Completeness in approximation classes beyond APX
Bruno Escoffier, Vangelis Th. Paschos
Abstract

We present a reduction that allows us to establish completeness results for several approximation classes mainly beyond APX. Using it, we extend one of the basic results of S. Khanna, R. Motwani, M. Sudan, and U. Vazirani (On syntactic versus computational views of approximability, SIAM J. Comput., 28:164–191, 1998) by proving the existence of complete problems for the whole Log-APX, the class of problems approximable within ratios that are logarithms of the size of the instance. We also introduce a new approximability class, called Poly-APX(Δ), dealing with graph-problems approximable with ratios functions of the maximum degree Δ of the input graph. For this class also, using the reduction propose, we establish complete problems.

1 Introduction and preliminaries

Consider an NPO problem\(^1\) \(\Pi = (\mathcal{I}_\Pi, \mathcal{S}_\Pi, m_\Pi, \text{goal}_\Pi)\), where: \(\mathcal{I}_\Pi\) denotes the set of instances of \(\Pi\); for any instance \(x \in \mathcal{I}_\Pi\), \(\mathcal{S}_\Pi(x)\) is the set of feasible solutions of \(x\); for any \(x \in \mathcal{I}_\Pi\) and any \(y \in \mathcal{S}_\Pi(x)\), \(m_\Pi(x, y)\) denotes the value of \(y\); finally, \(\text{goal}_\Pi\) is \(\max\), or \(\min\). For any \(x \in \mathcal{I}_\Pi\), let \(\text{opt}_\Pi(x)\) be the value of an optimal solution for \(x\). Then, the approximation ratio of an algorithm \(\mathcal{A}\) computing a feasible solution \(\mathcal{A}(x) = y \in \mathcal{S}_\Pi(x)\) is defined by \(m_\Pi(x, y)/\text{opt}_\Pi(x)\). The objective of the polynomial approximation theory is double: on the one hand it aims at devising polynomial algorithms achieving good approximation ratios for \(\text{NP}\)-hard problems; on the other hand, it aims at building a hierarchy of these problems, elements of which correspond to strata of problems sharing common approximability properties (they notably are approximable within comparable – in some predefined sense – approximation ratios) and at investigating relations between problems in the same stratum (notably to exhibit problems that are harder from others). This second objective is the scientific are called in short structure in approximability classes.

Study of structure in approximability classes is in the heart of the research in polynomial approximation since the seminal papers of [10, 11, 6]. By using suitable approximation-preserving reductions, the existence of natural complete problems for almost all the known approximation classes has been established. For instance, \(\max \text{wsat}\) for NPO under AP-reduction ([3, 5]), or PTAS-reduction ([7]), \(\max \text{wsat} - B\) for APX, the class of the problems approximable within (fixed) constant ratios, under P-reduction ([6]), \(\max 3\text{-sat}\) for APX under AP-reduction ([3, 5]), or PTAS-reduction ([7]), \(\max \text{planar independent set}\) for PTAS, the class of the problems solvable by polynomial time approximation schemata, under FT-reduction ([4]), \(\max \text{independent set}\) for Poly-APX under PTAS-reduction ([4]). Also, under \(E\)-reduction, completeness in Log-APX-PB, the subclass of Log-APX dealing with polynomially bounded problems (the

\(^1\)An NPO problem is an optimization problem, the decision version of which is in \(\text{NP}\).
class of problems whose values are bounded by a polynomial in the size of the instance), has also been established. One problem that, to our knowledge, remains open from this ambitious but so successful research program, is the establishing of completeness for the whole Log-APX.

As one can see by the unravelling of the fascinating history of the approximation-preserving reductions, the one that allows achievement of the most of completeness results is the PTAS-reduction, originally introduced in [7]. Let \(\Pi \) and \(\Pi' \) be two maximization NPO problems (the case of minimization is completely analogous). We say that \(\Pi \) PTAS-reduces to \(\Pi' \) if and only if there exist three functions \(f, g \) and \(c \) such that:

- for any \(x \in \mathcal{I}_\Pi \) and any \(\varepsilon \in [0, 1] \), \(f(x, \varepsilon) \in \mathcal{I}_{\Pi'} \); \(f \) is computable in time polynomial with \(|x| \);
- for any \(x \in \mathcal{I}_\Pi \), any \(\varepsilon \in [0, 1] \) and any \(y \in \text{Sol}(f(x, \varepsilon)) \), \(g(x, y, \varepsilon) \in \text{Sol}(x) \); \(g \) is computable in time polynomial with \(|x| \) and \(|y| \);
- \(c : [0, 1] \rightarrow [0, 1] \);
- for any \(x \in \mathcal{I}_\Pi \) and any \(\varepsilon \in [0, 1] \), \(r_{\Pi'}(f(x, \varepsilon), y) \geq 1 - c(\varepsilon) \) implies \(r_{\Pi}(x, g(x, y, \varepsilon)) \geq 1 - \varepsilon \).

This is the successor of a number of powerful reductions as the \(L \)-reduction ([11]) or the \(E \)-reduction ([9]) that, even if they allowed achievement of completeness results in natural approximability sub-classes (e.g., Max-SNP \(\subset \) APX, for the former, or Log-APX-PB \(\subset \) Log-APX, for the latter) were not able to extend them to the whole of the classes dealt. In fact, as shown in [7], these reductions suffered from the fact that they map optimal solutions to optimal solutions and, in this sense, it is very unlikely that they can allow completeness of a polynomially bounded problem in the classes dealt (unless \(\mathbf{p}_{\text{sat}} = \mathbf{p}_{\text{sat}}[O(\log(n))] \), where \(\mathbf{p}_{\text{sat}} \) and \(\mathbf{p}_{\text{sat}}[O(\log(n))] \) are the classes of decision problems solvable by using, respectively, a polynomial and a logarithmic number of calls to an oracle solving sat). On the contrary, PTAS-reduction, by allowing functions \(f \) and \(g \) to depend on \(\varepsilon \), does not necessarily map optimal solutions between them and consequently, it allows that general problems are PTAS-reducible to polynomially bounded ones. Indeed, by means of PTAS-reduction it is proved in [7] that \(\text{max wsat}\text{-B} \) reduces \(\text{max wsat}\text{-B} \) with weights bounded by a polynomial to the size of the instance.

In [4] the power of PTAS-reduction has been confirmed since it has allowed the achievement of Poly-APX-complete problems. This was not possible with the \(E \)-reduction under which only Poly-APX-PB completeness have been obtained in [9]. Given a family \(\mathbf{F} \) of functions, denote by F-APX the subclass of NPO whose problems are approximable in polynomial time within ratio \(g(n) \) (in the case of minimization), or \(1/g(n) \) (for maximization), for a \(g \in \mathbf{F} \). Here we further confirm its scope by generalizing the result of [4], providing a way to find complete problems, under PTAS-reducibility, for any approximation class F-APX, where \(\mathbf{F} \) is a class of polynomially bounded functions. This in particular allows us to establish the Log-APX-completeness of \(\text{min set cover} \). Recall that, in [9], only the Log-APX-PB completeness of this problem has been established under the \(E \)-reduction.

Before continuing, we define some key-notions for what follows, namely, additivity and canonical hardness of a maximization NPO problem. They are introduced in [9]. A problem \(\Pi \in \text{NPO} \) is said additive if and only if there exist an operator \(\oplus \) and a function \(f \), both computable in polynomial time, such that:

- associates with any pair \((x_1, x_2) \in \mathcal{I}_\Pi \) an instance \(x_1, x_2 \in \mathcal{I}_\Pi \) with \(\text{opt}(x_1) + \text{opt}(x_2) = \text{opt}(x_1) + \text{opt}(x_2) \);
- with any solution \(y \in \text{sol}_\Pi(x_1, x_2) \), \(f \) associates two solutions \(y_1 \in \text{sol}_\Pi(x_1) \) and \(y_2 \in \text{sol}_\Pi(x_2) \) such that \(m_\Pi(x_1, x_2, y) = m_\Pi(x_1, y_1) + m_\Pi(x_2, y_2) \).
A set F of functions from \mathbb{N} to \mathbb{N} will be called downward close if, for any function $g \in F$ and any constant c, if $h(n) = O(g(n^c))$, then $h \in F$. A function $g : \mathbb{N} \rightarrow \mathbb{N}$ is hard for F if and only if, for any $h \in F$, there exists a constant c such that $h(n) = O(g(n^c))$; if, in addition, $g \in F$, then g is said complete for F.

A maximization (resp., minimization) problem $\Pi \in \text{NPO}$ is canonically hard for F-APX, for a downward close family F of functions, if and only if there exist a polynomially computable function f, two constants n_0 and c and a function F, hard for F, such that:

- for any instance φ of 3sat on $n \geq n_0$ variables and for any $N \geq n^c$, $f(\varphi, N)$ belongs to \mathcal{I}_F;
- if φ is satisfiable, then $\text{opt}(f(\varphi, N)) = N$;
- if x is not satisfiable, then $\text{opt}(f(\varphi, N)) = N/F(N)$ (resp., $NF(N)$);
- for any $y \in \text{sol}_F(f(\varphi, N))$ such that $m(f(\varphi, N), y) > N/F(N)$ (resp., $m(f(\varphi, N), y) < NF(N)$), one can polynomially determine a truth assignment satisfying φ.

More generally, since 3sat is NP-complete, a maximization (resp., minimization) problem Π is canonically hard for F-APX if and only if, for any decision problem $\Pi' \in \text{NP}$, given an instance x' of Π', one can construct in polynomial time an instance x of Π such that:

- if x' is a positive instance, then $\text{opt}(x) = N$;
- if x' is a negative instance, then $\text{opt}(x) = N/F(N)$ (resp., $NF(N)$);
- given a solution $y \in \text{sol}_F(x)$ such that $m(x, y) > N/F(N)$ (resp., $< NF(N)$), one can polynomially determine a certificate proving that x' is a positive instance.

In [9], the following major theorem is proved, that constitutes the starting point of the paper at hand.

Theorem 1. ([9]) Let F be any class of downward close polynomially bounded functions and Ω be an additive maximization problem canonically hard for F. Then, any maximization problem $\Pi \in F$-APX-PB (the class of problems in F-APX whose values are bounded by a polynomial with the size of the instance) E-reduces to Ω.

In order to extend result of Theorem 1, and since, as we have already mentioned, it seems very unlikely that one could establish completeness for the whole F-APX under E-reducibility (at least for polynomially bounded problems), we introduce a modification of PTAS-reducibility, called MPTAS-reduction, M standing for multivalued, where function f is allowed to be multivalued. Formally, MPTAS-reduction can be defined as follows.

Definition 1. Let Π and Π' be two maximization NPO problems (the case of minimization is completely analogous). Then, Π MPTAS-reduces to Π', if and only if there exist three functions f and g, computable in polynomial time, and a function c such that:

- for any $x \in \mathcal{I}_F$ and any $\varepsilon \in [0, 1]$, $f(x, \varepsilon) = (f_1(x, \varepsilon), f_2(x, \varepsilon), \ldots)$ is a family of instances of Π' (this family is necessarily of size polynomial with x);
- for any $x \in \mathcal{I}_F$, any $\varepsilon \in [0, 1]$ and any family of feasible solutions $y = (y_1, y_2, \ldots)$, where y_i is a feasible solution of $f_i(x, \varepsilon)$, $g(x, y, \varepsilon) \in \text{Sol}(x)$;
- $c : [0, 1] \rightarrow [0, 1]$;
- there exists an index j such that, for any $x \in \mathcal{I}_F$ and any $\varepsilon \in [0, 1]$, $r_F(f_j(x, \varepsilon), y_j) \geq 1 - c(\varepsilon)$ implies $r_F(x, g(x, y, \varepsilon)) \geq 1 - \varepsilon$. □
It is easy to see that MPTAS-reduction preserves membership in PTAS.

We show that using MPTAS-reducibility, F-APX-completeness can be extended for any class F of functions even if they are not polynomially bounded. Furthermore, the fact that function f in Definition 1 is allowed to be multivalued, relaxes the restriction to additive problems. As we will see, as a corollary, we have an alternative proof (without explicit use of the Cook-Levin theorem) for the Exp-APX-completeness of min tsp on general graphs, where Exp is the class of exponential functions (note that the NPO-completeness of min tsp immediately derives its Exp-APX-completeness).

The approximation classes beyond APX dealt until now in the literature are defined with respect ratios depending on the size of the instances and not on other parameters even natural. This can be considered as somewhat restrictive given that a lot of approximation (and inapproximability results) are established with respect to other parameters of the instances. Such parameters can be, for example, the maximum or the average degree of the input-graph, when dealing with graph-problems, the maximum set-cardinality, when dealing with problems on set-systems as the min set cover, or the max set packing, etc. So, the third and last issue of this paper is to consider the class Poly-APX(Δ), of maximization (resp., minimization) graph-problems approximable within ratios which are inverse polynomials (resp., polynomials) of the maximum degree Δ of the input-graph. We prove that max independent set is complete for this class, under MPTAS.

2 F-APX-completeness for any downward close function

We show in this section that, using MPTAS-reduction (Definition 1), we can apprehend completeness for any class F-APX even containing exponential functions. In a first time we shall deal with maximization problems. Extension to minimization problems will be performed after the proof of Theorem 2 that follows.

Theorem 2. Let F be a class of downward close functions, and Ω ∈ NPO be a maximization problem canonically hard for F-APX. Then, any maximization NPO problem in F-APX MPTAS-reduces to Ω.

Proof. Let Π be a maximization problem of F-APX and let A be an algorithm achieving approximation ratio 1/r(·), r ∈ F. Since Π ∈ NPO, the value of the solutions for any instance x ∈ Π is bounded above by 2^(p(x)) for some polynomial p. Let Ω be as assumed in theorem’s statement. Let F be a function hard for F, and k, n_0 and c’ be constants such that, for n ≥ n_0 r(n) - 1 ≤ k(F(n^c’)) - 1). Finally, consider x ∈ Π and ε ∈ (0, 1).

In order to build function f(x, ε), claimed by Definition 1, we first partition interval [1, 2^(p(x))] of the possible values for opt(x) into a polynomial number of subintervals [(1/(1-ε))^(i-1), (1/(1-ε))^i], for i = 1, ..., M = [p(|x|) ln 2/ ln(1/(1-ε))] (i.e., (1/(1-ε))^M ≥ 2^(p(|x|))). Consider then, for i = 1, ..., M, the languages L_i = {x ∈ Π : opt_Π(x) ≥ (1/(1-ε))^(i-1)}. Set N = |x|^c’. Since Ω is canonically hard for F-APX, we can build, for any i = 1, ..., M, an instance ω_i ∈ Π such that, if x ∈ L_i, then opt_Ω(ω_i) = N, otherwise, opt_Ω(ω_i) = N/F(N). We set f(x, ε) = Υ = (ω_i, 1 ≤ i ≤ M).

We now show how g(x, y, ε) can be built. Consider a solution y = (y_1, ..., y_M) of Υ. Then, for any i ∈ {1, ..., M}, if m_Ω(ω_i, y_i) > N/F(N), one can find a polynomial certificate proving that x ∈ L_i, i.e., a solution y’_i ∈ Sol(x) such that

\[m_Π(x, y’_i) ≥ \left(\frac{1}{1-ε} \right)^{i-1} \]

otherwise (i.e., if m_Ω(ω_i, y_i) ≤ N/F(N)), we consider solution A(x). Finally, g(x, y, ε) is the best among the solutions so produced.
Let us now prove that we really deal with an MPTAS-reduction. Let j be an index verifying:
\[
\left(\frac{1}{1-\varepsilon} \right)^{j-1} \leq \text{opt}_\Pi(x) \leq \left(\frac{1}{1-\varepsilon} \right)^j
\]
and set $c(\varepsilon) = \varepsilon/(\varepsilon + k(1-\varepsilon))$.

Assume first that $m_\Omega(\omega_j, y_j) > N/F(N)$. Then, using (1) and (2), we get:
\[
\frac{m_\Pi(x, g(x, y, \varepsilon))}{\text{opt}_\Pi(x)} \geq 1 - \varepsilon
\]
On the other hand, if $m_\Omega(\omega_j, y_j) \leq N/F(N)$, then $\rho(\omega_j, y_j) \geq 1 - c(\varepsilon)$ implies:
\[
\frac{1}{F(N)} \geq \frac{k(1-\varepsilon)}{\varepsilon + k(1-\varepsilon)}
\]
By the assumptions made above, we have:
\[
F(N) \geq 1 + \frac{r(|x|) - 1}{k} \geq \frac{1}{r(|x|)}
\]
Using (3), (4) and (5), we get the following implications:
\[
\rho(\omega_j, y_j) \geq 1 - c(\varepsilon) \implies 1 + \frac{r(|x|) - 1}{k} \geq \varepsilon + k(1-\varepsilon) \implies r(|x|) \geq 1 + k \left(\frac{\varepsilon}{k(1-\varepsilon)} \right) = \frac{1}{1-\varepsilon}
\]
i.e., $\rho(x, g(x, y, \varepsilon)) \geq 1 - \varepsilon$. So, the reduction exhibited is indeed a MPTAS-reduction and the proof of the theorem is completed.

In order to extend the result of Theorem 2 to minimization problems, we are based upon an analogous result in [9]. Let II be a maximisation problem in F-APX approximable within ratio $1/f(\cdot)$. One can define a minimization problem Π', identical to II up to its objective function defined as: $m_\Pi(x, y) = \left\lfloor 2M^2(x)/m_\Pi(x, y) \right\rfloor$, where $M(x)$ is an upper bound for the values in $\text{Sol}(x)$. Then, II \mathcal{E}-reduces (hence, MPTAS-reduces also) to Π' and, furthermore, Π' is approximable within ratio $f(\cdot)(1 + 2/M(x))$. In completely analogous way, one can MPTAS-reduce a maximization problem, approximable within ratio $f(\cdot)$, to a maximization problem approximable within ratio $1/(f(\cdot)(1 + 2/M(x)))$. This allows the existence of additive canonically hard minimization problems also to be F-APX-complete, since the above transformation derives, from such a problem II, an additive canonically hard maximization problem Π' (notice that $f(\cdot)$ and $f(\cdot)(1 + 2/M(x))$ have the same hardness status with respect to F). Then, it suffices that one applies Theorem 2 as stated. The remark above applies for any family F. As a consequence, throughout this paper we restrict ourselves to maximization problems.

Theorem 3. Let F be a class of downward close functions, and $\Omega \in \text{NPO}$ be a problem canonically hard for F. Then, any NPO problem in F-APX MPTAS-reduces to Ω.

From the discussion above, two are the main differences between Theorems 1 and 3. The first one is, as it has been already announced, that the latter one applies to the whole of the problems of any class F-APX and not only to the bounded ones. The second difference is that, the use of a multivalued version of PTAS-reduction allows us to relax additivity from the conditions of Theorem 1 enlarging so the scope of the applicability of Theorem 3.

Obviously, the negative result for min tsp of [13] (see also [8]) can immediately be extended for showing that min tsp is canonically hard for Exp-APX. Consequently, the Exp-APX-completeness of min tsp can be derived as an immediate corollary of Theorem 3.

Corollary 1. min tsp is Exp-APX-complete under MPTAS-reducibility.
3 Log-APX-completeness

We deal in this section with Log-APX. For this class, as well as for any class of polynomially bounded downward close functions, we can obviously apply Theorem 3 to get completeness sufficient conditions. However, in what follows, we will use the fact that functions dealt are polynomially bounded in order to prove an equivalent of Theorem 3 but with respect to PTAS-reducibility. As noticed above, we can restrict ourselves to maximization problems.

Theorem 4. Let F be any class of downward close polynomially bounded functions and Ω be an additive maximization problem canonically hard for F-APX. Then, any maximization problem $\Pi \in F$-APX PTAS-reduces to Ω.

Proof. The proof goes along the lines of the corresponding proof of [4] for Poly-APX. Let Π be a maximization problem of F-APX and let A be an algorithm achieving approximation ratio $1/r(\cdot)$, $r \in F$. Let Ω be as assumed in theorem’s statement. Let F be a function hard for F, and k, n_0 and c' be constants such that, for $n \geq n_0$, $r(n) \leq k(F(n^{c'}) - 1)$. Finally, consider $x \in \mathcal{I}_\Omega$, $\varepsilon \in (0, 1)$ and set $|x| = n$.

We first construct function $f(x, \varepsilon)$. Set $m(x, A(x)) = m \geq \text{opt}_\Pi(x)/r(n)$. Partition the interval $[0, mr(n)]$ of the possible values for $\text{opt}_\Pi(x)$ into $q(n)$ regular subintervals, where $q(n)$ is bounded by polynomial of n. More precisely, we set $q(n) = r(n)/\varepsilon$. Consider now, for $i \in \{1, \ldots, q(n)\}$, the sets of languages $L_i = \{x \in \mathcal{I}_\Omega : \text{opt}_\Pi(x) \geq imr(n)/q(n)\}$ and set $N = n^{c'}$. Since Ω is canonically hard for F-APX, one can build, for any i, an instance $\omega_i \in \mathcal{I}_\Omega$ such that, if $x \in L_i$, then $\text{opt}_\Omega(\omega_i) = N$ and if $x \notin L_i$, then $\text{opt}_\Omega(\omega_i) = N/F(N)$. We define $f(x, \varepsilon) = Y = \{i \leq i \leq q(n) : \text{opt}_\Pi(x) \geq im\varepsilon\}$. Observing that $r(n)/q(n) = \varepsilon$, we get:

$$\text{opt}_\Omega(Y) = N \{i \leq q(n) : \text{opt}_\Pi(x) \geq im\varepsilon\} + \frac{N}{F(N)}(q(n) - |\{i \leq q(n) : \text{opt}_\Pi(x) \geq im\varepsilon\}|)$$

We now construct function $g(x, y, \varepsilon)$. Consider a solution $y \in \text{Sol}(Y)$. By the additivity of Ω, one can compute, for any ω_i, a solution y_i in such a way that $m_\Omega(Y, y) = \sum_i m_\Omega(\omega_i, y_i)$. Let j be the largest among the indices i such that $m_\Omega(\omega_i, y_i) > N/F(N)$ ($j = 0$, if no i verifies the inequality). Then, one can find a polynomial certificate proving that $x \in L_j$, i.e., a solution $y'_1 \in \text{Sol}(x)$ verifying: $m_\Pi(x, y'_1) \geq jm\varepsilon$. Furthermore, $m_\Omega(Y, y) \leq Nj + (q(n) - j)N/F(N)$.

We then define $g(x, y, \varepsilon) = y'$ as the best (the largest value one) among y'_1 and $y'_2 = k(x)$. Obviously, $m_\Pi(x, y') \geq \max\{m, jm\varepsilon\}$.

Let us now prove that the reduction described is indeed a PTAS-reduction. We first notice that, using expressions for m_Π and m_Ω, the following inequality is derived (after some algebra) for the approximation ratio $\rho_\Omega(Y, y)$, using that $q(n) = r(n)/\varepsilon \leq k(F(N) - 1)/\varepsilon$:

$$\rho_\Omega(Y, y) \leq \frac{j + k}{\varepsilon m} - 1 + \frac{k}{\varepsilon}$$

We now consider two cases, namely, $j \leq 1/\varepsilon$ and $j > 1/\varepsilon$. For the first one, $j \leq 1/\varepsilon$, we get from the expression for ρ_Ω (after some algebra and using also that $\rho_\Pi(x, y') \geq m/\text{opt}_\Pi(x)$):

$$\rho_\Omega(Y, y) \leq \frac{\rho_\Pi(x, y')(1 + k)}{1 + \rho_\Pi(x, y')(k - \varepsilon)}$$

On the other hand, if $j > 1/\varepsilon$, noticing that, using expression for m_Π, $\rho_\Pi(x, y') \geq jm\varepsilon/\text{opt}_\Pi(x)$, we also get:

$$\rho_\Omega(Y, y) \leq \frac{\rho_\Pi(x, y')(1 + k)}{1 + \rho_\Pi(x, y')(k - \varepsilon)}$$
Assume \(c(\varepsilon) = \varepsilon^2 / (1 + (1 - \varepsilon)(k - \varepsilon)) \). Then, after some algebra one gets: \(\rho_{\Pi}(x, y') \geq 1 - \varepsilon \), proving so that the reduction just devised is indeed a PTAS-reduction and completing the proof of the theorem.

Consider now \(\text{Log-APX} \), the class of NPO problems approximable with logarithmic (resp., inversely logarithmic when goal = max) ratios, i.e., within ratios \(O(\log(\cdot)) \) (resp., \(O(1/\log(\cdot)) \)). Consider also \(\text{min set cover} \) that is approximable within ratio \(O(\log n) \) ([14]), where \(n \) is the size of the ground set in the instance, but canonically hard to approximate within ratios \(O(\log n) \) ([12]). Moreover, one can easily see that \(\text{min set cover} \) is additive. So, immediate application of Theorem 4 definitely settles the status of \(\text{min set cover} \) with respect to the class \(\text{Log-APX} \).

Theorem 5. \(\text{min set cover} \) is \(\text{Log-APX} \)-complete under PTAS-reducibility.

4 Completeness in \(F-\text{APX}(\Delta) \)

We now deal with a new approximation class, \(F-\text{APX}(\Delta) \), namely, the class of graph-problems approximable with ratio \(f(\Delta) \), where \(\Delta \) is the degree of the input-graph, i.e., the maximum degree of its vertices, \(F \) a downward close class of functions and \(f \in F \).

Definition 2. Let \(F \) be a downward close class of functions and \(\Pi \in \text{NPO} \) be a maximization (resp., minimization) graph-problem. Then, \(\Pi \) is said **canonically hard** for \(F-\text{APX}(\Delta) \), if there exist three functions \(f, \alpha \) and \(\beta \), computable in polynomial time, a constant \(\Delta_0 \) and a function \(F \), hard for \(F \) such that:

- for any instance \(\varphi \) of \(3\text{-sat} \) and any \(\Delta \geq \Delta_0 \), \(G_\varphi = f(\varphi, \Delta) \) is a graph (instance of \(\Pi \)) of maximum degree \(\Delta \);
- if \(\varphi \) is satisfiable, then \(\text{opt}_\Pi(G_\varphi) \geq \alpha(G_\varphi) \) (resp., \(\text{opt}_\Pi(G_\varphi) \leq \alpha(G_\varphi) \));
- if \(\varphi \) is not satisfiable, then \(\text{opt}_\Pi(G_\varphi) \leq \beta(G_\varphi) \) (resp., \(\text{opt}_\Pi(G_\varphi) \geq \beta(G_\varphi) \));
- \(\alpha(G_\varphi)/\beta(G_\varphi) \geq f(\Delta) \) (resp., \(\beta(G_\varphi)/\alpha(G_\varphi) \geq f(\Delta) \));
- given a solution \(y \in \text{sol}(G_\varphi) \) of value strictly greater (resp., smaller) than \(\beta(G_\varphi) \), one can determine, in polynomial time a truth assignment satisfying \(\varphi \).

For the same reasons as previously, we will restrict ourselves to maximization problems and are going to prove the following theorem.

Theorem 6. If \(F \) is a downward close family of functions and \(\Omega \) is a maximization problem canonically hard for \(F-\text{APX}(\Delta) \), then any problem in \(F-\text{APX}(\Delta) \) MPTAS-reduces to \(\Omega \).

Proof. Consider a maximization problem \(\Pi \in F-\text{APX}(\Delta) \) a graph \(G \in \mathcal{I}_\Pi \) of order \(n \) and an algorithm \(\mathcal{A} \) for \(\Pi \) achieving approximation ratio \(1/r(\Delta(G)) \), where \(r \in F \). The proof goes along the same line as the one of Theorem 2. For constructing function \(f(G, \varepsilon) \) claimed by Definition 1 we partition the interval \([1, 2^{\omega(n)}]\) in the same way as in the proof of Theorem 2, and we consider, for any \(i \), the analogous sets \(L_i \) of languages. We set \(\Delta = \Delta^\varepsilon(G) \), we build, for any \(i \) an instance \(H_i \) of \(\Omega \), of maximum degree \(\Delta \) such that if \(G \in L_i \), then \(\text{opt}_\Omega(H_i) \geq \alpha(H_i) \), otherwise \(\text{opt}_\Omega(H_i) \leq \beta(H_i) \), with \(\alpha(H_i)/\beta(H_i) \geq F(\Delta) \) and, finally we specify \(f(G, \varepsilon) = H = (H_i, 1 \leq i \leq M) \).

Function \(g(G, y, \varepsilon) \) is defined as in the proof of Theorem 2, setting \(\beta(H_i) \) instead of \(N/F(N) \). The proof for the transfer of the approximation ratios is also done in the same way as there (always with \(\beta(H_i) \) instead of \(N/F(N) \)).
Denote by $\text{Poly-APX}(\Delta)$ the subclass of the graph-problems in NPO which are approximable within polynomials of Δ^{-1} (of Δ when dealing with minimization problems). We are going now to establish an interesting completeness result for this class by showing that one of the most paradigmatic problems for the polynomial approximation theory and the combinatorial optimization, the $\text{max independent set}$, is complete for $\text{Poly-APX}(\Delta)$. For this we will use the following theorem ([1]).

Theorem 7. ([1]) Let $(a, b) \in [0, 1]^2$, $a > b$. There exists $\varepsilon_0 > 0$ such that, for any $\Delta \geq 3$, there exists a function f that transforms an instance G of $\text{max independent set}$ into an instance of $\text{max independent set-}^\Delta$, i.e., into a graph with degree bounded by Δ, and two positive quantities α and β such that:

- if $\text{opt}(G) \geq an$, then $\text{opt}(f(G)) \geq \alpha(f(G))$;
- if $\text{opt}(G) \leq bn$, then $\text{opt}(f(G)) \leq \beta(f(G))$;
- $\alpha(f(G))/\beta(f(G)) \geq \Delta^{\varepsilon_0}$.

Thanks to the PCP theorem, stating that there exist a and b such that it is NP-complete to distinguish graphs with maximum independent set with size at least a times their order, from graphs having maximum independent set at most b times their order, the following corollary can be derived ([1]).

Corollary 2. ([1]) There exists an $\varepsilon_0 > 0$ such that, for any $\Delta \geq 3$, $\text{max independent set-}^\Delta$ is not approximable within ratio $\Delta^{-\varepsilon_0}$.

We will also use the following proposition, derived from an immediate application of the PCP theorem.

Proposition 1. There exists $(a, b) \in [0, 1]^2$, $a > b$, such that, for any $\Pi \in \text{NP}$ there exists a function f which transforms an instance x of Π into a graph $G = f(x)$, instance of $\text{max independent set}$, that verifies:

1. if x is positive, then $\text{opt}(G) \geq an$;
2. if x is negative, then $\text{opt}(G) \leq bn$;
3. given an independent set S in G with size $|S| > bn$, one can determine, in polynomial time, a witness proving that x is positive.

Indeed, Proposition 1, is an approximation preserving transfer, by say an L-reduction ([11]), of an analogous result dealing with max 3-sat (appearing in [2]) to $\text{max independent set}$.

Theorem 8. There exists an $\varepsilon_0 > 0$ such that, for any $\Delta \geq 3$, given $\Pi \in \text{NP}$, there exists a function f computable in polynomial time, that transforms an instance x of Π into a graph $G = f(x)$, instance of $\text{max independent set}$, and two positive quantities α and β verifying:

1. if x is positive, then $\text{opt}(G) \geq \alpha(G)$;
2. if x is negative, then $\text{opt}(G) \leq \beta(G)$;
3. the maximum degree of G is Δ;
4. $\alpha(G)/\beta(G) \geq \Delta^{\varepsilon_0}$;
5. given an independent set S of G such that $|S| > \beta$, one can build, in polynomial time, a certificate proving that x is positive.

Proof. Items 1 to 4 are direct applications of Theorem 7 and Proposition 1. Item 5 is derived by the proof of Theorem 7 in [1]. Indeed, following the relations between the independent sets in G and those in its derandomized product $f(G)$, from an independent set of $f(G)$ of size strictly greater than β, one can easily derive an independent set of G of size b times the order of G. Then, using item 3 of Proposition 1, one can specify a polynomial certificate proving that x is positive.

Consider now Poly-APX(Δ) and max independent set-Δ. In order to apply Theorem 6, one has just to show that the complexity of the function f stated in Theorem 8 is polynomial in Δ. This is derived after a careful reading of the proof of Theorem 7 ([1]). So, the following theorem concludes the paper.

Theorem 9. max independent set-Δ is Poly-APX(Δ)-complete under MPTAS-reducibility.

References

