Orientation of Graphs and Connectivity

Olivier Durand de Gevigney
joint works with: Joseph Cheriyan, Nguyen Viet-Hang and Zoltán Szigeti

December 18, 2014
Notions of Connectivity in Digraphs

∃ \(k \)-arc-disjoint directed paths from any vertex to any other vertex

Menger ⇔ the size of every arc-cut is at least \(k \)

∃ \(k \)-vertex-disjoint directed paths from any vertex to any other vertex

Menger ⇔ the size of every vertex-cut is at least \(k \)
Notions of Connectivity in Digraphs

k-arc-connectivity

\[\exists k \text{-arc-disjoint directed paths from any vertex to any other vertex} \]

\[\Longleftrightarrow \text{the size of every arc-cut is at least } k \]

\[d^\text{in}_D(X) \geq k \]
Notions of Connectivity in Digraphs

k-arc-connectivity

\exists k-arc-disjoint directed paths from any vertex to any other vertex

Menger \iff the size of every arc-cut is at least k

$\quad d^{in}_D(X) \geq k$

k-vertex-connectivity

\exists k-vertex-disjoint directed paths from any vertex to any other vertex

Menger \iff the size of every vertex-cut is at least k
Notions of Connectivity in Graphs
Notions of Connectivity in Graphs

k-edge-connectivity

\exists k-edge-disjoint paths joining any pair of vertices

Menger \iff every edge-cut is of size at least k

$\quad d_G(X) \geq k$

k-vertex-connectivity

\exists k-vertex-disjoint paths joining any pairs of vertices

Menger \iff every vertex-cut is of size at least k
Notions of Connectivity in Graphs

k-edge-connectivity

\exists k-edge-disjoint paths joining any pair of vertices

Menger \iff every edge-cut is of size at least k

$d_G(X) \geq k$

k-vertex-connectivity

\exists k-vertex-disjoint paths joining any pairs of vertices

Menger \iff every vertex-cut is of size at least k
Outline

On Arc-Connected Orientations

An Application of Orientation: Packing Trees

On Vertex-Connected Orientations
Outline

On Arc-Connected Orientations

An Application of Orientation: Packing Trees

On Vertex-Connected Orientations
k-Arc-Connected Orientation

G has a k-arc-connected orientation D

Theorem [Nash-Williams 1960]

G has a k-arc-connected orientation D

G is $2k$-edge-connected

Proved for $k = 1$ by Robbins (1939)
k-Arc-Connected Orientation

G has a k-arc-connected orientation D

G is $2k$-edge-connected

Theorem [Nash-Williams 1960]

Proved for $k = 1$ by Robbins (1939)
k-Arc-Connected Orientation

Let G be a graph and D be an orientation of G. G has a k-arc-connected orientation D if:

$$d^\text{in}_D(X) \geq k \text{ for all } \emptyset \neq X \subset V$$

Theorem [Nash-Williams 1960]

G has a k-arc-connected orientation D if and only if G is $2k$-edge-connected. Proved for $k = 1$ by Robbins (1939).
A graph G has a k-arc-connected orientation D if $d^\text{in}_D(X) \geq k$ for all $\emptyset \neq X \subset V$.

Theorem [Nash-Williams 1960]

Proved for $k = 1$ by Robbins (1939)

The graph G is $2k$-edge-connected if $d_G(X) = d^\text{in}_D(X) + d^\text{out}_D(X) \geq 2k$ for all $\emptyset \neq X \subset V$.

G is $2k$-edge-connected.

Diagram:

- X is a subset of V.
- Arrows denote directed edges with direction indicated by arrowhead.
- Red and blue arrows represent different sets of arcs.
- $d_G(X)$ calculates the sum of in-degree and out-degree for X.

Note: The page number 7/24.
k-Arc-Connected Orientation

A graph G has a k-arc-connected orientation D if the following conditions hold:

- $d_D^\text{in}(X) \geq k$ for all $\emptyset \neq X \subset V$
- $d_G(X) = d_D^\text{in}(X) + d_D^\text{out}(X) \geq 2k$ for all $\emptyset \neq X \subset V$

This implies that G is $2k$-edge-connected.

Theorem [Nash-Williams 1960]

G has a k-arc-connected orientation D if and only if G is $2k$-edge-connected.

Proved for $k = 1$ by Robbins (1939).
The Eulerian case

Eulerian graphs and digraphs

\[G \text{ is Eulerian: } d_G(v) \text{ is even } \forall v \]
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: \(d_G(v) \) is even \(\forall v \)
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$

D is Eulerian: $d_{in}D(v) = d_{out}D(v)$ $\forall v$
The Eulerian case

Eulerian graphs and digraphs

- **G** is Eulerian: \(d_G(v) \) is even \(\forall v \)
The Eulerian case

Eulerian graphs and digraphs

- G is Eulerian: $d_G(v)$ is even $\forall v$

\[\text{Theorem} \quad G \text{ has an Eulerian orientation} \]

\[\leftrightarrow \quad \text{G is Eulerian} \]
The Eulerian case

Eulerian graphs and digraphs

- **G** is Eulerian: $d_G(v)$ is even $\forall v$

8/24
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: \(d_G(v) \) is even \(\forall v \)
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: \(d_G(v) \) is even \(\forall v \)
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
The Eulerian case

Eulerian graphs and digraphs

- **G** is Eulerian: $d_G(v)$ is even $\forall v$

- Theorem: **G** has an Eulerian orientation \leftrightarrow **G** is Eulerian
The Eulerian case

Eulerian graphs and digraphs

G is Eulerian: $d_G(v)$ is even $\forall v$
The Eulerian case

Eulerian graphs and digraphs

- **G is Eulerian**: $d_G(v)$ is even $\forall v$
- **D is Eulerian**: $d_D^{in}(v) = d_D^{out}(v) \forall v$
The Eulerian case

Eulerian graphs and digraphs

- **G** is Eulerian: \(d_G(v) \) is even \(\forall v \)
- **D** is Eulerian: \(d_D^{in}(v) = d_D^{out}(v) \) \(\forall v \)

Theorem

- **G** has an Eulerian orientation \(\iff \)
- **G** is Eulerian
The Eulerian case

Eulerian graphs and digraphs

- **G is Eulerian:** $d_G(v)$ is even $\forall v$
- **D is Eulerian:** $d_D^{in}(v) = d_D^{out}(v) \forall v$

Theorem

- **G has an Eulerian orientation**
 \[\iff \]
 G is Eulerian

\[
\sum_{v \in X} d_D^{in}(v) = d_D^{in}(X) + |\{\text{arcs } uv \text{ such that } u, v \in X\}|
\]
\[
\sum_{v \in X} d_D^{out}(v) = d_D^{out}(X) + |\{\text{arcs } uv \text{ such that } u, v \in X\}|
\]
The Eulerian case

Eulerian graphs and digraphs

- G is Eulerian: $d_G(v)$ is even $\forall v$
- D is Eulerian: $d_D^{in}(v) = d_D^{out}(v) \forall v$

Theorem

- G has an Eulerian orientation \iff G is Eulerian

$d_D^{in}(X) = d_D^{out}(X)$ if D is Eulerian

$d_G(X) = d_D^{in}(X) + d_D^{out}(X)$ D is an orientation of G
The Eulerian case

Eulerian graphs and digraphs

- **G** is Eulerian: $d_G(v)$ is even $\forall v$
- **D** is Eulerian: $d_D^{in}(v) = d_D^{out}(v)$ $\forall v$

Theorem

- G has an Eulerian orientation $\iff G$ is Eulerian

<table>
<thead>
<tr>
<th>$d_D^{in}(X)$</th>
<th>$\frac{1}{2}d_G(X)$</th>
</tr>
</thead>
</table>

if D is Eulerian
The Eulerian case

Eulerian graphs and digraphs

- G is Eulerian: $d_G(v)$ is even $\forall v$
- D is Eulerian: $d_D^{in}(v) = d_D^{out}(v) \forall v$

Theorem

- G has an Eulerian orientation $\iff G$ is Eulerian

D is Eulerian:
\[
d_D^{in}(X) = \frac{1}{2}d_G(X)
\]
if D is Eulerian

Theorem

Any Eulerian orientation of an Eulerian $2k$-connected graph is k-arc-connected.
Lovász’ proof: Splitting-off

Theorem [Lick 1972]
Every minimally $2k$-edge-connected graph has a vertex of degree $2k$.

Splitting-off

(Splitting-off)

replace su and sv by the edge uv

Theorem [Lovász 1979]
If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.

Proof of Nash-Williams’ theorem by induction on $|V| + |E|$.
Lovász’ proof: Splitting-off

Theorem [Lick 1972]
Every minimally \(2k\)-edge-connected graph has a vertex of degree \(2k\).

Splitting-off

Splitting-off \((su, sv)\):
replace \(su\) and \(sv\) by the edge \(uv\).

Theorem [Lovász 1979]
If \(G\) is \(2k\)-edge-connected and \(d_G(s)\) is even then there exists a complete splitting-off at \(s\) that results in a \(2k\)-edge-connected graph on \(V \setminus s\).
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off \((su, sv)\):
replace \(su\) and \(sv\) by the edge \(uv\)
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off \((su, sv)\): replace \(su\) and \(sv\) by the edge \(uv\)

Complete Splitting-off at \(s\): split-off pair of edges adjacent to \(s\) as long as it is possible
Lovász’ proof: Splitting-off

Theorem [Lick 1972]
Every minimally $2k$-edge-connected graph has a vertex of degree $2k$.

Splitting-off
- **Splitting-off** (su, sv): replace su and sv by the edge uv
- **Complete Splitting-off at** s: split-off pair of edges adjacent to s as long as it is possible

Theorem [Lovász 1979]
If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.

Proof of Nash-Williams’ theorem by induction on $|V| + |E|$.
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off \((su, sv)\): replace \(su\) and \(sv\) by the edge \(uv\)

Complete Splitting-off at \(s\): split-off pair of edges adjacent to \(s\) as long as it is possible
Lovász’ proof: Splitting-off

Theorem [Lick 1972]
Every minimally $2k$-edge-connected graph has a vertex of degree $2k$.

Splitting-off

- **Splitting-off** (su, sv): replace su and sv by the edge uv

- **Complete Splitting-off at s**: split-off pair of edges adjacent to s as long as it is possible.

Theorem [Lovász 1979]
If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.

Proof of Nash-Williams' theorem by induction on $|V| + |E|$

\[9/24\]
Lovász’ proof: Splitting-off

Theorem [Lick 1972]
Every minimally $2k$-edge-connected graph has a vertex of degree $2k$.

Splitting-off

- **Splitting-off** (su, sv): replace su and sv by the edge uv
- **Complete Splitting-off at s**: split-off pair of edges adjacent to s as long as it is possible

Theorem [Lovász 1979]
If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.

Proof of Nash-Williams’ theorem by induction on $|V| + |E|$
Lovász’ proof: Splitting-off

Theorem [Lick 1972]

Every minimally $2k$-edge-connected graph has a vertex of degree $2k$.

Splitting-off

Splitting-off (su, sv):
replace su and sv by the edge uv

Complete Splitting-off at s:
split-off pair of edges adjacent to s as long as it is possible

Theorem [Lovász 1979]

If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.
Lovász’ proof: Splitting-off

Theorem [Lick 1972]
Every minimally $2k$-edge-connected graph has a vertex of degree $2k$

Theorem [Lovász 1979]
If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.

Splitting-off
Splitting-off (su, sv): replace su and sv by the edge uv

Complete Splitting-off at s: split-off pair of edges adjacent to s as long as it is possible
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off \((su, sv)\):
replace \(su\) and \(sv\) by the edge \(uv\)

Complete Splitting-off at \(s\):
split-off pair of edges adjacent to \(s\) as long as it is possible

Theorem [Lick 1972]
Every minimally 2\(k\)-edge-connected graph has a vertex of degree 2\(k\)

Theorem [Lovász 1979]
If \(G\) is 2\(k\)-edge-connected and \(d_G(s)\) is even then there exists a complete splitting-off at \(s\) that results in a 2\(k\)-edge-connected graph on \(V \setminus s\).

Proof of Nash-Williams’ theorem by induction on \(|V| + |E|\)
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off \((su, sv)\):
replace \(su\) and \(sv\) by the edge \(uv\)

Complete Splitting-off at \(s\):
split-off pair of edges adjacent to \(s\) as long as it is possible

Theorem [Lick 1972]

Every minimally 2\(k\)-edge-connected graph has a vertex of degree 2\(k\)

Theorem [Lovász 1979]

If \(G\) is 2\(k\)-edge-connected and \(d_G(s)\) is even then there exists a complete splitting-off at \(s\) that results in a 2\(k\)-edge-connected graph on \(V \setminus s\).

Proof of Nash-Williams’ theorem by induction on \(|V| + |E|\)
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off (su, sv):
replace su and sv by the edge uv

Complete Splitting-off at s:
split-off pair of edges adjacent to s as long as it is possible

Theorem [Lick 1972]

Every minimally $2k$-edge-connected graph has a vertex of degree $2k$

Proof of Nash-Williams’ theorem by induction on $|V| + |E|$

Theorem [Lovász 1979]

If G is $2k$-edge-connected and $d_G(s)$ is even then there exists a complete splitting-off at s that results in a $2k$-edge-connected graph on $V \setminus s$.
Lovász’ proof: Splitting-off

Splitting-off

Splitting-off \((su, sv)\):
replace \(su\) and \(sv\) by the edge \(uv\)

Complete Splitting-off at \(s\):
split-off pair of edges adjacent to \(s\) as long as it is possible

Theorem [Lick 1972]

Every minimally 2\(k\)-edge-connected graph has a vertex of degree 2\(k\)

Theorem [Lovász 1979]

If \(G\) is 2\(k\)-edge-connected and \(d_G(s)\) is even then there exists a complete splitting-off at \(s\) that results in a 2\(k\)-edge-connected graph on \(V \setminus s\).

Proof of Nash-Williams’ theorem by induction on \(|V| + |E|\)
Covering Crossing Supermodular Functions

An orientation D covers a set-function p if

$$d_D^\text{in}(X) \geq p(X), \ \forall X$$
Covering Crossing Supermodular Functions

An orientation D covers a set-function p if

$$d^\text{in}_D(X) \geq p(X), \forall X$$

We are interested in covering

$$h(X) = \begin{cases}
0 & \text{if } X = \emptyset \text{ or } V \\
 k & \text{otherwise}
\end{cases}$$
Covering Crossing Supermodular Functions

An orientation D covers a set-function p if

$$d^\text{in}_D(X) \geq p(X), \ \forall X$$

We are interested in covering

$$h(X) = \begin{cases} 0 & \text{if } X = \emptyset \text{ or } V \\ k & \text{otherwise} \end{cases}$$

Crossing Supermodular Functions

A set function $p : 2^V \mapsto \mathbb{R}$ is called crossing supermodular if

$$p(X) + p(Y) \leq p(X \cup Y) + p(X \cap Y)$$

holds for all crossing $X, Y \subseteq V$ (ie: none of $X \cap Y, X \setminus Y, Y \setminus X, V \setminus (X \cup Y)$ is empty).
Frank’s proof

Theorem [Frank 1980]

Let G be a graph and p be a non-negative, integer-valued crossing supermodular set function on V such that $p(V) = p(\emptyset) = 0$. Then there exists an orientation covering p iff

$$e_G(\mathcal{P}) \geq \max \left\{ \sum_{X \in \mathcal{P}} p(X), \sum_{X \in \mathcal{P}} p(V \setminus X) \right\}$$

holds for every partition \mathcal{P} of V. If p is symmetric then the condition reduces to

$$d_G(X) \geq 2p(X), \forall X$$
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

[Diagram of a graph with nodes and edges]
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

Theorem [Nash-Williams 1960]

Every graph has a "good" odd pairing
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M

![Graph with odd pairing](image)
Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M

12/24
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
4. If M is “good” then the orientation of G is well-balanced (regardless of the Eulerian orientation given at step 2)
Well-Balanced Orientation

Theorem [Nash-Williams 1960]

Every graph has an orientation that preserves at least half (rounded down) of the edge connectivity between any two vertices.

For Eulerian graphs any Eulerian orientation works. Nash-Williams’ idea:

1. Add to G an odd pairing M
2. Take an Eulerian orientation of $G + M$
3. Remove M
4. If M is “good” then the orientation of G is well-balanced (regardless of the Eulerian orientation given at step 2)

Theorem [Nash-Williams 1960]

Every graph has a “good” odd pairing
Outline

On Arc-Connected Orientations

An Application of Orientation: Packing Trees

On Vertex-Connected Orientations
The Plumbing Problem

Corollary [Frank 1978]
A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

A graph with roots has an orientation satisfying (1) iff it satisfies (2).
The Plumbing Problem

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
If there exists k arc-disjoint spanning arborescences then

$$d_D^{in}(X) \geq k$$
If there exists \(k \) arc-disjoint spanning arborescences then

\[
d^\text{in}_D(X) \geq k
\]

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

If there exists k arc-disjoint spanning arborescences then

$$d^\text{in}_D(X) \geq k - |\{\text{roots in } X\}|$$
The Plumbing Problem

If there exists k arc-disjoint spanning arborescences then

$$d_D^{in}(X) \geq k - |\{\text{roots in } X\}|$$
The Plumbing Problem

If there exists \(k \) arc-disjoint spanning arborescences then

\[
d_{D}^{in}(X) \geq k - |\{\text{roots in } X\}|
\]
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d_D^{in}(X) \geq k - |\text{roots in } X| \quad (1)$$
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d^\text{in}_D(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a \(k \) arc-disjoint spanning arborescences iff

\[
d_{D}^{in}(X) \geq k - |\{\text{roots in } X\}| \quad (1)
\]
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d^\text{in}_D(X) \geq k - |\{\text{roots in } X\}|$$ \hspace{2cm} (1)

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d_{D}^{in}(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d^{\text{in}}_D(X) \geq k - |\{\text{roots in } X\}|$$

(1)
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d^{in}_{D}(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$

If there exists k edge-disjoint spanning trees then

$$\sum_{X \in \mathcal{P}} d^{in}_{D}(X) \geq k(|\mathcal{P}| - 1) \quad (2)$$
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d^{in}_D(X) \geq k - |\{\text{roots in } X\}|$$ \hspace{1cm} (1)

If there exists k edge-disjoint spanning trees then

$$e_G(\mathcal{P}) = \sum_{X \in \mathcal{P}} d^{in}_D(X) \geq k(|\mathcal{P}| - 1)$$ \hspace{1cm} (2)
The Plumbing Problem

Theorem [Edmonds 1973]
There exists a k arc-disjoint spanning arborescences iff

$$d^\text{in}_D(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$

Theorem [Tutte, Nash-Williams 1961]
There exist k edge-disjoint spanning trees iff

$$e_G(\mathcal{P}) \geq k(|\mathcal{P}| - 1) \quad (2)$$
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d^\text{in}_D(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$

Theorem [Tutte, Nash-Williams 1961]

There exist k edge-disjoint spanning trees iff

$$e_G(\mathcal{P}) \geq k(|\mathcal{P}| - 1) \quad (2)$$

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

Theorem [Edmonds 1973]
There exists a k arc-disjoint spanning arborescences iff

$$d_D^{in}(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$

Theorem [Tutte, Nash-Williams 1961]
There exist k edge-disjoint spanning trees iff

$$e_G(\mathcal{P}) \geq k(|\mathcal{P}| - 1) \quad (2)$$

Corollary [Frank 1978]
A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem

<table>
<thead>
<tr>
<th>Theorem [Edmonds 1973]</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exists a k arc-disjoint spanning arborescences iff</td>
</tr>
<tr>
<td>$d^i_D(X) \geq k -</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Theorem [Tutte, Nash-Williams 1961]</th>
</tr>
</thead>
<tbody>
<tr>
<td>There exist k edge-disjoint spanning trees iff</td>
</tr>
<tr>
<td>$e_G(P) \geq k(</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corollary [Frank 1978]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A graph with roots has an orientation satisfying (1) iff it satisfies (2)</td>
</tr>
</tbody>
</table>
The Plumbing Problem

Theorem [Edmonds 1973]

There exists a k arc-disjoint spanning arborescences iff

$$d_{D}^{\text{in}}(X) \geq k - |\{\text{roots in } X\}| \quad (1)$$

Theorem [Tutte, Nash-Williams 1961]

There exist k edge-disjoint spanning trees iff

$$e_{G}(\mathcal{P}) \geq k(|\mathcal{P}| - 1) \quad (2)$$

Corollary [Frank 1978]

A graph with roots has an orientation satisfying (1) iff it satisfies (2)
The Plumbing Problem with Matroids

- $G = (V, E)$ is a graph
- \mathcal{M} is a matroid on ground set S
- π is a placement of S on V

$\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\}$
The Plumbing Problem with Matroids

- $G = (V, E)$ is a graph r
- \mathcal{M} is a matroid on ground set S
- π is a placement of S on V
- (T, s) is a *rooted tree*
 - T is a tree
 - $\pi(s) \in V(T)$

$\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\}$
The Plumbing Problem with Matroids

- $G = (V, E)$ is a graph
- \mathcal{M} is a matroid on ground set S
- π is a placement of S on V
- (T, s) is a rooted tree
 - T is a tree
 - $\pi(s) \in V(T)$
- $\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}$ is a matroid-based packing of rooted trees (MBPRT)
 - the T_i's are edge-disjoint
 - $\{s_i \in S : v \in V(T_i)\}$ is a base of \mathcal{M} for each $v \in V$

$\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\}$
The Plumbing Problem with Matroids

- $G = (V, E)$ is a graph
- \mathcal{M} is a matroid on ground set S
- π is a placement of S on V
- (T, s) is a rooted tree
 - T is a tree
 - $\pi(s) \in V(T)$
- $\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\}$ is a matroid-based packing of rooted trees (MBPRT)
 - the T_i's are edge-disjoint
 - $\{s_i \in S : v \in V(T_i)\}$ is a base of \mathcal{M} for each $v \in V$
- π is independent if $\pi^{-1}(v)$ is independent in \mathcal{M}, for all $v \in V$

$\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\}$
The Plumbing Problem with Matroids

- \(D = (V, A) \) is a digraph
- \(M \) is a matroid on ground set \(S \)
- \(\pi \) is a placement of \(S \) on \(V \)
- \((T, s)\) is a rooted arborescence
 - \(T \) is an arborescence
 - \(T \) is rooted at \(\pi(s) \)
- \(\{(T_1, s_1), \ldots, (T_{|S|}, s_{|S|})\} \) is a matroid-based packing of rooted arborescences (MBPRA)
 - the \(T_i \)'s are edge-disjoint
 - \(\{s_i \in S : v \in V(T_i)\} \) is a base of \(M \) for each \(v \in V \)
- \(\pi \) is independent if \(\pi^{-1}(v) \) is independent in \(M \), for all \(v \in V \)

\[M = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]
The Plumbing Problem with Matroids

\[M = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]
The Plumbing Problem with Matroids

\[M = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]
The Plumbing Problem with Matroids

If there exists a MBPRA then

\[d_D^{in}(X) \geq r_M(S) - r_M(\pi^{-1}(X)) \]

\[M = \text{uniform matroid of rank 2 on } S = \{ s_1, s_2, s_3 \} \]
The Plumbing Problem with Matroids

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff π is independent and

$$d_D^{in}(X) \geq r_M(S) - r_M(\pi^{-1}(X)) \quad (3)$$

Corollary of [Frank 1980]

A MBR graph has an orientation satisfying (3) iff it satisfies (4)

$\mathcal{M} =$ uniform matroid of rank 2 on $S = \{s_1, s_2, s_3\}$
The Plumbing Problem with Matroids

\[\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff \(\pi \) is independent and

\[
d_{\text{in}}^D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(\pi^{-1}(X)) \quad (3)
\]
The Plumbing Problem with Matroids

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff π is independent and

$$d_D^{in}(X) \geq r_M(S) - r_M(\pi^{-1}(X)) \quad (3)$$

If there exists k edge-disjoint spanning trees then

$$e_G(\mathcal{P}) = \sum_{X \in \mathcal{P}} (r_M(S) - r_M(\pi^{-1}(X))) \quad (4)$$

$M =$ uniform matroid of rank 2 on $S = \{s_1, s_2, s_3\}$
The Plumbing Problem with Matroids

\[\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff \(\pi \) is independent and

\[
d_{\mathcal{D}}^{in}(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(\pi^{-1}(X)) \quad (3)
\]

Theorem [Katoh, Tanigawa 2013]

There exists a MBPRT iff \(\pi \) is independent and

\[
e_G(\mathcal{P}) = \sum_{X \in \mathcal{P}} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(\pi^{-1}(X))) \quad (4)
\]
The Plumbing Problem with Matroids

\[\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff \(\pi \) is independent and

\[
d^{\text{in}}_D(X) \geq r_{\mathcal{M}}(S) - r_{\mathcal{M}}(\pi^{-1}(X)) \quad (3)
\]

Theorem [Katoh, Tanigawa 2013]

There exists a MBPRT iff \(\pi \) is independent and

\[
e_G(P) = \sum_{X \in P} (r_{\mathcal{M}}(S) - r_{\mathcal{M}}(\pi^{-1}(X))) \quad (4)
\]

Corollary of [Frank 1980]

A MBR graph has an orientation satisfying (3) iff it satisfies (4)
The Plumbing Problem with Matroids

\[M = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff \(\pi \) is independent and

\[
d_D^{in}(X) \geq r_M(S) - r_M(\pi^{-1}(X)) \tag{3}
\]

Theorem [Katoh, Tanigawa 2013]

There exists a MBPRT iff \(\pi \) is independent and

\[
e_G(P) = \sum_{X \in P} (r_M(S) - r_M(\pi^{-1}(X))) \tag{4}
\]

Corollary of [Frank 1980]

A MBR graph has an orientation satisfying (3) iff it satisfies (4)
The Plumbing Problem with Matroids

The uniform matroid of rank 2 on $S = \{s_1, s_2, s_3\}$

\[M = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\} \]

<table>
<thead>
<tr>
<th>Theorem</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>[DdG, Nguyen, Szigeti 2013]</td>
<td>There exists a MBPRA iff π is independent and $d_D^{in}(X) \geq r_M(S) - r_M(\pi^{-1}(X))$ (3)</td>
</tr>
<tr>
<td>[Katoh, Tanigawa 2013]</td>
<td>There exists a MBPRT iff π is independent and $e_G(\mathcal{P}) = \sum_{X \in \mathcal{P}} (r_M(S) - r_M(\pi^{-1}(X)))$ (4)</td>
</tr>
<tr>
<td>Corollary of [Frank 1980]</td>
<td>A MBR graph has an orientation satisfying (3) iff it satisfies (4)</td>
</tr>
</tbody>
</table>
The Plumbing Problem with Matroids

$\mathcal{M} = \text{uniform matroid of rank 2 on } S = \{s_1, s_2, s_3\}$

Theorem [DdG, Nguyen, Szigeti 2013]

There exists a MBPRA iff π is independent and

$$d^\text{in}_D(X) \geq r_M(S) - r_M(\pi^{-1}(X)) \quad (3)$$

Theorem [Katoh, Tanigawa 2013]

There exists a MBPRT iff π is independent and

$$e_G(\mathcal{P}) = \sum_{X \in \mathcal{P}} (r_M(S) - r_M(\pi^{-1}(X))) \quad (4)$$

Corollary of [Frank 1980]

A MBR graph has an orientation satisfying (3) iff it satisfies (4)
The Plumbing Problem with Matroids

An extension [C. Király 2013] replaces:
- \(\{ s_i \in S : v \in V(T_i) \} \) is a base of \(\mathcal{M} \) for each \(v \in V \) by
- \(\{ s_i \in S : v \in V(T_i) \} \) is independent and “maximal”

A generalization to “covering intersecting bi-sets families” exists [Bérczi, T. Király and Kobayashi 2013].
Outline

On Arc-Connected Orientations

An Application of Orientation: Packing Trees

On Vertex-Connected Orientations
A conjecture of Thomassen

Conjecture [Thomassen 1989]
For every k, there exists a least integer $f(k)$ such that

\[
G \text{ is } f(k)\text{-vertex-connected} \Downarrow \quad G \text{ has a } k\text{-vertex-connected orientation}
\]

If $f(k)$ exists then $f(k) \geq 2$

- $f(1) = 2$ [Robbins 1939]
- $f(2) \leq 18$ [Jordán 2006]
- $f(2) \leq 14$ [Cheriyan, DdG, Szigeti 2012]
- $f(2) = 4$ [Thomassen 2014]

Whether $f(3)$ exists remains open
A conjecture of Thomassen

Conjecture [Thomassen 1989]

For every k, there exists a least integer $f(k)$ such that

$$G \text{ is } f(k)\text{-vertex-connected} \Downarrow$$

G has a k-vertex-connected orientation

- If $f(k)$ exists then $f(k) \geq 2k$
A conjecture of Thomassen

Conjecture [Thomassen 1989]
For every k, there exists a least integer $f(k)$ such that

\[
G \text{ is } f(k)\text{-vertex-connected} \quad \Downarrow \\
G \text{ has a } k\text{-vertex-connected orientation}
\]

- If $f(k)$ exists then $f(k) \geq 2k$
- $f(1) = 2$ [Robbins 1939]
A conjecture of Thomassen

Conjecture [Thomassen 1989]

For every k, there exists a least integer $f(k)$ such that

$$G$$ is $f(k)$-vertex-connected

\Downarrow

G has a k-vertex-connected orientation

- If $f(k)$ exists then $f(k) \geq 2k$
- $f(1) = 2$ [Robbins 1939]
- $f(2) \leq 18$ [Jordán 2006]
A conjecture of Thomassen

Conjecture [Thomassen 1989]

For every k, there exists a least integer $f(k)$ such that

- G is $f(k)$-vertex-connected

\Downarrow

- G has a k-vertex-connected orientation

- If $f(k)$ exists then $f(k) \geq 2k$
- $f(1) = 2$ [Robbins 1939]
- $f(2) \leq 18$ [Jordán 2006]
- $f(2) \leq 14$ [Cheriyan, DdG, Szigeti 2012]
A conjecture of Thomassen

Conjecture [Thomassen 1989]

For every k, there exists a least integer $f(k)$ such that

G is $f(k)$-vertex-connected

\Downarrow

G has a k-vertex-connected orientation

- If $f(k)$ exists then $f(k) \geq 2k$
- $f(1) = 2$ [Robbins 1939]
- $f(2) \leq 18$ [Jordán 2006]
- $f(2) \leq 14$ [Cheriyan, DdG, Szigeti 2012]
- $f(2) = 4$ [Thomassen 2014]
A conjecture of Thomassen

<table>
<thead>
<tr>
<th>Conjecture [Thomassen 1989]</th>
</tr>
</thead>
<tbody>
<tr>
<td>For every k, there exists a least integer $f(k)$ such that</td>
</tr>
<tr>
<td>G is $f(k)$-vertex-connected</td>
</tr>
<tr>
<td>\Downarrow</td>
</tr>
<tr>
<td>G has a k-vertex-connected orientation</td>
</tr>
</tbody>
</table>

- If $f(k)$ exists then $f(k) \geq 2k$
- $f(1) = 2$ [Robbins 1939]
- $f(2) \leq 18$ [Jordán 2006]
- $f(2) \leq 14$ [Cheriyan, DdG, Szigeti 2012]
- $f(2) = 4$ [Thomassen 2014]
- Whether $f(3)$ exists remains open
A conjecture of Frank

G has a \(k \)-vertex-connected orientation \(D \)

\[\forall U \subseteq G \exists D - U \text{ is } (k-|U|) \text{-vertex-connected} \]

\[\forall U \subseteq G \exists D - U \text{ is } 2(k-|U|) \text{-edge-connected} \]

\[\text{Conjecture [Frank 1995]} \]

\[\text{Proved for } k = 2 \text{ in the Eulerian case [Berg, Jordán 2006]} \]

\[\text{Disproved for } k \geq 3 \text{ (even in the Eulerian case) [DdG 2013]} \]

\[\text{Proved for } k = 2 \text{ [Thomassen 2014]} \]
A conjecture of Frank

\[G \text{ has a } k\text{-vertex-connected orientation } D \]

Conjecture [Frank 1995]

\[G \text{ has a } k\text{-vertex-connected orientation } D \]

\[\nabla G \text{ is weakly } 2k\text{-connected} \]

\[G \text{ is weakly } 2k\text{-connected} \]

▶ Proved for \(k = 2 \) in the Eulerian case [Berg, Jordán 2006]

▶ Disproved for \(k \geq 3 \) (even in the Eulerian case) [DdG 2013]

▶ Proved for \(k = 2 \) [Thomassen 2014]
A conjecture of Frank

G has a k-vertex-connected orientation D

$D - U$ is $(k - |U|)$-vertex-connected $\forall U$

$D - U$ is $(k - |U|)$-arc-connected $\forall U$

Conjecture [Frank 1995]

G has a k-vertex-connected orientation D

\downarrow

$D - U$ is $(k - |U|)$-vertex-connected $\forall U$

\downarrow

$D - U$ is $(k - |U|)$-arc-connected $\forall U$

▶ Proved for $k = 2$ in the Eulerian case [Berg, Jordán 2006]

▶ Disproved for $k \geq 3$ (even in the Eulerian case) [DdG 2013]

▶ Proved for $k = 2$ [Thomassen 2014]
A conjecture of Frank

Conjecture [Frank 1995]

G has a k-vertex-connected orientation D

\downarrow

$D - U$ is $(k - |U|)$-vertex-connected $\forall U$

\downarrow

$D - U$ is $(k - |U|)$-arc-connected $\forall U$

\downarrow

$G - U$ is $2(k - |U|)$-edge-connected $\forall U$

Proved for $k = 2$ in the Eulerian case [Berg, Jordán 2006]

Disproved for $k \geq 3$ (even in the Eulerian case) [DdG 2013]

Proved for $k = 2$ [Thomassen 2014]
A conjecture of Frank

Conjecture [Frank 1995]

\[G \text{ has a } k\text{-vertex-connected orientation } D \]

\[\forall U \]

\[D - U \text{ is } (k - |U|)\text{-vertex-connected} \]

\[\forall U \]

\[D - U \text{ is } (k - |U|)\text{-arc-connected} \]

\[\forall U \]

\[G - U \text{ is } 2(k - |U|)\text{-edge-connected} \]

\[\forall U \]

\[G \text{ is weakly } 2k\text{-connected} \]
A conjecture of Frank

G has a k-vertex-connected orientation D

$D - U$ is $(k - |U|)$-vertex-connected $\forall U$

$D - U$ is $(k - |U|)$-arc-connected $\forall U$

$G - U$ is $2(k - |U|)$-edge-connected $\forall U$

G is weakly 2k-connected

G is weakly 4-connected:
- G is 4-edge-connected
- $G - v$ is 2-edge-connected $\forall v$
A conjecture of Frank

G has a k-vertex-connected orientation D

$D - U$ is $(k - |U|)$-vertex-connected $\forall U$

$D - U$ is $(k - |U|)$-arc-connected $\forall U$

$G - U$ is $2(k - |U|)$-edge-connected $\forall U$

G is weakly $2k$-connected

G is weakly 4-connected:
- G is 4-edge-connected
- $G - v$ is 2-edge-connected $\forall v$

G is weakly 6-connected:
- G is 6-edge-connected
- $G - v$ is 4-edge-connected $\forall v$
- $G - \{u, v\}$ is 2-edge-connected $\forall u, v$
A conjecture of Frank

Conjecture [Frank 1995]

\[
G \text{ has a } k\text{-vertex-connected orientation } D
\]

\[
\downarrow
\]

\[
D - U \text{ is } (k - |U|)\text{-vertex-connected } \forall U
\]

\[
\downarrow
\]

\[
D - U \text{ is } (k - |U|)\text{-arc-connected } \forall U
\]

\[
\downarrow
\]

\[
G - U \text{ is } 2(k - |U|)\text{-edge-connected } \forall U
\]

\[
\updownarrow
\]

\[
G \text{ is weakly } 2k\text{-connected}
\]
A conjecture of Frank

Conjecture [Frank 1995]

\[G \text{ has a } k\text{-vertex-connected orientation } D \]

\[\Downarrow \]

\[D - U \text{ is } (k - |U|)\text{-vertex-connected } \forall U \]

\[\Downarrow \]

\[D - U \text{ is } (k - |U|)\text{-arc-connected } \forall U \]

\[\Downarrow \]

\[G - U \text{ is } 2(k - |U|)\text{-edge-connected } \forall U \]

\[\Leftrightarrow \]

\[G \text{ is weakly } 2k\text{-connected} \]

- Proved for \(k = 2 \) in the Eulerian case [Berg, Jordán 2006]

- Disproved for \(k \geq 3 \) (even in the Eulerian case) [DdG 2013]

- Proved for \(k = 2 \) [Thomassen 2014]
A conjecture of Frank

\[G \text{ has a } k\text{-vertex-connected orientation } D \]
\[\Downarrow \]
\[D - U \text{ is } (k - |U|)\text{-vertex-connected } \forall U \]
\[\Downarrow \]
\[D - U \text{ is } (k - |U|)\text{-arc-connected } \forall U \]
\[\Downarrow \]
\[G - U \text{ is } 2(k - |U|)\text{-edge-connected } \forall U \]
\[\Leftrightarrow \]
\[G \text{ is weakly } 2k\text{-connected} \]

Conjecture [Frank 1995]

| G has a \(k \)-vertex-connected orientation | \(\Leftrightarrow \) | G is weakly \(2k \)-connected |

- Proved for \(k = 2 \) in the Eulerian case [Berg, Jordán 2006]
- Disproved for \(k \geq 3 \) (even in the Eulerian case) [DdG 2013]
A conjecture of Frank

Conjecture [Frank 1995]

\[G \text{ has a } k\text{-vertex-connected orientation } D \]
\[\iff \]
\[D - U \text{ is } (k - |U|)\text{-vertex-connected } \forall U \]
\[\iff \]
\[D - U \text{ is } (k - |U|)\text{-arc-connected } \forall U \]
\[\iff \]
\[G - U \text{ is } 2(k - |U|)\text{-edge-connected } \forall U \]
\[\iff \]
\[G \text{ is weakly } 2k\text{-connected} \]

- Proved for \(k = 2 \) in the Eulerian case [Berg, Jordán 2006]
- Disproved for \(k \geq 3 \) (even in the Eulerian case) [DdG 2013]
- Proved for \(k = 2 \) [Thomassen 2014]
A counterexample for $k = 3$
Theorem [DdG 2013]

For every $k \geq 3$, the problem of deciding whether a graph has a k-vertex-connected orientation is NP-complete.
Conclusion

Graph orientation with connectivity constraints

- is of interest for its (theoretical) applications
- remains challenging (Conjecture of Thomassen for $k \geq 3$)
Thank you for your attention