assignment example originates mathematical constraints that the parameter values should satisfy.

The second approach considers a set of constraints on the parameter values reflecting the imprecise information that the

DMs are able to provide. Then, it computes the best and worst categories for each alternative compatible with con-

straints, in order to present robust conclusions. Both approaches avoid asking for precise values for the parameters.

Rather, they proceed to solve the problem in a way that requires from the DMs much less effort. By integrating these

two approaches, this paper proposes a new interactive approach, where the insight obtained during robustness analyses

guides the DMs during the elicitation phase. � 2002 Published by Elsevier Science B.V.
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1. Introduction

Many real world decision problems can be
formalised using a multiple criteria approach, i.e.,

by defining a set of criteria evaluating the alter-
natives’ performances. This approach requires the
decision makers (DMs) to provide some preference
information in order to build a model that evalu-
ates the alternatives. Eliciting preference informa-
tion from the DMs and formalising it through
preferential parameters is hence a crucial phase in
a multiple criteria decision aid model. In the var-
ious aggregation procedures, these parameters
take the form of weights, aspiration levels,
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thresholds, etc. The values assigned to these pa-
rameters will determine how the evaluation of the
alternatives on the different criteria should be
combined.

However, DMs have difficulties in defining
precise values for preferential parameters. There
are various reasons for such problems concerning
preference elicitation: the data considered in the
decision problem might be imprecise or uncertain;
DMs may have a vague understanding of what the
parameters represent and their point of view can
evolve during the elicitation process. Moreover, in
group decisions, lack of consensus among DMs
can be also a critical issue.

Some authors (Mousseau, 1995; Bana e Costa
and Vansnick, 1994; Jacquet-Lagr�eeze and Siskos,
1982; Belton and Vickers, 1990) have proposed
preference elicitation techniques (PETs) to support
the analyst in assigning values to preferential pa-
rameters. Usually PETs proceed indirectly through
a questioning procedure and ‘‘translate’’ the DMs’
answers into values for the preferential parameters
(by applying the specific aggregation rule in use).

Such PETs often may provide the analyst with
several acceptable combinations of values for the
parameters, although they try to select a single
combination according to some measure of ap-
propriateness. If we consider all those acceptable
combinations of values for the parameters, then
one idea is to find conclusions that are valid for all
of (or most of) these combinations. Such a study
concerning the impact of the values of preferential
parameters on the overall preferences is called
robustness analysis (see Roy, 1998), typically
conducted as the last phase of a decision aid
process.

It seems obvious that these two stages of a de-
cision aiding process may interact. Robustness
analysis uses a set of acceptable parameter values
as input, while the elicitation of values for prefer-
ential parameters should be considered in relation
with the impacts of the parameters’ values on the
results. However, methodologies proposed in the
literature do not consider preference elicitation
and robustness analysis within an integrated ap-
proach.

The purpose of this paper is to show how these
two phases of a decision aiding process can be

viewed within a single integrated approach. Within
such an approach, the preference elicitation pro-
cess is a sequence of questions and answers. The
DMs are provided with the solution(s) derived by
the model using their answers to the preceding
questions. Hence, they can react interactively and
control their preference information with regard to
the conclusions that are robust. We will restrict the
analysis to the ELECTRE TRI method (see
Mousseau et al., 1999, 2000b; Roy and Bouyssou,
1993). However, we deem that the basic idea
underlying our work can be applied to a large class
of methods.

The paper is organised as follows. The next
section provides a brief reminder on the well-
known ELECTRE TRI method. Section 3 pre-
sents two approaches developed independently:
the first one consists of inferring values for the
ELECTRE TRI method’s parameters from as-
signment examples (see Mousseau and Slowinski,
1998; Mousseau et al., 2000a), whereas the second
one consists of computing robust assignments (i.e.,
the best and the worst assignment for each alter-
native) consistent with the constraints on param-
eters (see Dias and Cl�ıımaco, 1999, 2000). Both
approaches avoid asking for precise values for the
parameters. Rather, they proceed to solve the
problem in a way that requires much less cognitive
effort from the DMs. Section 4, after introducing
the concept of constructive learning procedures,
shows how these two approaches can be combined
into an integrated methodology to determine ro-
bust assignments interactively, within an aggrega-
tion/disaggregation approach. The computational
aspects are presented in Section 5 and an illustra-
tive example is provided in Section 6. Section 7
draws some conclusions and issues for further re-
search.

2. Brief presentation of the ELECTRE TRI method

This section gives a very brief overview of the
ELECTRE TRI method and defines some nota-
tions that will be used along the paper. For more
details, see Mousseau et al. (1999, 2000b) and Roy
and Bouyssou (1993).
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ELECTRE TRI is a multiple criteria sorting
method, i.e., a method that assigns alternatives to
pre-defined ordered categories delimited by refer-
ence alternatives called profiles. The assignment of
an alternative a results from the comparison of a
with the profiles defining the limits of the catego-
ries. Let F ¼ f1; 2; . . . ; ng denote the set of the
indices of the criteria g1; g2; . . . ; gn and let
B ¼ f1; 2; . . . ; pg denote the set of indices of the
profiles b1; b2; . . . ; bp defining p þ 1 categories, bh
being the upper limit of category Ch and the lower
limit of category Chþ1; h ¼ 1; 2; . . . ; p.

ELECTRE TRI builds a fuzzy outranking re-
lation S whose meaning is ‘‘at least as good as’’.
Preferences restricted to the significance axis of
each criterion are defined through pseudo-criteria
(see Roy and Vincke, 1984, for details on this
double-threshold preference representation). The
indifference and preference thresholds, qjðbhÞ and
pjðbhÞ, respectively, constitute the intra-criterion
preferential information. Two types of inter-crite-
ria preference parameters intervene in the con-
struction of S:
• the set of weight-importance coefficients w ¼

ðw1;w2; . . . ;wnÞ is used to aggregate the single-
criterion concordance indices cjða; bhÞ ðj ¼
1; . . . ; nÞ, which indicate how much each crite-
rion agrees with the assertion aSbh, into a global
concordance index cða; bhÞ, which quantifies the
relative importance of the coalitions of criteria
being in favour of the assertion aSbh (similarly,
cðbh; aÞ is computed concerning the assertion
bhSa);

• the set of veto thresholds ðv1ðbhÞ; v2ðbhÞ; . . . ;
vnðbhÞÞ is used to compute discordance indices;
vjðbhÞ, represents the smallest difference of per-
formances in criterion gj incompatible with the
assertion aSbh (and bhSa).
As the assignment of alternatives to categories

does not result directly from the relation S, an
exploitation phase is necessary; it requires the re-
lation S to be ‘‘defuzzyfied’’: the assertion aSbh is
considered to be valid if the credibility index of the
fuzzy outranking relation is greater than a ‘‘cutting
level’’ k (with k 2 ½0:5; 1	).

Two assignment procedures (optimistic and
pessimistic) are available to analyse the way al-
ternative a compares to the profiles, in order to

determine its category. The result of these two
assignment procedures differs when the alternative
a is incomparable with at least one profile bh.

3. Preference elicitation and robustness analysis for

ELECTRE TRI

3.1. Main features of the inferring procedure

Mousseau and Slowinski (1998) proposed an
inference procedure using the paradigm of aggre-
gation/disaggregation, outlined in Fig. 1. Its aim is
to find an ELECTRE TRI model as compatible as
possible with the assignment examples given by the
DMs. The assignment examples concern a subset
A
 � A of alternatives that the DMs can easily
assign to a category (or a range of consecutive
categories), taking into account their evaluation
on all criteria. The compatibility between the
ELECTRE TRI model and the assignment exam-
ples is understood as an ability of the ELECTRE
TRI method using this model to reassign the al-
ternatives of A
 in the same way as the DM did.

In order to minimise the differences between the
assignments made by ELECTRE TRI and the
assignments made by the DM, an optimisation
procedure is used. The DMs can tune up the model
in the course of an interactive procedure. They
may either revise the assignment examples (i.e.,
remove and/or add some alternatives from/to A
,
change the assignment of some alternatives of A
)
or define constraints for some model parameters
(i.e., ordinal information on the importance of
criteria, incomplete definition of some profiles
defining the limits between categories, . . .) basing
on their own intuition.

When the model is not perfectly compatible
with the assignment examples, the procedure can
detect all ‘‘hard cases’’, i.e., the alternatives for
which the assignment computed by the model
strongly differs from the DMs’ assignment. The
DMs could then be asked to reconsider their
judgement.

The interaction procedure presented in Fig. 1
(grey items refer to the phases in which the inter-
vention of DMs is required) stops when the DM is
satisfied with the values proposed for the param-
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eters. These values should be compatible with a set
of assignment examples and possibly with addi-
tional constraints on the parameters value. The
interaction provides the DMs a so-called ‘‘con-
structive learning’’ context in which they can im-
prove their understanding on how the assignment
model is affected by the values of the parameters
and find a set of parameters values that are con-
sistent with the assignment examples.

This methodology can be quite helpful when
eliciting preferences in practical decision situa-
tions. However, Mousseau and Slowinski (1998)

do not provide much support to the DMs in the
management of the interaction. There is a lack of
control of the interaction process which is due to
the absence of features that would ensure a certain
form of ‘‘cognitive convergence’’ of the procedure.

3.2. A procedure to obtain robust conclusions

We consider in this section a situation where
several combinations of values for the parameters
are acceptable. Such a context is usually desig-

Fig. 1. General scheme of the inference procedure.
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nated as a situation of ‘‘imprecise information’’
(see Athanassopoulos and Podinovski, 1997),
‘‘incomplete information’’ (see Weber, 1987),
‘‘partial information’’ (see Hazen, 1986) or ‘‘poor
information’’ (see Bana e Costa and Vincke, 1995).
We will use the expression ‘‘imprecise informa-
tion’’, meaning that it does not impose a precise
combination of values for the parameters. The set
of possible combinations is expressed as con-
straints, rather than as a discrete set of values. The
constraints may be explicitly provided by the DMs
or inferred from holistic comparisons (as in
Mousseau, 1993, 1995). Although constraints are
not always easy to provide, requiring precise values
for the parameters is obviously more demanding.

Let T represent the set of all acceptable com-
binations of parameter values. One can determine
the range of any credibility index subject to T (for
details, see Dias and Cl�ıımaco, 1999), which may be
used to determine the best and worst categories to
which an alternative may be assigned, subject to T

(for details, see Dias and Cl�ıımaco, 2000). This
approach determines the best and the worst cate-
gories, Bðai; T Þ and W ðai; T Þ, respectively, to which
alternative ai can be assigned by ELECTRE TRI
subject to the constraints defining T. If Bðai; T Þ
coincides with W ðai; T Þ, then the method is able to
assign ai to a single category, despite the impreci-
sion regarding the input.

Three types of information are considered in
Dias and Cl�ıımaco’s approach:
1. Robust conclusions as regards T: stating that ai

belongs to a category no worse than W ðai; T Þ is
a robust conclusion, and so is stating that ai be-
longs to a category no better than Bðai; T Þ.

2. Identification of the alternatives that are more
affected by the imprecision of data. Indeed, it
may be interesting to know that some alterna-
tives have a wide range of categories to which
they may be assigned, in contrast with some
other alternatives that are precisely assigned
to a single category.

Fig. 2. General scheme of the robustness analysis procedure.
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3. ‘‘Extreme’’ combinations of parameter values
corresponding to best-case and worst-case as-
signments.
We may consider the use of this type of ap-

proach to be an interactive learning process, where
the results of the analysis may stimulate the DMs
to discuss and revise their inputs, as outlined in
Fig. 2. In general, DMs could begin with little
information (starting with a set T not too con-
strained) and then progressively enrich that in-
formation (reducing T) as they form their
judgements. This type of approach then tries to
identify conclusions that can be accepted as valid,
despite the lack of precision present in the infor-
mation they provide.

Dias and Cl�ıımaco (1999, 2000) addressed a
general case that involves solving many non-linear
maximisation/minimisation problems, which be-
come linear programs when veto thresholds are
fixed or constrained to intervals. They did not
address explicitly the problem of obtaining those
constraints from the DMs. Therefore, the inte-
grated approach presented in the next section
can be seen as a complement to the robustness
analysis approach, to the same extent that it may
be seen as a complement to the inference approach
in Section 3.1.

4. A new constructive learning procedure

4.1. The constructive learning process

The process that leads to the definition of a
multiple criteria sorting model can be analysed
according to different perspectives. The role of
assignment examples, constraints on preference
parameters and the way the model can be vali-
dated are very different when they are con-
ceived according to a descriptive or constructive
process.

Defining a sorting model can be viewed in a
descriptive learning perspective, i.e., as a process in
which the model reproduces a class of input–out-
put behaviour accounting for a set of learning
examples. Machine learning (Michalski, 1983;
Quilan, 1986) typically enters this perspective in
which the definition of the model should optimise

the explanation of the examples. Hence, the va-
lidity of the obtained model is grounded on the
input data and its ability to reproduce similar
classifications. The role of the DMs in the defini-
tion of the model is reduced to providing learning
examples. Different models that equally explain
the data are considered equivalent.

On the other hand, a constructive learning per-
spective regards the definition of the sorting model
as a result between the interaction of the assign-
ment examples and the DMs’ points of view. The
process should result in a model that both explains
the examples and accounts for the DMs’ percep-
tion of the problem. During the construction
process, the DMs might modify some assignment
examples while increasing their understanding of
the problem. The very nature of this constructive
learning process is to provide the DMs with an
interactive context in which they may check the
impact of assignment examples on the model pa-
rameters, in order to find a model that fits both a
set of learning examples and their perception of
the sorting problem.

The combined approach proposed in this paper
falls into the context of constructive learning, as
the integration of the DMs in the process of de-
fining the sorting model is considered a crucial
point.

4.2. A combined approach

We can combine the two approaches pre-
sented in Sections 3.1 and 3.2 to take advantage
of both of them. Although the methodologies
proposed by Mousseau and Slowinski (1998) and
Dias and Cl�ıımaco (1999, 2000) apply when all
preferential parameters are considered, we re-
strict the presentation of our ideas to the case
where only the weights w ¼ ðw1;w2; . . . ;wnÞ and
cutting level k are variables and when no dis-
cordance occurs (the veto thresholds do not play
any role). Hence, the optimisation problems to
be solved are linear programs, which are much
easier to solve than the nonlinear problems that
usually arise when all the parameters are being
inferred at the same time. However we do not
believe that a procedure that infers all the pa-
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rameters simultaneously is the best way of elic-
iting preferences: such procedure gives a poor
control of the preference elicitation during the
interaction with the DM. We rather recommend
to elicit interactively subsets of preferential pa-
rameters, the other parameters being fixed.

4.2.1. Input information required from the DMs
The procedure we propose does not require the

DMs to provide precise values for the preferential
parameters. At iteration k, the input may consist
of:
1. Explicit preferential information i.e., linear

constraints on the parameter values, which are
always written in the same manner. Specifically
take the form

Xn

j¼1

wj � cjða; bÞ6
Xn

j¼1

wj � cjðb; aÞ;

where a and b correspond to any real or ficti-
tious alternative. These constraints usually
correspond to pair-wise comparisons of coali-
tions of criteria. These constraints define a
domain T w

k .
2. Assignment examples concerning a subset of al-

ternatives A
 � A that the DMs are able to as-
sign holistically to a category (or a range of
categories), defining a domain T a

k .
Both types of input information take the form

of constraints on the values of preferential
parameters, since assignment examples are
expressed in the model through a set of linear
constraints (using the ELECTRE TRI pessimistic
assignment rule). Let Tk ¼ T w

k \ T a
k denote the set

(a polyhedron) of all acceptable combinations
t ¼ ðw1; . . .wn; kÞ corresponding to the input
information provided by the DMs at the iteration
k (either through assignment examples or con-
straints on the parameter values). At each itera-
tion the input information may be inconsistent or
not, i.e., the set Tk may be empty or not.

4.2.2. Output information provided to DMs
The information provided to the DMs at

iteration k is different depending on the consis-
tency of the input information (details concerning

the computation of these results are given in
Section 5):

(a) The input information is considered as
inconsistent if Tk is empty, i.e., there is no combi-
nation of parameter values that fully restores
the assignment examples and simultaneously con-
forms to the additional constraints. In this case we
can provide the DMs with:
1. A combination of parameter values that least

violates the constraints that define Tk. It can
occur that multiple optimal solutions exist.
However, the choice of one among these op-
tima is not a crucial issue in our methodology.
All of these optima restore the decision ma-
ker’s examples (when the information is con-
sistent); moreover the DM can revise his/her
judgments after each iteration. Hence, he/she
can select an appropriate set of parameter val-
ues, during the iteration process, by revising
the constraints and as a result of a learning
process.

2. The constraints defining T a
k that are the most

difficult to satisfy, which yield the alternatives
from A
 that are the most difficult to assign.

3. The constraints defining T w
k that are the most

difficult to satisfy.
4. Proposals of modification of Tk so that this

polyhedron does not become empty.
(b) The input information is consistent, i.e., Tk

is not empty. In this case we can provide the DMs
with:
1. A combination of parameter values t
k 2 Tk that

best match the provided information.
2. The worst category W ðai; TkÞ and the best cate-

gory Bðai; TkÞ to which each alternative ai 2 A
can be assigned to for any combination of pa-
rameter values in Tk;
(Note: Dias et al. (2000) show that when
an alternative ai is such that cjðai; bhÞ ¼
cjðai; bhþ1Þ 8j (bh and bhþ1 defining a category
Ch in the range ½W ðai; TkÞ;Bðai; TkÞ	), there exists
no t 2 Tk such that ai ! t Ch (where the symbol
! denotes the assignment operation)).

3. The category in ½W ðai; TkÞ;Bðai; TkÞ	 corre-
sponding to t
k , for each alternative ai 2 A.

4. ‘‘Extreme’’ combinations tBk ðaiÞ and tWk ðaiÞ lead-
ing to the best and worst case assignment, re-
spectively, for each alternative ai 2 A.
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5. For each category Ch to which any alternative
ai 2 A can be assigned, a ‘‘typical’’ combination
of parameter values leading to this assignment.

4.2.3. Interaction process
The proposed procedure is designed to be

used interactively, i.e., the output at a given

iteration k is used to guide the DMs’ discussion
and revision of the input for the following
iteration (Tkþ1). Fig. 3 presents the general
scheme of the procedure. The nature of the
interaction depends on the consistency of the
input information provided at the current itera-
tion.

Fig. 3. The proposed procedure.
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(a) If Tk ¼ ;, the interaction aims at eliminating
the inconsistency. The DMs should react by a
modification or a deletion of a constraint. Several
elements can support them in such revision of their
input information:
• the list of assignment examples that are the

most difficult to restore in the ELECTRE TRI
model are the ones that should be considered
first for an eventual modification or deletion;

• similarly, the constraints defining T w
k that are the

most difficult to respect should be considered
first;

• the deletion of specific subsets of constraints can
lead to a new polyhedron Tkþ1 which is not
empty. Several such sets can be computed and
presented to the DMs for them to choose.
(b) If Tk 6¼ ;, the interaction aims at reducing

the set of possible combinations of parameter
values. Hence, the DMs should react in order to
modify a constraint and/or add a new one. Several
elements can support the DMs in such revisions of
their input information:
• the combinations of parameters values t
k , t

B
k ðaiÞ

and tWk ðaiÞ may suggest additional constraints
for the DMs define Tkþ1; for instance, if t
k is such
that k ¼ 0:5, the DMs might react by stating
that k P 0:7;

• the ranges of [W ðai; TkÞ;Bðai; TkÞ] for all ai 2 A
provide the DMs with useful information for se-
lecting an alternative to be added to A
; alterna-
tives with the widest ranges are the most affected
by the imprecision; hence, giving additional in-
formation about their assignment should be
highly informative; we conjecture that on aver-
age there ought to be less iterations to reach ac-
ceptably precise assignments when DMs choose
alternatives with larger variability as assignment
examples.
This interactive procedure is designed in such a

way that the DMs can start the first iteration with
very little information. Each iteration will provide
opportunity to add, delete or modify a specific
supplementary constraint. Adding only a single
piece of information at each iteration facilitates
the control of the information supplied by the
DMs.

As the DMs add constraints during the suc-
cessive iterations, the domain Tk becomes more

constrained and the range of categories
½W ðai; TkÞ;Bðai; TkÞ	 (for each ai 2 A) is reduced
or at least remains invariant (unless the domain
Tk becomes empty, meaning that the new con-
straints contradict some previous ones and that
DMs should revise Tk). The interactive procedure
stops when DMs are satisfied and the set Tk as
well as the assignment of alternatives matches
their view of the decision problem. The final
results are:
• a set of constraints and assignment examples

defining a set Tk of acceptable combination of
parameter values;

• an inferred combination of parameter values t
k
defining a model in a precise manner;

• a precise assignment or range of assignments for
each alternative in A that is robust with respect
to Tk.
However, we want to emphasise the fact that

this interactive process does not aim only at pro-
viding the above-mentioned results. During the
interaction, the DMs will increase the insight on
their view of the problem and will possibly modify
their opinions. This interaction will provide them
with an opportunity to learn about their prefer-
ences and increase their understanding of the de-
cision problem.

5. Computational aspects

At each iteration k, results are computed ac-
cording to Tk in order to provide the DMs results
on the basis of which they can refine the input
information Tk and define Tkþ1. The computations
are different depending on the consistency of the
input information Tk.

5.1. Computations when Tk is inconsistent

5.1.1. Parameter values that least violates the
constraints that define Tk

In order to determine the combination of values
for w and k that least violate the constraints de-
fining Tk, we solve the following linear program
(LP1):
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LP1 Max a

s:t:

a6 xi 8i such that ai 2 A
; ð1Þ
a6 yi 8i such that ai 2 A
; ð2Þ
a6 sq 8q ¼ 1; . . . ; nc; ð3Þ
a6 smin

k ; ð4Þ
a6 smax

k ; ð5Þ
Xn

j¼1

wjcjðai; bli�1Þ � xi ¼ k

8i such that ai 2 A
; ð6Þ
Xn

j¼1

wjcjðai; buiÞ þ yi ¼ k þ e

8i such that ai 2 A
; ð7Þ
Xn

j¼1

wjcjða0; a00Þ

�
Xn

j¼1

wjcjða00; a0Þ � zq ¼ 0

8q ¼ 1; . . . ; nc
8a0; a00 real or fictitious

alternatives; ð8Þ
k � kmin � smin

k ¼ 0; ð9Þ
k � kmax þ smax

k ¼ 0; ð10Þ
e0 6wj 6 0:5� e0; j 2 F ;

Xn

j¼1

wj ¼ 1; ð11Þ

0:56 k6 1; ð12Þ
xi; yi; sqsmin

k ; smax
k ; a free; ð13Þ

where
• li (ui, respectively) is the index of the lowest cat-

egory (highest category, respectively) to which
the alternatives ai 2 A
 can be assigned, accord-
ing to the opinion of the DMs (li ¼ ui, means
that the DMs are able to assign the alternatives
ai to a single category).

• kmin (kmax, respectively) is the lower bound
(upper bound, respectively) for the cutting level
k. This information stated by the DMs is such
that 0:56 kmin

6 kmax
6 1.

• T a
k is the set of combinations of weights that

conform to the constraints implied by the as-
signment examples at iteration k. In the mathe-
matical program below, T a

k corresponds to
constraints (6) and (7).

• T w
k is the set of combinations of parameters val-

ues that conform to the additional information
provided by the DMs at iteration k. T w

k is de-
fined by nc constraints (8) of the form

Xn

j¼1

wjcjða0; a00Þ �
Xn

j¼1

wjcjða00; a0ÞP zq

8q ¼ 1; . . . ; nc;

(where a0 and a00 denotes any real or fictitious
alternative) and constraints (9) and (10) defin-
ing bounds for k.

• � and �0 represents an arbitrary small positive
value.

• xi and yið8ai 2 A
Þ; sq ðq ¼ 1; . . . ; ncÞ, smin
k and

smax
k , are the slack variables that account for the
‘‘degree to which’’ a constraint is fulfilled; if neg-
ative, the constraint is violated and Tk is empty.

5.1.2. Alternatives from A
 that are the most
difficult to assign

In LP1, these alternatives correspond to the ai
such that xi ¼ a and/or yi ¼ a at the optimum.

5.1.3. Constraints defining TW
k that are the most

difficult to respect
In LP1, these constraints correspond to the

ones for which sq ¼ a at the optimum.

5.1.4. Proposals of modification of Tk
Proposals of modification of Tk correspond to

subsets of constraints that, when removed, lead to
a consistent information (see for example Chin-
neck, 1996).

5.2. Computations when Tk is consistent

5.2.1. Parameter values t
k 2 Tk that best match the
provided information

The set of parameter values for w and k is
contained in the optimal solution of LP1 (see
Section 5.1.1).
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5.2.2. Best and worst categories to which
each alternative ai 2 A can be assigned considering
Tk

The alternative ai belongs to the highest cate-
gory Ch such that aiSbh�1, i.e.,

ai !t Ch ()
Xn

j¼1

wjcjðai; bhÞ � k < 0 ^

Xn

j¼1

wjcjðai; bh�1Þ � k P 0:

To determine the best possible assignment
Bðai; TkÞ for the alternative ai considering the
domain Tk of possible values for w and k, we
perform successive tests by maximising the
credibility (h ¼ 1; 2; . . . ; p):

LP2 max
Xn

j¼1

wjcjðai; bhÞ � k

s:t: t ¼ ðw; kÞ 2 Tk:

To determine the worst possible assignment
W ðai; TkÞ for the alternative ai, we perform the
tests by minimising the credibility
(h ¼ 1; 2; . . . ; p):

LP3 min
Xn

j¼1

wjcjðai; bhÞ � k

s:t: t ¼ ðw; kÞ 2 Tk:

5.2.3. ‘‘Extreme’’ combinations tBk ðaiÞ and tWk ðaiÞ
leading to the best and worst case assignment

tBk ðaiÞ and tWk ðaiÞ are obtained directly by
solving LP2 and LP3.

Table 1

Assignment ranges after the first iteration
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5.2.4. For each category Ch to which any alternative
ai 2 A can be assigned, a ‘‘typical’’ combination of
values

This result is obtained by the resolution of
LP1 (see Section 5.1.1) to which the constraints
corresponding to the assignment of ai to Ch are
added.

5.2.5. For each category Ch to which ai 2 A cannot
be assigned, the constraints that make impossible for
ai to be assigned to Ch

In order to compute the constraints that forbid
the assignment of an alternative ai 2 A to a cate-
gory Ch, we may proceed as follows:
1. Add the assignment example ai !t Ch, to Tk.

The information becomes inconsistent.
2. Compute proposals of modification of Tk that

make the information consistent, while contain-
ing the constraints corresponding to the assign-
ment example ai ! Ch.

6. An illustrative example

In order to illustrate the proposed methodol-
ogy, let us consider the data from a real world
application in the banking sector (see Dimitras
et al., 1995). We consider a model that aims at
assigning 40 alternatives to five categories on the
basis of their evaluations on seven criteria. The
data are also presented in Dias et al. (2000).

Using this data we simulate a posteriori the
modelling process that could have taken place
using our methodology. We consider a hypothet-
ical preference elicitation process, supposing that
the DMs were able to elicit directly the limits of
categories bh and the thresholds qjðbhÞ and pjðbhÞ,
but had difficulties with assigning values for the
importance coefficients wj and the cutting level k.

Let us suppose that the only initial information
that the DMs are able to express is that the most
important criterion is g2 (i.e., w2 Pwj; j 6¼ 2), and

Table 2

Assignment ranges after the second iteration
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no assignment example is provided by DMs.
Suppose also that k 2 ½0:5; 0:99	. This information
is obviously consistent and t
0 is such that
w2 ¼ 0:49, wj ¼ 0:085 8j 6¼ 2, and k ¼ 0:5. Ranges
½W ðai; T0Þ;Bðai; T0Þ	 8ai 2 A,arepresentedinTable1
in which the grey cells correspond to possible as-
signments and the marked cells correspond to the
assignments made by ELECTRE TRI pessimistic
rule using t
0. Alternatives are sorted according to
their assignment range.

Analysing these first results, the DMs are
surprised with the wide range (C1 to C5, except
C2 as cjða28; b1Þ ¼ cjða28; b2Þ 8j 2 F , see Dias et al.,
2000) of possible assignments for a28. Considering
evaluations of a28 on the criteria and their expertise
of the problem, the DMs state that a28 should
be assigned to category C1. Considering T1 (the
information is still consistent), computations
show that t
1 is such that w2 ¼ 0:49; w5 ¼ 0:25;

w7 ¼ 0:22; wj ¼ 0:01 for all other criteria and
k ¼ 0:99. Ranges ½W ðai; T1Þ;Bðai; T1Þ	 8ai 2 A, are
presented in Table 2.

Considering the result presented in Table 2, the
DMs are surprised that the alternative a1 is as-
signed to category C4. They consider that this al-
ternative should be assigned to category C5.
However, it is clear that adding the assignment
example ‘‘a1 ! C5’’ would make T2 inconsistent
(see Table 2). Though, we determine which con-
straints contradict such assertion, i.e., the subsets
of constraints with minimal cardinality whose de-
letion from T2 makes the information consistent.
In our case, the deletion of one constraint can
make T2 consistent. This constraint is one among
the following:
• a1 ! C5;
• a28 ! C1;
• w2 Pw5.

Table 3

Assignment ranges after the third iteration
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Let us suppose that DMs are rather confident
in the two assignment examples but feel less
confident about the constraint concerning w2 and
w5, which they accept to remove. Considering
the updated information (T3 is not empty), t
3
is such that w5 ¼ 0:49; w2 ¼ 0:235; w4 ¼ w6 ¼
0:1225;wj ¼ 0:01; j ¼ 1; 3; 7, and k ¼ 0:6225.
Ranges ½W ðai; T3Þ; Bðai; T3Þ	 8ai 2 A, are presented
in Table 3.

At this stage, the DMs would like to add a new
assignment example by stating that the alternative
a31 is assigned to category C2. The new information
is consistent and t
4 is such that w5 ¼ 0:48;
w2 ¼ 0:282; w4 ¼ 0:198, wj ¼ 0:01; j ¼ 1; 3; 6; 7,
and k ¼ 0:604. Ranges ½W ðai; T4Þ;Bðai; T4Þ	 8ai 2 A,
are presented in Table 4.

The DMs then add a supplementary constraint
concerning the weights w3 Pw4. Adding this con-
straint makes the information inconsistent (T5 is

empty). It is however possible to determine a set of
parameters that least violates the information
contained in T5: w5 ¼ 0:333; w2 ¼ w3 ¼ 0:160;
w4 ¼ w6 ¼ 0:166; w1 ¼ w7 ¼ 0:01 and k ¼ 0:667.
In this case, we determine which constraints
contradict such assertion, i.e., the subsets of con-
straints with minimal cardinality whose deletion
from T5 makes the information consistent. In our
case, the deletion of one constraint can make T5

consistent. This constraint is one among the
following:
• a1 ! C5;
• a31 ! C2;
• w3 Pw4.

Let us suppose that the DMs decide to revise
their views concerning alternative a1 in such a way
that a1 ! ðC4 or C5Þ. Results are computed con-
sidering this updated information. T6 is consistent
and t
6 is such that w5 ¼ 0:406; w2 ¼ 0:396;

Table 4

Assignment ranges after the fourth iteration
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w3 ¼ 0:158; wj ¼ 0:01; j ¼ 1; 4; 6; 7 and k ¼ 0:743.
Ranges ½W ðai; T6Þ;Bðai; T6Þ	 8ai 2 A, are presented
in Table 5.

Afterwards, the DMs add a new assignment
example a16 ! C3, yielding T7 (consistent) and
later they add the assignment example a14 ! C2.
The new information is still consistent (T8 is not
empty) and t
8 is such that w5 ¼ 0:225; w2 ¼ 0:295;
w3 ¼ 0:225; w7 ¼ 0:225; wj ¼ 0:01; j ¼ 1; 4; 6 and
k ¼ 0:846. Ranges ½W ðai; T8Þ;Bðai; T8Þ	 8ai 2 A, are
presented in Table 6.

The interaction process stops here, as the
DMs are satisfied with this assignment table and
the corresponding values of preferential param-
eters.

At the end of this interactive elicitation process,
the DMs have a set of weights and a value for the
cutting level defining an assignment model.

Moreover, these values for w and k are justified by
the information they have provided in the process,
i.e., the assignment examples and constraints on
the parameters.

This example of a fictitious elicitation process
shows how the interaction is made possible
through the proposed procedure. We would like
to emphasise that the procedure is designed in
such a way that DMs can learn about their
preferences during the process. For instance,
their opinion concerning the assignment of
alternative a1 changed during the process.

Another important issue illustrated through
this example deals with the ‘‘amount of infor-
mation’’ provided at each iteration. In our ex-
ample, only a single piece of information is added
at each iteration. In this way, the DMs keep a
good control of the interaction. This feature is

Table 5

Assignment ranges after the sixth iteration
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particularly important for understanding the
inconsistencies.

7. Conclusion

A classical view of a multiple criteria decision
aiding process is frequently the following: (1) defi-
nition of the criteria and alternatives, (2) choice of
an aggregation model and preference elicitation,
(3) use of the aggregation model, (4) robustness
analysis and recommendations to the DMs.

Preference elicitation and robustness analysis
are usually considered separately. In this paper, we
show how these two phases of a decision aiding
process can be viewed within a single integrated
approach. We present a new approach to elicit an
ELECTRE TRI model in a way that integrates the

preference elicitation phase and the construction
of robust conclusions: in our interactive proce-
dure, the information provided by the DMs for
preference elicitation purposes is considered as
compared to its implications on the robust con-
clusions that can be derived.

Although this work is dealing with the ELEC-
TRE TRI method only, we claim that the basic
ideas underlying our work can be applied to a
large class of sorting methods such as additive
utility sorting methods (UTADIS), rough sets
based classifiers, etc.

Further work should be pursued in order to
support the DM in the resolution of inconsis-
tencies appearing during the elicitation process.
Moreover, a software implementation is being
developed in order to facilitate the use of the
methodology in real world case studies.

Table 6

Assignment ranges after the eighth iteration
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