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Abstract

Given a ®nite set of alternatives A, the sorting (or assignment) problem consists in the assignment of each alternative

to one of the pre-de®ned categories. In this paper, we are interested in multiple criteria sorting problems and, more

precisely, in the existing method ELECTRE TRI. This method requires the elicitation of preferential parameters

(weights, thresholds, category limits,. . .) in order to construct a preference model which the decision maker (DM)

accepts as a working hypothesis in the decision aid study. A direct elicitation of these parameters requiring a high

cognitive e�ort from the DM (V. Mosseau, R. Slowinski, Journal of Global Optimization 12 (2) (1998) 174), proposed

an interactive aggregation±disaggregation approach that infers ELECTRE TRI parameters indirectly from holistic

information, i.e., assignment examples. In this approach, the determination of ELECTRE TRI parameters that best

restore the assignment examples is formulated through a nonlinear optimization program.

In this paper, we consider the subproblem of the determination of the weights only (the thresholds and category

limits being ®xed). This subproblem leads to solve a linear program (rather than nonlinear in the global inference

model). Numerical experiments were conducted so as to check the behaviour of this disaggregation tool. Results

showed that this tool is able to infer weights that restores in a stable way the assignment examples and that it is able to

identify ``inconsistencies'' in the assignment examples. Ó 2001 Elsevier Science B.V. All rights reserved.

Keywords: Sorting problematic; Preference disaggregation; Weight elicitation; Numerical experiments

1. Introduction

When modeling a real world decision prob-
lem, one can face situations in which the decision
can be formulated in terms of the assignment of
a set of potential alternatives A � fa1; a2; . . . ; alg
to one of pre-de®ned categories. The assignment
of an alternative a to the appropriate category
should rely on the intrinsic value of a (and not
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on the comparison of a to other alternatives
from A).

In this paper, we are interested in the multiple
criteria sorting problematic and, more precisely, in
an existing multiple criteria method called
ELECTRE TRI (see [12,13,18,26]). When using
this method, the analyst must determine values of
several parameters (pro®les that de®ne the limits
between the categories, weights, discrimination
thresholds, . . .). The set p of these parameters is
used to construct a preference model with which
the decision maker (DM) accept as a working
hypothesis in the decision aid study. Apart from
some very speci®c cases, it is not realistic to as-
sume that the DM would be able to give explicitly
the values of each parameter in p. They are far
di�erent from the natural terms in which the DM
usually expresses his/her preferences and expertise.

A realistic approach consists in infering the
model parameters of ELECTRE TRI through an
analysis of assignment examples given by the DM,
i.e., from holistic information on his/her judg-
ments. This approach aims at substituting assign-
ment examples for direct elicitation of the model
parameters. The values of the parameters will be
inferred through a certain kind of regression on
assignment examples.

Mousseau and Slowinski [11] proposed an ap-
proach that infer all ELECTRE TRI parameters
simultaneously starting from assignment exam-
ples. In this approach, the determination of the
parameter's values that best ®t the assignment
examples given by a DM stems from the resolution
of a nonlinear mathematical program. This opti-
mization procedure is integrated in an interactive
tool that enables the DM (or anyone acting on his/
her account) to react on the set of obtained pa-
rameters and to get insights on his/her preferences.

Although Mousseau and Slowinski [11] pro-
posed to infer simultaneously weights, pro®les and
thresholds, we consider in this paper the problem
of the inference of the weight vector only (in this
particular case the mathematical program to be
solved becomes linear). Our paper presents nu-
merical results obtained in a laboratory experi-
ment aiming at validating the practical usefulness
of the weight inference procedure in an interactive
process (preliminary results may be found in [14]).

The experimental questions are as follows (they
are operationalized through the experimental de-
sign described in Section 5):
· Let wopt be the weight vector obtained using the

linear optimization procedure on the basis of the
assignment to categories of alternatives from a
set A� � A. Let wdm be a weight vector expressed
by the DM or inferred by the analyst from
DM's assertions. Are the assignments of alter-
natives from A� more ``stable'' when using wopt

than when considering wdm (the term stable is
used as insensitive of the assignments to changes
of the weight vector). In other words, is the tool
able to increase the ``stability'' of assignments of
alternatives in a set A�?

· The obtained weight vector wopt depend on the
information given as input, i.e., on the set of as-
signment examples. What is the average amount
of information necessary to ``calibrate'' the
model in a satisfactory way? How large should
A� be in order to derive wopt in a reliable man-
ner?

· In practical decision situations, real DMs do not
always provide reliable information. Due to
time constraints and cognitive limitations,
DMs express contradictory information, their
preferences change over time . . . The optimiza-
tion procedure should be able to highlight the
assignment examples that are contradictory or
not representable through the ELECTRE TRI
preference model. This experiment aims at in-
vestigating the ability of the tool to ``identify''
the inconsistencies in the DM's statements in or-
der to help him/her in revising the preference in-
formation. How reliable is the optimization
procedure to identify inconsistencies in the
DM's judgments?

· The output of the optimization phase rely on the
choice of an objective function. As di�erent ob-
jective functions can be considered, it is impor-
tant to check the variability of the output to
the di�erent functions. Does the choice of a spe-
ci®c objective function strongly impact the re-
sults?
The paper is organized as follows. In the next

section, we present the general approach used by
the inference tool. A brief description of the
ELECTRE TRI method is given in Section 3.
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Section 4 describes the optimization procedure and
Section 5 describes the experimental design. Sec-
tion 6 presents the results and Section 7 presents
the conclusions.

2. General scheme of the approach

The general scheme of our inference procedure
is presented in Fig. 1. Its aim is to ®nd an
ELECTRE TRI model as compatible as possible
with the assignment examples given by the user
(the user being either the DM himself/herself or
anyone acting on his/her account). The assign-
ment examples concern a subset A� � A of alter-
natives for which the user has clear preferences,
i.e., alternatives that the user can easily assign to
a category, taking into account their evaluation
on all criteria. The compatibility between the
ELECTRE TRI model and the assignment ex-
amples is understood as an ability of the ELEC-
TRE TRI method using this model to reassign the
alternatives from A� in the same way as the user
did.

In order to minimize the di�erences between the
assignments made by ELECTRE TRI and the
assignments made by the user, an optimization

procedure is used. The resulting ELECTRE TRI
model is denoted by Mp. The user can tune the
model in the course of an interactive procedure.
He/she may either revise the assignment examples
or ®x values (or intervals of variation) for some
model parameters. In the former case, the user
may:
· remove and/or add some alternatives from/to

A�,
· change the assignment of some alternatives from

A�.
In the latter case, the user can give additional

information on the range of variation of some
model parameters basing on his/her own intuition.
For example, he/she may specify:
· ordinal information on the importance of crite-

ria,
· noticeable di�erences on the scales of criteria,
· incomplete de®nition of some pro®les de®ning

the limits between categories.
When the model is not perfectly compatible

with the assignment examples, the procedure
should be able to detect all ``hard cases'', i.e., the
alternatives for which the assignment computed by
the model strongly di�ers from the user's assign-
ment. The user could then be asked to reconsider
his/her judgment.

Fig. 1. General scheme of the inference procedure.
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Inferring a form of knowledge from examples
of expert's decisions is a typical approach of arti-
®cial intelligence. Induction of rules or decision
trees from examples in machine learning (see
[8,17]), knowledge acquisition based on rough sets
(see [2,16,24]), supervised learning of neural nets
(see [1,25]) are well-known representatives of this
approach. The appeal of this approach is that the
experts are typically more con®dent exercising
their decisions than explaining them.

In Multiple Criteria Decision Analysis, this
approach is concordant with the principle of pos-
terior rationality (see [6]) and with the aggrega-
tion±disaggregation logic used for the construction
of a preference model in UTA-like procedures (see
[3±5,15,23]). It has been also applied for the elici-
tation of weights used for the construction of an
outranking relation in the DIVAPIME method
(see [9,10]).

3. Presentation of the ELECTRE TRI method

ELECTRE TRI is a multiple criteria assign-
ment method, i.e., a method that assigns alterna-
tives to prede®ned ordered categories. The limit
between two consecutive categories is formalized
by what we call a pro®le (see Fig. 2). The assign-
ment of an alternative a results from the compar-
ison of a with the pro®les de®ning the limits of the
categories. Let F denote the set of the indices of
the criteria g1; g2; . . . ; gm �F � f1; 2; . . . ;mg� and B

the set of indices of the pro®les de®ning p � 1 cate-
gories �B � f1; 2; . . . ; pg�, bh being the upper limit of
category Ch and the lower limit of category
Ch�1; h � 1; 2; . . . ; p (see Fig. 2). In what follows, we
will assume, without any loss of generality, that
preferences increase with the value on each criterion.

ELECTRE TRI uses an outranking relation S
(see [20]), i.e., validates or invalidates the assertion
aSbh (and bhSa), whose meaning is ``a is at least as
good as bh''. Preferences restricted to the signi®-
cance axis of each criterion are de®ned through
pseudo-criteria (see [21,22] for details on this
double-threshold preference representation). The
indi�erence and preference thresholds, qj�bh� and
pj�bh�, constitute the intra-criterion preferential
information.

They account for the imprecise nature of the
evaluations gj�a� (see [19]). The indi�erence
threshold qj�bh� speci®es the largest di�erence
gj�a� ÿ gj�bh� they preserves indi�erence between a
and bh on criterion gj while the preference
threshold pj�bh� represents the smallest di�erence
gj�a� ÿ gj�bh� compatible with a preference in fa-
vor of a on criterion gj.

At the comprehensive level of preferences, in
order to validate the assertion aSbh (or bhSa), two
conditions should be veri®ed.
· concordance: for an outranking aSbh (or bhSa)

to be accepted, a ``su�cient'' majority of criteria
should be in favor of this assertion,

· non-discordance: when the concordance condi-
tion holds, none of the criteria in the minority

Fig. 2. De®nition of categories using limit pro®les.
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should oppose to the assertion aSbh (or bhSa) in
a ``too strong way''.
Two types of inter-criteria preference parame-

ters intervene in the construction of S:
· the set of weight-importance coe�cients
�w1;w2; . . . ;wm� is used in the concordance test
when computing the relative importance of the
coalitions of criteria being in favor of the asser-
tion aSbh,

· the set of veto thresholds �v1�bh�; . . . ;
vj�bh�; . . . ; vm�bh�� is used in the discordance test;
vj�bh� represents the smallest di�erence
gj�bh� ÿ gj�a� incompatible with the assertion
aSbh.
ELECTRE TRI builds an index r�a; bh� 2 �0; 1�

(r�bh; a�, resp.) that represents the degree of cred-
ibility of the assertion aSbh (bhSa, resp.),
8a 2 A; 8h 2 B. The assertion aSbh (bhSa, resp.) is
considered to be valid if r�a; bh�P k (r�bh; a�P k,
resp.), k being a ``cutting level'' such that
k 2 �0:5; 1� (see [18] for a justi®cation of the con-
struction of this index).

Determining r�a; bh� consists of the following
steps (the value of r�bh; a� is computed analo-
gously):
1. compute the partial concordance indices

cj�a; bh� 8j 2 F

cj�a; bh� �
0 if gj�bh� ÿ gj�a�P pj�bh�;
1 if gj�bh� ÿ gj�a�6 qj�bh�;

pj�bh��gj�a�ÿgj�bh�
pj�bh�ÿqj�bh� otherwise;

8<:
�1�

2. compute the comprehensive concordance index
c�a; bh�

c�a; bh� �
P

j2F wjcj�a; bh�P
j2F wj

; �2�

3. compute the discordance indices dj�a; bh�
8j 2 F

dj�a; bh� �
0 if gj�bh� ÿ gj�a�6 pj�bh�;
1 if gj�bh� ÿ gj�a� > vj�bh�;

gj�bh�ÿgj�a�ÿpj�bh�
vj�bh�ÿpj�bh� otherwise;

8><>:
�3�

4. compute the credibility index r�a; bh� of the
outranking relation

r�a; bh� � c�a; bh�
Y
j2 �F

1ÿ dj�a; bh�
1ÿ c�a; bh� ; �4�

where

F � fj 2 F : dj�a; bh� > c�a; bh�g
The values of r�a; bh�, r�bh; a� and k determine the
preference situation between a and bh:
· r�a; bh�P k and r�bh; a�P k) aSbh and

bhSa) aIbh, i.e., a is indi�erent to bh,
· r�a; bh�P k and r�bh; a� < k) aSbh and not

bhSa) a � bh, i.e., a is preferred to bh (weakly
or strongly),

· r�a; bh� < k and r�bh; a�P k) not aSbh and
bhSa) bh � a, i.e., bh is preferred to a (weakly
or strongly),

· r�a; bh� < k and r�bh; a� < k) not aSbh and
not bhSa) aRbh, i.e., a is incomparable to bh.
Two assignment procedures are then available

(the role of these exploitation procedures is then to
analyse the way in which an alternative a compares
to the pro®les so as to determine the category to
which a should be assigned).

Pessimistic (or conjunctive) procedure:
(a) compare a successively to bi, for i �
p; p ÿ 1; . . . ; 1,
(b) bh being the ®rst pro®le such that aSbh, as-
sign a to category Ch�1 �a! Ch�1�.
Optimistic (or disjunctive) procedure:
(a) compare a successively to bi; i � 1; 2; . . . ; p,
(b) bh being the ®rst pro®le such that bh � a, as-
sign a to category Ch �a! Ch�.
If bhÿ1 and bh denote the lower and upper

pro®le of the category Ch, the pessimistic (or
conjunctive) procedure assigns alternative a to the
highest category Ch such that a outranks bhÿ1, i.e.,
aSbhÿ1. When using this procedure with k � 1, an
alternative a can be assigned to category Ch only if
gj�a� equals or exceeds gj�bh� (up to a threshold)
for each criterion (conjunctive rule).

The optimistic (or disjunctive) procedure as-
signs a to the lowest category Ch for which the
lower pro®le bh is preferred to a, i.e., bh � a. When
using this procedure with k � 1, an alternative a
can be assigned to category Ch when gj�bh� exceeds
gj�a� (up to a threshold) at least for one criterion

V. Mousseau et al. / European Journal of Operational Research 130 (2001) 263±275 267



(disjunctive rule). When k decreases, the conjunc-
tive and disjunctive characters of these rules are
weakened.

4. The optimization procedure

The set p of parameters of an ELECTRE TRI
model are:
· the pro®les de®ned by their evaluations

gj�bh� 8j 2 F ; 8h 2 B,
· the importance coe�cients wj 8j 2 F ;
· the indi�erence and preference thresholds

qj�bh�; pj�bh� 8j 2 F ; 8h 2 B;
· the veto thresholds vj�bh� 8j2 2 F ; 8h 2 B.

The conducted experiment considered the case
where the pro®les and thresholds are known and
where the weights are to be inferred. Moreover, we
will con®ne our analysis to the case where the
pessimistic assignment procedure is used.

4.1. Variables of the problem

In ELECTRE TRI pessimistic assignment
procedure, an alternative ak is assigned to category
Ch (bhÿ1 and bh being the lower and upper pro®les
of Ch, respectively) i� rp�ak; bhÿ1�P k and
rp�ak; bh� < k (where rp is the credibility index
related to the set of parameters p).

Let us suppose that the DM has assigned the
alternative ak 2 A� category Chk�ak ! Chk�. Let us
de®ne the slack variables xk and yk such that
rp�ak; bhkÿ1� ÿ xk � k and rp�ak; bhk � � yk � k.

The optimization problem will include the fol-
lowing variables:

4.2. An accuracy criterion

If the values of the slack variables xk and yk are
both positive then ELECTRE TRI pessimistic
assignment procedure will assign alternative ak to

the ``correct'' category. If, however, one or both of
these values are negative, the ELECTRE TRI
pessimistic assignment procedure will assign al-
ternative ak to a ``wrong'' category. The lower the
minimum of these two values, the less adapted is
the model Mp to give an account of the assignment
of ak made by the DM. Moreover, if xk and yk are
both positive then ak is assigned consistently with
the DM's statement for all k0 2 �kÿ y � k; k� xk�.

Let us consider now the set of alternatives
A� � A where card�A�� � n and suppose that the
DM has assigned the alternative ak to the category
Chk 8ak 2 A�. The model Mp will be consistent with
DM's assignments i� xk P 0 and yk P 0 8k such
that ak 2 A�.

Consistently with the preceding argument, an
accuracy criterion can be de®ned as

max
k : ak2A�

fminfxk; ykgg: �5�

We obtain a standard MaxMin problem. If the
accuracy criterion takes a non-negative value then
all alternatives contained in A� are ``correctly''
assigned for all

k0 2 �kÿ min
k : ak2A�

fykg; k� min
k : ak2A�

fxkg�:

This criterion, however, takes into account the
``worst case'' only, i.e., the alternative for which
the ELECTRE TRI model gives the most di�erent
assignment from the DM. An accuracy criterion
should be able to take into account an average
information concerning the accuracy of the model,
i.e., its overall ability to assign the alternatives
from A� to the correct category. Hence, we pro-
pose to replace criterion (5) by the following one:

max
k : ak2A�

min xk; ykf g
(

� e
X

k : ak2A�
�xk � yk�

)
; �6�

where e is a small positive value. Eq. (6) can be
rewritten as

max a

(
� e

X
k:ak2A�

�xk � yk�
)
; �7�

s:t: a6 xk 8k such that ak 2 A�; �8�
a6 yk 8k such that ak 2 A�: �9�

xk; yk 8k such that ak 2 A� slack variables (2n)
k cutting level (1)
wj 8j 2 F importance coe�-

cients (m)
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4.3. Constraints of the problem

The constraints of the optimization problem
are the following:

Additional constraints can be added in the
course of the interactive procedure in order to
take into account an intuitive view of the DM
on the value of some parameters. For instance, if
the DM does not consider any criterion as a dic-
tator, an appropriate constraint is wj6 �1=2�Pm

i�1

wi 8j 2 F :

4.4. Optimization problem to be solved

The basic form of the optimization problem to
be solved is the following:

max a

(
� e

X
k:ak2A�

�xk � yk�
)

�10�

s:t:

a6 xk 8k such that ak 2 A�; �11�
a6 yk 8k such that ak 2 A�; �12�Xm

j�1

wjcj�ak; bhkÿ1� ÿ xk � k

8k such thatak 2 A�; �13�Xm

j�1

wjcj�ak; bhk � � yk � k

8k such that ak 2 A�; �14�Xm

j�1

wj � 1; �15�

k 2 �0:5; 1�; �16�
wj P 0; 8j 2 F : �17�

As the objective function and all constraints are
linear, the above problem is a linear programming
problem. It contains 2n� m� 1 variables and
4n� m� 2 constraints. Let us remark that the
slack variables xk and yk can be eliminated from
the problem formulation since they are de®ned by
the constraints (13) and (14). This elimination re-
duces the number of variables.

5. Experimental design

This experiment is a laboratory work, i.e., takes
its material in a past real world case study to
perform a posteriori computations in order to test
the operational validity of the optimization model
proposed in Section 4. The data considered comes
from the real world application described in
[26,27].

This application considers the problem of as-
signing a set A of 100 alternatives �A � fa1;
a2; . . . ; a100g is described in [7]) to three (the initial
data speci®ed 5 categories; we grouped the three
top categories �C3; C4 and C5� as none of the al-
ternatives were assigned by the ELECTRE TRI
model to C4 and C5) ordered categories C1; C2 and
C3 (two limit pro®les b1 and b2 de®ne the ``fron-
tiers'' C1 ÿ C2 and C2 ÿ C3) on the basis of 7 cri-
teria (preferences on all criteria are decreasing with
the evaluations, i.e., the lower the better).

As no interaction with the DM is possible, we
consider the assignment of ELECTRE TRI pessi-
mistic assignment procedure (with the parameters
given in [26]) as assignment examples expressed by
a ``®ctitious'' DM. The experimental method
consist in using the optimization procedure with
di�erent subsets of assignment examples to infer
the weights that ``best'' match with the examples
(with the given values for pro®les and thresholds).

So as to get consistent results, we generate 80
subsets of A, the cardinality of these subset being
either 6, 12, 18, 24, 30, 36, 42 or 48 (10 sets of each
size were generated). Each of these subsets is
conceived so that the alternatives are assigned
uniformly on the three categories. Let us denote Aj

i

the jth set of size i. In order to test the ability of the
optimization procedure to identify inconsistent
information (see Section 6.3), we consider Errj

i

rp�ak; bhkÿ1
ÿ xk � k

8k : ak 2 A�
de®nition of the slack
variables xk�n�

rp�ak; bhk � � yk � k
8k : ak 2 A�

de®nition of the slack
variables yk�n�

a6 xk; a6 yk 8k :
ak 2 A�

de®nition of a (2n)

k 2 �0:5; 1� interval of variation for k
(2)

wj P 0 8j 2 F non-negativity
constraints (m)
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derived from Aj
i in which an alternative is volun-

tarily assigned to a ``wrong'' category. The error
introduced consist in changing the assignment of
an alternative (for example, assigning to C1 an
alternative that should be assigned to C2). Di�er-
ent types of errors were considered as shown in the
Table 1. The sets of assignment examples for
which computations were performed are described
in [7].

The mathematical program corresponding to
each set Errj

i and Aj
i has been solved with di�erent

objective functions (see Section 4.2). The general
form of the considered objective function z to be
maximized is

z � min
k : ak2A�

fxk; ykg � e
X

k : ak2A�
�xk � yk�

and computations have been performed for
e � 10ÿ3; 10ÿ2; 10ÿ1; 1; 101; 102. This allows us
to check for the variability of the output to the
choice of an objective function.

6. Results

The computations have been performed using
Cplex on a Sun Sparc 5 workstation with 32 MB
memory. Considering the small size of the prob-
lem, the computing time never exceeded 0.1 sec-
onds.

Prior to stating the results, it is important to
mention that these results are dependent on the
data under consideration. The proposed general
implications should be understood taking into
account this restriction. The reader will ®nd de-
tailed numerical results in [7].

6.1. Is the tool able to increase the ``stability'' of
assignments of alternatives?

Let wopt be the weight vector obtained using the
optimization procedure on the basis of the as-
signment to categories of alternatives from a set
Aj

i . Let wdm be the weight vector used to generate
the assignment examples. A ®rst validation of the
usefulness of the optimization procedure is to
check if the assignments of alternatives from Aj

i are
more ``stable'' when using wopt than when consid-
ering wdm, i.e., is the tool able to increase the
``stability'' of assignments of alternatives in a set
Aj

i ?
So as to answer this question, we will use the

following methodology. In the mathematical pro-
gram to be solved, the variable a is introduced to
transform a MaxMin objective into a Max objec-
tive and represents the minimum value among the
slack variables xk and yk (Section 4.2). The larger
the a, the more stable are the assignments of al-
ternatives in Aj

i . The assignments are said to be
stable if they are not a�ected by a modi®cation of
the cutting level k (or of the weights).

Let us denote adm�Aj
i� the maximum variation

on the cutting level k preserving correct assign-
ment of alternatives from Aj

i with the initial
weights, i.e., those given in [26]. Let us denote
aopt�Aj

i� the maximum variation on the cutting
level k preserving correct assignment of alterna-
tives from Aj

i with the weights obtained using the
optimization procedure. The improvement of the
stability of the assignments provided by the pro-
cedure can be evaluated by aopt�Aj

i� ÿ adm�Aj
i�:

Table 2 gives the numerical results.
Considering these results, we can observe:

· Firstly the results show that the larger the set of
assignment examples, the less stable the assign-
ments, i.e., the more sensitive are these assign-
ments to a change in weights. This is a
straightforward evidence as each assignment ex-
ample adds two constraints to the program to be
solved (see Section 4.3).

· Secondly, these results show a signi®cant im-
provement of the stability of the assignments
whatever the size of the set of examples (mean
value: 0:15). This proves the ability of the opti-
mization procedure to perform ``good'' weights

Table 1

Type of errors introduced in the sets

Initial

category

Error

category

Number in each

sample

C1 C2 2

C2 C1 2

C2 C3 2

C3 C2 2

C1 C3 1

C3 C1 1
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that enables ELECTRE TRI to reassign the al-
ternatives in a very stable way.

6.2. Which ``amount'' of information is necessary to
infer the weights in a reliable way?

In order to infer in a reliable way a weight
vector wopt, the optimization procedure requires
information as input, i.e., on the set of assignment
examples. What is the amount of information
necessary to ``calibrate'' the model in a satisfactory
way? How large should A� be in order to derive
wopt in a reliable manner? This question is essential
for practical use to the inference model in real
world decision problems. The analyst should have
some simple guidelines to manage the interaction
with the DM avoiding unnecessary question, but
collecting a su�cient information.

In order to determine a ``reasonable amount
of information'' to infer the weights, we use the
following experimental scheme: the optimization
procedure is performed using di�erent sets of
assignment examples, whose size varies from 6 to
48 (10 sets for each size, see Section 5). We
observe then the ability of ELECTRE TRI using
the inferred weights to assign correctly the whole
set of 100 alternatives. Obviously the ability of
ELECTRE TRI using the inferred weights to
reassign all alternatives correctly increases with
the size of the set from which the weights are
derived. However, the number of assignment
examples expressed by the DM should not be
too large.

Let us denote by a100
opt�Aj

i� the maximum varia-
tion on the cutting level k preserving correct as-
signment for all 100 alternatives with the weights
inferred from Aj

i . Let a100
opt�i� be the mean value of

the a100
opt�Aj

i�, for all sets Aj
i of size i.

Let us denote by err100
opt�Aj

i� the number of
``wrong'' assignments among the 100 alternatives
with the weights inferred from Aj

i . Let err100
opt�i� be

the mean value of the err100
opt�Aj

i�, for all sets Aj
i of

size i. The results of the computations are grouped
in Table 3.

As foreseen, the results show that �a100
opt�i� in-

creases and err100
opt�i� decreases with the size i of the

set. Moreover, �a100
opt�i� becomes positive for 12 <

i < 18; such a positive value means that weights
inferred from a set of i assignment examples is
able (in mean value) to reassign correctly all 100
alternatives.

The number of parameters to be inferred
(weights wj) depend on the number of criteria
only. Considering the above results, 2� m (m
being the number of criteria) seems to be a
reasonable number of assignment examples to
infer the weights in a reliable way (as 7 criteria
are considered, 12 < 2m < 18). However, it is
important to notice that using a set Aj

i of 2m
assignment examples does not always infer
weights such that err100

opt�Aj
i� � 0, i.e., some al-

ternatives mights be incorrectly reassigned.
Nevertheless, the 2m seems to us a good balance
between number of examples required from the
DM (necessary limited) and the reliability of the
inferred weights. This result needs to be rein-
forced by a replication of this experiment, par-
ticularly in the case where the number of
categories exceeds 3.

Table 3

Information required to infer weights reliably

Size: i �a100
opt�i� err100

opt�i�
6 )0.093 4.4

12 )0.088 4.0

18 0.076 0.6

24 0.129 0.2

30 0.157 0.0

36 0.112 0.4

42 0.164 0.0

Table 2

Improvement of the ``stability'' of assignments

Size: i �aopt�i� �adm�i� �aopt�i� ÿ �adm�i�
6 0.24 0.08 0.16

12 0.23 0.02 0.21

18 0.21 0.08 0.13

24 0.20 0.02 0.18

30 0.19 0.08 0.11

36 0.18 0.03 0.15

42 0.18 0.02 0.16

48 0.10 0.02 0.08

Mean 0.15
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6.3. Is the tool able to identify the inconsistencies in
the DM's assertions?

The optimization procedure that is tested in this
experiment is conceived to be integrated in an in-
teractive tool brie¯y described in Section 2. In
practical decision situations, real DMs do not al-
ways provide reliable information. Due to time
constraints and cognitive limitations, DM's pref-
erences evolve over time, contains contradictory or
inconsistent information. The role of an interactive
tool is to help the DM to learn about his/her
preferences and their possible representation in a
speci®c aggregation model. Inconsistencies occur
when the DM's preferences (in our case a set of
assignment examples) can not be expressed
through the preference model that is used
(ELECTRE TRI in our case). In such cases, it is
important to extract from the expressed prefer-
ences the inconsistent pieces of information, i.e.,
the most atypical or contradictory assignment ex-
amples. Consequently, a fundamental experimen-
tal issue concerns the ability of the tool to identify
the inconsistencies in the DM's statements: iden-
tifying inconsistencies will help the DM in revising
the expressed assertions in order for his/her pref-
erence to match the used preference model.

In order to test the ability of the optimization
procedure to identify inconsistent information, we
consider the sets Errj

i derived from Aj
i in which an

alternative is voluntarily assigned to a wrong cate-
gory. The error introduced consist in changing the
assignment of an alternative (for example, assigning
to C1 an alternative that should be assigned to C2).

So as to know if the optimization procedure is
able to identify an inconsistency, we will ground
on the following idea. Let akerr be the alternative
wrongly assigned in Errj

i ; xkerr and ykerr being the
corresponding slack variables (see Section 4.1). Let
us recall that the variable a corresponds to the
minimum of xk and yk for all alternatives in Errj

i .
The alternatives that are the ``most di�cult'' to
assign are those (in the interactive process, these
alternatives are those which should be proposed to
the DM in order to revise the assignments) for
which xk � a or yk � a. Hence, we will consider the
error or inconsistency to be ``discovered'' if
xkerr � a or ykerr � a. If akerr is identi®ed as one of

the alternative the most di�cult to assign, it might
not be the only alternative for which one of
the slack variable equal a. Let n�Errj

i� denote the
number of such alternatives; the lower n�Errj

i�, the
more accurate is the identi®cation. We denote n�i�
the mean value for n�Errj

i�, for all j.
In the result, we observe that the error is always

identi®ed (xkerr � a or ykerr � a). Table 4 gives the
numerical results.

Unsurprisingly, we observe a degradation of
the value of �a�i� compared to its value in the case
of the initial assignment sets, i.e., without errors
(see Table 2). Secondly, though the errors are
systematically identi®ed, the number of alterna-
tives �n�i� is increasing with the size i of the sets;
however, the proportion of such alternatives is
decreasing with i. Finally the results show that the
optimization procedure has a good ability to
identify suspicious assignments.

6.4. Is the output sensitive to the choice of an
objective function?

The output of the optimization phase rely on
the choice of an objective function. As di�erent
objective functions can be considered, it is im-
portant to check the variability of the output to
the di�erent functions.

In this study, we investigate a class of objective
functions z(e) to be maximized of the form (see
Section 4.2)

z�e� � min
k : ak2A�

fxk; ykg � e
X

k : ak2A�
�xk � yk�: �18�

These objective functions z(e) aggregate two
components:

Table 4

Identi®cation of ``errors''

Size: i �a�i� �n�i� �n�i�=i (%)

6 0.00 4.3 71.7

12 0.01 6.9 57.5

18 )0.01 8.8 48.9

24 )0.01 8.3 34.6

30 0.01 15.2 50.7

36 0.01 13.0 36.1

42 )0.02 12.4 29.5

48 )0.02 14.1 29.4
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· a ®rst component which leads to an optimum
that account only for the alternative that is the
most di�cult to assign correctly,

· a second additive component in which a stable
assignment may be compensated by a less stable
one; this second component account for the
overall ability of the obtained weight vector to
assign the alternatives correctly.
The parameter e enables to tune z(e) in direction

of one of its two components (e � 0 leads to a
standard MaxMin criterion while a su�ciently
large value for a leads to an additive criterion).

In our experiment, we perform the computa-
tions for e � 10; 10ÿ2; 10ÿ1; 100; 101; 102 and
for each set Aj

i ; i � 6; 12; 24; 30; 36; 42; 48; j �
1; . . . ; 10. Firstly we can observe that di�erent
values for e leads to di�erent results. Obviously, we
observe that optimal value for a decreases when e
increases and �1=card�A���Pk : ak2A� �xk � yk� in-
creases with e. In other words, the stability of the
worst case deteriorates while the ``mean stability''
increases when we emphasize the additive com-
ponent of the objective function.

A more interesting point deals with the com-
parative reliability of the weights wmaxmin and wadd

inferred using a pure maxmin and a standard ad-

ditive objective function. More precisely, what is
the ability of wmaxmin and wadd to reassign correctly
the whole set of 100 alternatives. Tables 5 and 6
presents the values of �a100

opt �i� and err100
opt�i� (see

Section 6.2).
We observe that:

· when the set of assignment examples is insu�-
ciently large (612, see Section 6.2), wmaxmin and
wadd are equally accurate,

· when su�cient information is provided, the
maxmin criterion leads to slightly more robust
weights,

· the number of incorrectly reassigned alterna-
tives are almost always equal when using
wmaxmin and wadd.
While both objective functions give good re-

sults, a slight advantage is observed in favor of the
maxmin criterion in terms of the stability of reas-
signments.

7. Conclusions

This paper presents an experimental validation
of a procedure aiming at inferring the weights

Table 5

�a100
opt�i�: ability of w to reassign alternatives

e Size: i

6 12 18 24 30 36 42

0.001 )0.093 )0.088 0.076 0.129 0.157 0.112 0.164

0.01 )0.093 )0.088 0.076 0.129 0.157 0.112 0.164

0.1 )0.093 )0.088 0.076 0.129 0.157 0.112 0.164

1 )0.093 )0.088 0.076 0.129 0.157 0.112 0.164

10 )0.093 )0.088 0.076 0.129 0.157 0.112 0.164

100 )0.093 )0.088 0.076 0.129 0.157 0.112 0.164

Table 6

err100
opt�i�: number of incorrect reassignments

e Size: i

6 12 18 24 30 36 42

0.001 4.4 4.0 0.6 0.2 0.0 0.4 0.0

0.01 4.4 4.0 0.6 0.2 0.0 0.4 0.0

0.1 4.4 4.0 0.6 0.2 0.0 0.4 0.0

1 4.4 4.0 0.6 0.2 0.0 0.4 0.0

10 4.4 4.0 0.6 0.2 0.0 0.4 0.0

100 4.4 4.0 0.6 0.2 0.0 0.4 0.0
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of the ELECTRE TRI method on the basis
of assignment examples (see [11]). The perfor-
mances of this procedure were tested together
with its ability to be integrated in an interactive
process based on the aggregation±disaggregation
paradigm. In conclusion, we can state the fol-
lowing:
· the results show that the inference procedure de-

rives weights that assign (using ELECTRE TRI)
the examples to the correct category in a stable
way,

· experimental results suggest that a ``reasonable''
number of assignment examples to infer the
weights reliably is 2m, m being the number of
criteria,

· the inference procedure shows a good ability to
detect inconsistencies in the user's assertions;
this property is particularly important in the
perspective of its integration in an interactive
process,

· the di�erent objective functions tested did not
provided signi®cantly di�erent results in terms
of reassignment performances.
Although these results depend on the data

under consideration, the empirical results seems
robust. These good results concerning the beha-
viour of the inference procedure must be analysed
in relation the use of this inference procedure.
The inference phase (formalized by the mathe-
matical program) is not only a simply adjustment
process, but is intended to be integrated into an
interactive aggregation disaggregation process
(see Section 2).This interactive process aims at
providing the DM a tool for him/her to learn
about his/her preferences and their compatibility
with the used preference model. In this sense, the
presented empirical results are very promising in
terms of applicability of the approach proposed
in [11].
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