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Abstract

In ELECTRE methods, the construction of an outranking relation S amounts at
validating or invalidating, for any pair of alternatives (a,b) € A, an assertion aSb.
This comparison is grounded on the evaluation vectors of both alternatives, and on
additional information concerning the DM’s preferences, accounting for two condi-
tions: concordance and non-discordance.

In decision processes using these methods, the analyst should interact with DM(s)
in order to elicit values for preferential parameters. This can be done either di-
rectly or through a disaggregation procedure that infers the parameters values from
holistic judgements provided by the DM(s). Inference is usually performed through
an optimization program that accounts for the aggregation model and minimizes
an “error function”. Although disaggregation approaches have been largely used
in additive models, only few advances have been made towards a disaggregation
approach for ELECTRE type methods. This probably reflects the “optimization
unfriendly” character of the most recent ELECTRE methods.

In this paper we are concerned with a slight adaptation of the valued outranking
relation used in the ELECTRE III and ELECTRE TRI that preserves the original
ideas and is more optimization-friendly for parameter inference programs. Such
modification is shown to preserve the original discordance concept. We show that
the modified outranking relation makes it easier to solve inference programs.

Keywords: Multiple Criteria Analysis, Valued QOutranking Relations, Veto effect,
Parameter Inference Procedures, ELECTRE
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Introduction

Let us consider a decision situation involving a finite set of alternatives A = {ay,aq,...,a;}
evaluated on n criteria g1, ga, ..., gn*, (F = {1,2,...,n} denotes the set of criteria indices). In
the field of Multiple Criteria Decision Aiding (MCDA), a class of methods ground the recom-
mendations to the Decision Maker(s) (DM(s)) on the construction of one (or several) binary
relation(s) representing the preference among pairs of alternatives (see [22]) rather than on the
construction of a synthesizing utility function (see [10]). These methods are usually referred as
outranking methods in the MCDA literature and belong to the so-called European school of
MCDA (see [24]).

The construction of an outranking relation S amounts at validating or invalidating, for any
pair of alternatives (a,b) € A%, an assertion aSb, whose meaning is “a is at least as good as
b” or synonymously “a is not worse than b”. This comparison is grounded on the evaluation
vectors of both alternatives a and b, i.e., (g91(a), g2(a), ..., gn(a)) and (g1(b), g2(b), -.., gn(b)), and
on additional information concerning the DM’s preferences. To validate a statement aSb, two
basic conditions should be verified: concordance and non-discordance (or non-veto).

A criterion gy is said to be concordant with the assertion aSb if a is at least as good as b
with respect to criterion g;. The concordance condition is fulfilled for the assertion aSb iff the
subset of criteria concordant with aSb is “sufficiently” large. A criterion g is said to oppose a
veto to the assertion aSb if the difference of evaluation g (b) — gx(a) is incompatible with the
assertion aSb, whatever the evaluation on the other criteria. The non-discordance condition is
fulfilled iff no criterion opposes a veto to the assertion aSbh.

Several outranking methods using these concepts of concordance and non-discordance (see
[19]) have been proposed in the literature (see [2], [22], [25], [18], [12], [17]) and put these
concepts into a concrete form in different ways.

In a decision process using these methods, the analyst usually interacts with the DM(s)
in order to elicit values for preference-related parameters. This can be done either directly
or through a disaggregation procedure that infers the parameters values from holistic prefer-
ences provided by the DM(s) (see [9]). Inference is usually performed through an optimization
program that accounts for the aggregation model and minimizes an “error function”. This dis-
aggregation approach has been largely used in additive models (e.g. see [8]). However, only few
advances have been made towards a disaggregation approach for outranking methods (see [13],
[15], [11]). A possible reason for this is that the outranking methods, namely the well-known
Electre methods [23], originated from real-world applications and are rather “optimization un-
friendly”.

Various alternative implementations of the concordance/non-discordance ideas have been
proposed ([19] define a wide class of operators, among which, min(C(a,b),1 — d;(a,b))). In
this paper we are concerned with some adaptations of the valued outranking relation used in
Electre III (see [21]) and Electre Tri (see [26], [23]) that preserves the original ideas and is

1We will assume without loss of generality that preferences are increasing with the value on gj, i.e., the
greater g;(a) the better a.



more optimization-friendly for parameter inference programs. More specifically, the modifica-
tion proposed concernes the implementation of the non-discordance concept. The aim of this
modification is to reduce the computational complexity of the mathematical program to be
solved so as to infer the parameters values from holistic preferences. The modifications are
also useful for robustness analysis [6] and other approaches [13]. The paper is organized as
follows. The first section will describe how the Electre IIT and Electre Tri methods define the
outranking relation S emphasizing the nature of the difficulties for disaggregation procedures.
Modifications of Electre III’s outranking relation in the way it accounts for veto phenomena are
proposed in section 2. Such modifications are shown to preserve the original discordance con-
cept. Section 3 shows that the modified outranking relations make it easier to solve inference
programs, namely for the Electre Tri method.

1 The valued outranking relation in Electre III

1.1 Outranking relations for a single criterion

Electre III builds a valued outranking relation S; restricted to a single criterion for each criterion
g;j. Sj(a,b) is defined by (1) on the basis of g;(a), g;(b) and two thresholds functions: indifference
q¢;(g;) and preference p;(g;) (0 < ¢;(g;) < pj(g;)?). Sj(a,b) represents the degree to which
alternative a outranks (is at least as good as) b (see Figure 1).

(o b) — pi(gi(a)) — min{g,;(b) — g;(a), pj(g;(a))}
Si:0) = 5 (a3(@) — min{g;(b) — g;(a), ;(95(@))} M
Sj(a, b)
I i -

: : S gj(b)
gi(a)  gi(a) +q;(gi(a)) gj(a) +p;(g;(a))

Figure 1: Partial valued outranking relation

1.2 Concordance relation

The valued concordance relation C(a,b) is grounded on the relations S; (j = 1,2,...,n) and
represents the level of majority among the criteria in favor of the assertion “a is at least as good
as b”. When computing this majority level, each criterion g; has a weight w; > 0 representing
its voting power. Without any loss of generality, we will consider Z?Zl w; = 1. Therefore,
C(a,b) can be written as follows:

2We will consider ¢;(g;) < p;j(g;), although Electre also consider the case g;(g;) = p;(g;)
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Cla,b) = Z%le 3w 8(0,8) = 3wy Si(a b )

1.3 Discordance relation for a single criterion

Electre III builds a valued discordance relation d; restricted to a single criterion for each criterion
gj. dj(a,b) is defined by (3) on the basis of g;(a), g;(b), a veto threshold function v;(g;) and
the preference threshold function p;(g;) (pj(g;) > v;(g;)?) (see Figure 2).

o ug(a) — min{g,() — g(0).v,(g5(a))
(0 0) =1 = (@) = min{a,(5) — 4;(a). 73 (9,(@)} ®)
dj (CL, b)
1+ REEEEE
o 9;(b)

2z

@)+ @) 5@+ rrle(@) 5@+ 05@)

Figure 2: Partial valued outranking relation

1.4 Overall non-discordance relation

The valued discordance relation ND(a,b) is grounded on C(a,b) and on the relations d;, j =
1,2, ...,n; it represents the degree to which the minority criteria (i.e., such that bP;a) collectively
oppose a veto to the assertion “a is at least as good as b”. A classical way of defining N D(a, b)
is given in (4). ND(a,b) = 0 corresponds to a situation where the minority criteria are totally
opposed to aSb whereas N D(a,b) = 1 means that none of the criteria oppose a veto to a.Sb.

1-— dj(a, b)

1= C(a,b) where F' = {j € F/d;(a,b) > C(a,b)} (4)

ND(a,b) =[]

JEF

We give hereafter in (5)-(7) an equivalent formula to define ND(a,b). Such definition will

be helpful in order to compare S(a,b) with the new outranking relation S’(a,b) we define in

section 2. Let us define ND,(a,b),j € F,a,b € A as

1 if dj(a,b)) < C(a,b)
ND az,b = —d;(a, ) J 5
b { S4ED it dy(a,b)) > Cla,b) (5)

3We will consider p;(g;) < v;(g;), although Electre also consider the case p;(g;) = v;(g;)
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Definition (5) is equivalent? to :

ND;(a,b) = Min {1, %} (6)

We can then formulate ND(a, b) as in (7) (equivalent to (4)) in which the product considers
each criterion in F'.

ND(a,b) = [ [ NDj(a,b) (7)

jEF

1.5 Valued outranking relation

Electre III combines the concordance and non-discordance relations in order to define the
outranking relation S as shown in (8)

S(a,b) = C(a,b) . ND(a,b) (8)

From the valued outranking relation S(a, b), it is possible to define a family of nested crisp
outranking relation S,; these crisp relations correspond to A-cuts of S(a,b), where the cutting
level A € [0.5, 1] represents the minimum value for S(a, b) so that aSyb is true.

1.6 Discussion on the Electre III valued outranking relation
1.6.1 Implementation of the non-discordance principle

Let us analyze the way the non-discordance condition is implemented through ND(a,b). If
gi(b) — g;(a) exceeds v;(g;(a)) for at least one criterion then aSb is invalidated, i.e., 3j € F :
di(a,b) =1 = S(a,b) = 0. Furthermore, the partial discordance indices d;(a,b) are defined
in such a way that veto effects (i.e., situations in which d;(a,b) > 0) can occur even when
9;(b) — gj(a) < v;(g;j(a)). However, so as to avoid to account for low values of d;(a,b), the
overall non-discordance relation defined in (4) considers the d;(a,b) only for criteria such that
di(a,b) > C(a,b).

Another specific feature of ND(a,b) lies in the fact that its value accounts both for the
values of d;(a,b) and C(a,b): the way ND(a,b) accounts for d;(a,b) is amplified when C(a, b)
is low. The reason for this is that a veto situation should be accentuated when the concordance
relation is not firmly established.

1.6.2 Difficulties with integrating S(a,b) in inference programs

In order to elicit values for preference-related parameters (i.e., wj, v;(g;), p;(9;), ¢;(g;), and
limits of categories in Electre Tri) it is possible to proceed using a disaggregation procedure
that infers the parameters values from holistic preferences provided by the DM(s). Hence, it
is necessary to formalize S(a,b) through an optimization program that minimizes an “error

‘when d;(a,b) > C(a,b), then it holds 1=¢(%3} < 1, thus NDj(a,b) = {=¢{=); when d;(a,b) < C(a,b),
l—dj(a,b)

then it holds =%y > 1, thus NDj(a,b) = 1. Let us remark that we can state C(a,b) < 1, as the case
C(a,b) = 1 corresponds to a situation where no discordant criterion exists
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function”. However, S(a,b) is rather “optimization unfriendly”. Difficulties arise mainly from
the way the non-discordance condition is implemented, i.e., the way ND(a,b) is defined.

More precisely, two features of the non-discordance relation are concerned. First, the subset
of criteria F' (see (4)) is difficult to integrate into an optimization program. Second, the fact
that C(a,b) intervenes in the definition of ND(a,b) implies that the optimization program will
necessarily be non-linear, even when all the parameters are fixed except the weights.

Previous research [4] studying S(a,b) under imprecise information on the criteria weights
and veto thresholds has shown that this continuous, non-differentiable, non-linear function
is quasi-concave in the domain where it is strictly positive, when a and b are fixed. One
consequence of this result is that a constraint like S(a,b) < A does not define a convex set.

2 New Electre-like valued outranking relations

The definition of these outranking relations originated from previous unpublished work that
has been presented in [14]. The modified outranking relations S’(a, b) and S”(a, b) are designed
to provide an easier way for S’(a,b) and S”(a,b) to be integrated in inference optimization
programs. Hence, the modifications proposed aim at :

1. defining S’(a, b) (and S”(a, b)) as linear functions of the weights w; when the performances
(g;(a) and g¢;(b)) and thresholds (g;, p; and v;) are fixed,

2. making S’ (and S”) as “close” as possible to S both in terms of the results and in terms
of the underlying philosophy,

More precisely, S'(a,b) and S"(a,b) will differ from S(a,b) only by its implementation of the
discordance concept: new non-discordance relations are defined ND'(a,b) and ND"(a,b) (the
outranking relations restricted to a single criterion S;(a,b) and the overall concordance rela-
tion C(a,b) remain identical). Furthermore, we will define S'(a,b) = C(a,b).ND'(a,b) and
S"(a,b) = C(a,b).ND"(a,b). Moreover, it should be noted that the way S’ (S”, respectively) is
defined imply S = S’ (S = S”, respectively) when veto phenomenon are either totally effective
or totally ineffective (i.e., Va, b such that g;(b) — g;(a) ¢ [p), v,], VJ)

2.1 Definitions

2.1.1 Partial discordance indices d;(a,b)

d;(a,b) is defined by (9) on the basis of g;(a), g;(b), a veto threshold function v;(g;) and an
additional threshold function u;(g;) (such that p;(g;) < u;(g;) < v;(g;)°). u;(g;(a)) represents
the difference of evaluation g;(b) —g;(a) above which the discordance condition starts to weaken
concordance C(a,b) in the definition of S(a,b). Hence, d;(a,b) represents the degree to which
criterion g; opposes a veto to the assertion aSb (see Figure 3). The new threshold u;(g;) can
be considered either:

Swe consider u;(g;) < v;(g;)) although u;(g;) = vj(g;)) can also be considered as an extreme case in which

discordance is effective only when the veto threshold is exceeded



e as an additional preferential parameter to be elicited either directly through an interaction
with the DM, or indirectly using a disaggregation procedure, or

e as a fixed technical parameter (rather than a preference-related one) that defines the
extent to which differences of evaluation g;(b) — g;(a) < v;(g;(a)) should (or should not)
weaken the concordance C(a,b) in the definition of S(a,b) (a reasonable value for u,
depending on p; and v; is discussed in section 2.2).

o uylg(@) — min{g(®) — g,(a),v(0;(0)))
43(0,8) =1 =3 05(@) = min{g,) — 9,(a), u,(9,(a))} ©)
d; (a,b)
14 JPECETEEE
0 | z,/'/ g0
g;(a) + p;(g;(a)) g;(a) +u;(g;(a)) g;(a) +v;(gj(a))

Figure 3: Partial discordance relation d;(a, b)

2.1.2 Overall non-discordance relation ND'(a,b)

The valued non-discordance relation ND'(a,b) is grounded on the relations dj(a,b), j =
1,2,...,n. It is defined hereafter in (10). It should be noted that criteria that intervene in
the product are not restricted to those for which dj(a,b) > C(a,b), i.e., small values of d;(a, b)
will impact ND'(a,b). Moreover, the concordance relation C(a,b) does not intervene in the
non-discordance implementation.

ND'(a,b) = [[1 - dj(a,b) (10)
jEF
This valued non-discordance relation ND’'(a,b) can be defined equivalently as formulated
in (11)-(12), where a; € [0,1[,j7 € F is a parameter that should be defined such that u; =

p; + o;.(v; — p;). The values for a;; can be either equal for each j € F, or distinct if the DM(s)
has specific arguments to account for “weak veto situations” differently among criteria.

ND'(a,b) = [ [ NDj(a,b) (11)
ND;(a,b) :min{l,%'(j;b)} (12)



2.1.3 Overall non-discordance relation ND"(a,b)

The valued non-discordance relation ND"(a,b) is grounded on the relations d}(a,b), j =
1,2,...,n (9). It is defined hereafter in (13). It should be noted that criteria that intervene
in the Min operator are not restricted to those for which dj(a,b) > C(a,b). Moreover, the
concordance relation C'(a,b) does not intervene in the non-discordance implementation.

ND"(a,b) = Minjep (1 — d;(a,b)) (13)

2.2 Comparative analysis

As already mentioned, S(a,b), S'(a,b) and S”(a, b) differ only on the way the non-discordance
condition is implemented. Let us recall that the modifications intervening in S’(a,b) and
S"(a,b) aim at providing easier ways to integrate the outranking relation in disaggregation
procedures. It should be emphasized that S'(a,b) is closely related to S(a,b); the similarity
appears when comparing (12) and (6). As S”(a,b) is very similar to S’(a,b) (S”(a,b) account
for the "strongest” veto, whereas S’(a,b) can account for several veto effects, as S(a,b) does),
we will mainly focus on the comparison between S(a,b) and S’(a,b). Two modifications have
been introduced in S’ as compared to S:

e ND'(a,b) account for dj(a,b) only. Hence a veto situation is not accentuated when the
concordance relation is not firmly established as it is the case in ND(a,b). Although
disabling this feature removes some refinements, it also distinguishes more clearly the
way the two concepts of concordance and non-discordance are implemented. Moreover,
a low value for C(a, b) still impact directly S’(a,b), but not indirectly through ND'(a, b)
as it is the case with S(a, b).

e As in S(a,b), S'(a,b) avoids to account for discordance situations that are not firmly
established. Such feature is done in S(a,b) by accounting in ND(a,b) for discordant
criteria such that d;(a,b) > C(a,bd) only. S’(a,b) also do not account for “weak veto”:
although ND'(a,b) considers all discordant criteria (ND'(a,b) = [[;cp 1 — dj(a, b)), the
way d;(a,b) are defined induce lower values (as compared to d;(a,b)) for the same dif-
ference g;(b) — g;(a), namely d}(a,b) = 0,Va,b € A such that g;(b) — g;(a) < u;(g;(a)).
Figures 4 and 5% show how ND(a,b) and ND'(a,b) vary as a function of g;(b) when g; is
the only discordant criterion, i.e., depict ND;(a,b) and ND/(a,b).

One important question related to the way S(a, b) and S’(a, b) implement discordance is the
following: if u; is not considered as a preference parameter, how should it be defined in order
for S(a,b) and S'(a,b) to be “as close as possible”?

Let us remark that, for S(a,b) and S'(a,b), it holds:
e discordance operates by weakening C/(a, b),

e for any\-cut Sy (S5, respectively) of S(a,b) (S'(a,b), respectively), the assertion aSyb
(aS4b, respectively) can not hold for any (a,b) such that C(a,b) < 0.5.

bin Figure 5, x corresponds to p;(g;(a)) + C(a,b).(v;j(gj(a)) — pj(g;(a))) and hence varies in the interval
[pj(g;(a)),v;(g;(a))] as C(a,b) varies in [0,1] .
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Figure 4: NDj(a,b) as a function of g;(b)
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Figure 5: ND,(a,b) as a function of g;(b)

It follows from these two preliminary remarks that it is sufficient so as to compare S(a, b)
and S’(a, b) to restrict the analysis to the pairs (a, b) such that C(a,b) > 0.5.

In order for S'(a,b) to be “close” to S(a,b), ND(a,b) should not differ too much from
ND'(a,b), i.e., each ND;(a,b) should not be far from ND’(a,b). Hence, we should define u;
so that f(C(a,b),g;(b)) = |[NDj(a,b) — ND'(a,b)| is as small as possible in average, when
Cla,b) € [0.5,1] and g;(8) € [g5(a) + p;(5(a), (@) + v;(9;(a))] (Figures 6 and 7 represent
NDj and N D’ as functions of C'(a, b) and g;(b)). In order to do so we should set o; = 0.75, i.e.,

= p;i(g;(a)) + 0.75.(v;(g;(a)) — pj(gj(a))). The value a; = 0.75 is obtained by minimizing

the following expression Min,e 1] {fo s [ (a):pi](gg]](g;))) f(C(a,b),g;(b),a) dC(a,b) dg]-(b)}.

Alternatively, it is possible to define a; as equal to the cutting level A (when the value for
A is fixed and known). This ensures that any A-cut of S and S’ are identical, but requires to
determine the value for A beforehand.

In order to appreciate the effective deviation between S(a,b), S'(a,b) and S”(a,b), we
have performed an empirical study on datasets stemming from real world case studies reported
in the literature ([7] and [26]). More specifically, we observe how much S’(a,b) and S"(a,b)
deviate from S(a, b) on real data and analyze to what extend substituting S’(a, b) (or S”(a, b))
for S(a,b) affects the conclusions of these studies, which concerned assigning alternatives to
categories using Electre Tri. Considering [7] and [26], we verified that the assignments of all
alternatives are identical using S, S’ and S”. The maximum deviation (i.e., |S(a,b) — S'(a, b)|
and |S(a,b) — S"(a,b)|, a € A,b € B) is equal to 0.1. Although it is possible to design specific
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Figure 6: ND,(a,b) as a function of g;(b) and C(a,b)

situations in which the assignments using S’(a, b) (or S”(a, b)) and S(a, b) are different, it seems
that such cases do not occur frequently on real data.

3 Benefit of the revised index with respect to parameter
inference programs

Assigning values to the parameters involved in the definition of S’ and S” is a difficult task
for the DM(s). The disaggregation approach allows to infer preferential parameter values from
holistic preferences. Such approach is usually performed using mathematical programs that
minimize an “error function”. By inference program, we refer to these mathematical programs
aiming at determining values for preference parameters involved in S(a,b) from holistic pref-
erences provided by the DM(s). Such inference programs can either be partial if only a subset
of parameters is being inferred (the values of the other parameters being fixed), or global if all
parameters are to be inferred. In this section, we will illustrate the reduction in the complexity
of the mathematical programs to be solved when substituting S’ or S” for S.

3.1 Inferring a valued outranking relation from crisp outranking
statements

3.1.1 Global inference program

In this section we will consider a decision process in which an outranking relation is used to
model DM(s)’ preferences. Furthermore, let us suppose that the DM(s) is/are not able (or not
willing) to assign directly values to the preference-related parameters involved in the outranking
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Figure 7: ND/(a,b) as a function of g;(b) and C(a, b)

relation, but can state crisp statements about this relation for some specific pairs of alternatives
(a,b), i.e., either aSb or —aSh. Our purpose is to define a valued outranking relation and a
cutting level that best account for the DM(s) statements.

Let us denote ST = {(a,b) € A? such that the DM(s) stated aSb} and S~ = {(a,b) €
A? such that the DM(s) stated =aSb}. Then, a combination of parameter values is able to
restore the DM(s)’ request iff S(a,b) > A, V(a,b) € ST and S(a,b) < A, ¥Y(a,b) € S~, which
may be written as S(a,b) — A > 0, ¥(a,b) € ST and A— S(a,b)+& > 0, Y(a,b) € S~ (¢ being a
small positive value). The mathematical program given below (14)-(19) maximizes a common
slack a for all these constraints, to obtain a relatively “central” combination of parameter
values. Whenever the optimum value of « is negative, there is no combination of parameter
values complying to all the constraints,i.e., the DM(s) provided inconsistent information (a
procedure to deal with such inconsistencies is proposed in [3]). Alternative objective functions
can be considered (see [1] and [15]).

Mazr o

st. a<8S(a,b)— A\ V(a,b)eST
a<\A—S(a,b)+¢, VY(a,b)eS™
A €[0.5,1]
vi(9;) = pilg;) = ¢;(g;) 20, VjEF
Zn wj =1, w; >0, VjeF.

=1

Some additional constraints can be added to this program, in order to integrate explicit
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statements of the DM(s) concerning the values of some parameters. From (4) and (8), it is
obvious that this is a difficult nonlinear program when all the parameters are considered as
variables (recall Section 1.6.2). A solution to circumvent this difficulty is to formulate partial
inference programs, where only a subset of the parameters are considered as variables, while
the remaining ones are fixed. In the context of a decision aiding process where the DM(s)
interactively revise the information they provide and observe the results of the mathematical
program, partial inference problems allow them to focus their attention on a subset of pa-
rameters at a time and to better understand the consequences of their modifications. Indeed,
we believe that inference programs should not be considered as a problem to be solved once,
but rather as problems to be solved many times in an interactive learning process. Among
the partial inference problems, previous research on related problems has focused mainly on
inferring the weights and the cutting level (see [16], [6], [13]). This is an important partial
inference problem because the weights and the cutting level are the only parameters involving
inter-criteria judgements (the remaining parameters do not interrelate the criteria).

3.1.2 Inferring the weights (w;,j € F') and cutting level (\) only

If we consider the case where only the weights (w;,j € F') and cutting level (\) are variables
(all other parameters being fixed), then the constraints (15) and (16) can be rewritten in as in
(20) and (21). These two constraints are obviously nonlinear, since they represent products of
functions involving C(a,b), which in turn involve the w; variables (see (2)).

agcmwlle%%{%%%}—A,wmmeﬁ (20)
a< ) — C(a,b).HMin{l,%}—i—s, V(a,b) € S~ (21)

JEF

Let us now consider the same problem when S(a,b) is substituted by S’(a,b). In this case
the constraints (15) and (16) become (22) and (23). Now, each [[;cx(1 — d;(a,b)) = ND'(a,b)
is a fixed constant V(a,b). The constraints (22) and (23) are hence linear, since C(a,b) is an
affine function of the weights.

a < C(a,b). [T (1 - dj(a,b)) — A, V(a,b) € ST (22)
a<X = Ca,b). [](Q-di(a,b) +5 V(ab)eS (23)

Thus, considering S’(a, b) instead of S(a, b), the weights and the cutting level can be inferred
by solving a linear program whose variables are a, wy, ..., w,, and A, where (22) and (23) appear
as (25) and (26):

11



(24)

st a< ijle.sj(a, b).ND'(a,b) — \, V(a,b) € S, (25)
a<\— Z"_le.sj(a, b).ND'(a,b) +¢, V(a,b) €S, (26)
(27)

(28)

Zn_le =1, w; >0,VjePF.

If the maximum value of « is positive, then the values of wy, ..., w,, and A at the optimum
are able to restore all the statements defining ST and S~. Otherwise, the inferred values
provide suggestions for changing those examples. The DM(s) should ponder whether they
want to change the the sets ST and S, or to analyse the non-discordance levels. Indeed, some
of the differences among the current model and the DM(s)’ requests may stem from inadequate
non-discordance levels. Considering S”(a, b) instead of S’(a, b) leads to a similar linear program.

3.2 Inferring Electre tri parameters from assignment examples
3.2.1 Brief reminder on Electre tri

Electre Tri (see [26], [23]) assigns alternatives to pre-defined ordered categories. The assignment
of an alternative a € A results from comparing it with the profiles defining the limits of the
categories. Let B = {b1, by, ..., b, } denote the set of profiles defining p+1 categories, by, being the
upper limit of category C), and the lower limit of category Cy+1, h = 1,2, ..., p (profiles b, and
by correspond to the ideal and anti-ideal alternatives, respectively). Let K = {C4,Cs, ...,Cpi1}
be the set of categories that corresponds to B. Electre Tri assigns alternatives to categories
following two consecutive steps :

e construction of a crisp outranking relation S C (A x B) U (B x A); the definition of S
corresponds to A-cut of S(a,b) described in section 1, except that the thresholds g;, p,
and v; are values attached to the profiles (g;(bs), p;(by) and v;(by),Vj € F,Vb, € B),
rather than dependent on the alternatives in A.

e exploitation of the crisp relation S in order to assign each alternative to a specific category
using a pessimistic or optimistic procedure (in what follows we will restrict our analysis
to the pessimistic procedure). The pessimistic procedure is defined as follows:

a) compute S(a, b;) successively for i=p,p-1, ..., 0,
b) by, being the first profile such that S(a,b,) > A,
assign a to category Cpy1 (@ = Chyq).

Hence, the pessimistic procedure of Electre Tri assigns alternative a to category Cp (b 1

and by, being the lower and upper profiles of C},, respectively) iff S(a, b,—1) > A and S(a, b)) < A
(A € [0.5,1] is the chosen cutting level).

12



3.2.2 Inference programs

Suppose the DM has specified a set of assignment examples, i.e., a subset of A* C A such
that each ay € A* is associated with C™(a,) (C™(ax), respectively) the maximum (minimum,
respectively) category to which a should be assigned according to his/her holistic preferences.
Hence [C™(ay), C™(a)] defines an interval of possible categories to which a; can be assigned
to. C™(ax) = CM(ay) = Cj, means that the DM wants a; to be assigned to Cj, precisely (we
will note ar, —par Cp, such statement), while C™(ax) < CM(a) corresponds to an imprecise
statement (ay — par [C™(ax), CM (ay)]). Inferring all Electre Tri parameters can be formulated
through the following mathematical program (29)-(35), see [15]. Note that all alternatives in
A* are assigned by Electre Tri (using the inferred parameters) consistently with the DM(s)’
examples if and only if the optimal value objective function is positive.

Mazr o (29)

st a < S(ag,bom(e)-1) — A, Vap € A7, (30)
a <X — S(a,bem(g,)) +¢, Va € A, (31)

X € [0.5,1], (32)
9;(bht1) > gj(bn) + pj(bn) + pj(bny1), Vi € F,Vh € B, (33)
vj(by) > pj(br) > ¢;(bp) >0, Vj € FVb, € B, (34)

(35)

Z::le =1, w;>0,VjelF.

If we consider all preference parameters as variables, this mathematical program’ is nonlin-
ear due to constraints (30) and (31). Indeed, the constraints (30) and (31) are similar to the
constraints (15) and (16) in the mathematical program presented in Sec. 3.1.1.

If we consider the case where only the weights (w;, j € F') and cutting level () are variables
(all other parameters being fixed), then the constraints (30) and (31) will be similar to (20)
and (21), hence the mathematical program (29)-(35) remains nonlinear. Previous work ([16],
[6]) presented linear programming formulations assuming that there was no discordance, i.e.
S(a,b) = C(a,b). One of the motivations for considering S’(a, b) instead of S(a,b) is that it
becomes easy to infer the weights and the cutting level even when the veto-related parameters
make S(a,b) < C(a,b).

Indeed, when considering S’(a,b), the weights and the cutting level can be inferred by
solving a linear program whose variables are «, wy, ..., wy,, and A. The linear program for this
partial inference problem is equal to (24)-(28) in Sec. 3.1.2, if we define:

ST = {(ak, bom(ay)-1) € A* x B+ ar, = pu [C™(ak), CY (ax)]} (36)

S™ = {(ak,bcM(ak)) € A*x B : ax —DM [C’m(ak),C’M(ak)]} (37)

Considering S”(a, b) instead of S'(a, b) leads to a similar linear program.

"The constraint (33) is introduced to ensure the consistency of category definition, see [26]
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3.3 Miettinen & Salminen Electre Like method [13]

[13] proposed a method using the Electre III valued outranking relation that aims at “providing
the DM(s) descriptive information about the weighting vectors producing a specific alternative
as the best’, i.e., placed first in a preference ranking. Such procedure requires to solve inference
programs. In [13], the preference rankings do not result from the same exploitation procedure
as in Electre III (see [21]), but from the use of the “min” procedure (see [20]), i.e., alternatives
are ranked based on the minimum outranking degree S(a,b) of each alternative a,Vb € A.
In this approach, checking whether or not an alternative a € A can be ranked first for at
least a weight vector amounts at verifying whether the constraints (38)-(39) define a consistent
system. Such analysis is performed with fixed values for all the parameters except the weights
wj. Furtermore, the problem is rather difficult because the constraints (38)-(39) are nonlinear,
unless the v;(g;) are fixed sufficiently large so as no veto phenomenon to occur, i.e., unless
discordance is removed from the model.

Mingeaiay {S(a,a)} — Mingea_ia) {S(b,a')} > &, Vb€ A—{a} (38)

e >0, Zjerjzl, w; >0, VjeF (39)

Different objective functions to optimize subject to (38)-(39) are proposed in [13]. Opti-
mization programs are build in order to:

e determine ranges for w; such that a is ranked first (Max and Min w; s.t. (38)-(39)),
e rank ¢ first in the most “robust” way (Max ¢ s.t. (38)-(39)),
e rank a first without omitting any criterion (Max Min w; s.t. (38)-(39)).

If discordance is removed from the model, then these optimization programs can be solved
using standard linear programming techniques®. However, if we replace S(a,b) by S'(a,b) in
the preceding optimization programs, it becomes obvious that the restriction that [13] impose
on discordance (v;(g;(a)) > ¢;(b) — g;j(a),Va,b € A,Vj € F) is no longer necessary to simplify
the problem. In fact, considering S’(a,b), it is possible to solve their optimization programs
using linear programming even when veto phenomena occur (the v; functions being defined).
The same statement can be made when considering S”(a, b) instead of S’(a, b).

Conclusion

This paper presents a slight adaptation of the valued outranking relation used in the ELEC-
TRE III (see [21]) and ELECTRE TRI (see [26], [23]); the modifications introduced concerns
the implementation of the non-discordance condition in the outranking relation. The two new
outranking relations S’ and S” preserves the original ideas (namely the original discordance
concept) and are designed to be more optimization-friendly for parameter inference programs.

8This requires to add supplementary variables to account for the min operator in (38)
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We show that the modified outranking relation makes it easier to solve inference programs. S’
and S” are equivalent as regards the complexity of inferring the weights and cutting level, but
S" is more friendly in what regards inferring veto thresholds (see [5]).
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