DIFFERENTIAL APPROXIMATION RESULTS
FOR TRAVELING SALESMAN PROBLEM

CAHIER N° 172
juin 2000

Jérôme MONNOT ¹
Vangelis PASCHOS ¹
Sophie TOULOUSE ¹

1 LAMSADE, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France ([monnot,paschos,toulouse]@lamsade.dauphine.fr).

received: december 1999.
Table of Contents

Résumé ii

Abstract ii

1 Introduction 1

2 Preserving differential approximation for several min_TSP versions 3

3 2-OPT and differential approximation for the general minimum traveling salesman 4

4 Approximating min_TSP12 7

4.1 Specification of the min_TSP12-algorithm and evaluation of \(\lambda(K_n) \) 8

4.1.1 Construction and evaluation of \(C \) 9

4.1.1.1 \(q = 1 \) 10

4.1.1.2 \(q = k \) 10

4.1.1.3 \(q = k + 1 \) 10

4.1.2 Construction and evaluation of \(D \) 10

4.1.3 Construction and evaluation of \(T \) 11

4.1.4 Overall specification of the min_TSP12-algorithm, construction and evaluation of \(T \) 11

4.2 A bound for \(\omega(K_n) \) 11

4.2.1 Disjoint elementary paths on \(V(C) \) 12

4.2.2 Disjoint elementary paths on \(V(D) \) 12

4.2.3 Disjoint elementary paths on \(V(T) \) 12

4.2.3.1 \(q > 0 \) 12

4.2.3.2 \(q = 0 \) 13

4.2.4 Disjoint elementary paths on \(V(K_n) \) 13

4.2.4.1 \(q > 0, |E2| < |C_{p+1}| \) 13

4.2.4.2 \(q > 0, |E2| = |C_{p+1}| \) 13

4.2.4.3 \(q = 0, |E2| < |C_{p+1}| \) 14

4.3 The differential approximation ratio of TSP12 15

4.4 Ratio 3/4 is tight for TSP12 15

5 Further results for minimum traveling salesman 15

5.1 Bridges between differential and standard approximation 15

5.2 An inapproximability result 17

6 Differential approximation of maximum traveling salesman 18

7 An improvement of the standard ratio for the maximum traveling salesman with distances 1 and 2 19

8 Towards stronger differential-inapproximability results for the traveling salesman 19
Résultats d'approximation différentielle pour le problème du voyageur du commerce

Résumé

Nous commençons par démontrer que les versions maximisation et minimisation du problème du voyageur de commerce sont approximables à rapport différentiel 1/2. Nous présentons ensuite une 3/4-approximation polynomiale du cas particulier à distances 1 et 2; ce résultat nous permet notamment de ramener le rapport standard connu pour la version maximisation de ce sous-problème de 5/7 à 7/8. Nous proposons enfin un résultat négatif: approximer le voyageur de commerce, à coût minimum comme maximum, à mieux que 3475/3476 + ε est NP-difficile pour tout ε > 0.

Mots-clé : algorithme d'approximation, rapport d'approximation, problème NP-complet, complexité, réduction, voyageur du commerce.

Differential approximation results for traveling salesman problem

Abstract

We prove that both minimum and maximum traveling salesman problems can be approximately solved, in polynomial time within approximation ratio bounded above by 1/2. We next prove that, when dealing with edge-distances 1 and 2, both versions are approximable within 3/4. Based upon this result, we then improve the standard approximation ratio known for maximum traveling salesman with distances 1 and 2 from 5/7 to 7/8. Finally, we prove that, for any ε > 0, it is NP-hard to approximate both problems within better than 3475/3476 + ε.

Keywords: approximation algorithm, approximation ratio, NP-complete problem, complexity, reduction, traveling salesman.
1 Introduction

Given a complete graph on \(n \) vertices, denoted by \(K_n \), with positive distances on its edges, the minimum traveling salesman problem (\text{min_TSP}) consists in minimizing the cost of a Hamiltonian cycle, the cost of such a cycle being the sum of the distances on its edges. The maximum traveling salesman problem (\text{max_TSP}) consists in maximizing the cost of a Hamiltonian cycle. Further special but very natural cases of TSP are the ones where edge-distances are defined using the \(\ell_2 \) norm (Euclidean TSP), or where edge-distances verify triangle inequalities (metric TSP); an interesting sub-case of the metric TSP is the one in which edge-distances are only 1 or 2 (TSP12). Both \text{min_} and \text{max_TSP}, even in their restricted versions mentioned just mentioned above, are famous \text{NP}\text{-hard} problems.

In general, \text{NP} optimization (\text{NPO}) problems are commonly defined as follows.

Definition 1. An NPO problem \(\Pi \) is as a four-tuple \((I, S, v_I, \text{opt})\) such that:

1. \(I \) is the set of instances of \(\Pi \) and it can be recognized in polynomial time;

2. given \(I \in I \) (let \(|I|\) be the size of \(I \)), \(S(I) \) denotes the set of feasible solutions of \(I \); moreover, there exists a polynomial \(P \) such that, for every \(S \in S(I) \) (let \(|S|\) be the size of \(S \)), \(|S| = O(P(|I|))\); furthermore, given any \(I \) and any \(S \) with \(|S| = O(P(|I|))\), one can decide in polynomial time if \(S \in S(I) \);

3. given \(I \in I \) and \(S \in S(I) \), \(v_I(S) \) denotes the value of \(S \); \(v_I \) is integer, polynomially computable and is commonly called objective function;

4. \(\text{opt} \in \{\text{max}, \text{min}\} \).

Given an instance \(I \) of an NPO problem \(\Pi \) and a polynomial time approximation algorithm \(\Lambda \) feasibly solving \(\Pi \), we will denote by \(\omega(I) \), \(\lambda(I) \) and \(\beta(I) \) the values of the worst solution of \(I \), of the approximated one (provided by \(\Lambda \) when running on \(I \)), and the optimal one for \(I \), respectively. There exist mainly two thought processes dealing with polynomial approximation. Commonly ([13]), the quality of an approximation algorithm for an \text{NP}\text{-hard} minimization (resp. maximization) problem \(\Pi \) is expressed by the ratio (called standard in what follows) \(\rho_\lambda(I) = \lambda(I)/\beta(I) \), and the quantity \(\rho_\lambda = \inf \{ r : \rho_\lambda(I) < r, I \text{ instance of } \Pi \} \) (resp., \(\rho_\delta = \sup \{ r : \rho_\delta(I) > r, I \text{ instance of } \Pi \} \) constitutes the approximation ratio of \(\Lambda \) for \(\Pi \). Recent works ([9, 8]), strongly inspired by [3] (see also [12, 23]), bring to the fore another approximation measure, as powerful as the traditional one (concerning the type, the diversity and the quantity of the results produced), the ratio (called differential in what follows) \(\delta_\lambda(I) = (\omega(I) - \lambda(I))/\omega(I) - \beta(I) \).

The quantity \(\delta_\lambda = \sup \{ r : \delta_\lambda(I) > r, I \text{ instance of } \Pi \} \) is the differential approximation ratio of \(\Lambda \) for \(\Pi \). In what follows, we use notation \(\rho \) when dealing with standard ratio and notation \(\delta \) when dealing with the differential one. Moreover \(\rho(\Pi) \) (resp., \(\delta(\Pi) \)) will denote the best standard (resp., differential) approximation ratio for \(\Pi \).

In [3], the term "trivial solution" is used to denote what in [9, 8] and here is called \textit{worst solution}. Moreover, all the examples in [3] carry over \text{NP}\text{-hard} problems for which worst solution can be trivially computed. This is for example the case of maximum independent set where, given a graph, the worst solution is the empty set, or of minimum vertex cover, where the worst solution is the vertex-set of the input-graph, or even of the minimum graph-coloring where one can trivially color the vertices of the input-graph using a distinct color per vertex. On the contrary, for TSP things are very different. Let us take for example \text{min_TSP}. Here, given a graph \(K_n \), the worst solution for \(K_n \) is a maximum total-distance Hamiltonian cycle, i.e., the optimal solution of \text{max_TSP} in \(K_n \). The computation of such a solution is very far from being trivial since \text{max_TSP} is \text{NP}\text{-hard}. Obviously, the same holds when one considers \text{max_TSP}.
and tries to compute a worst solution for its instance. In order to remove ambiguities about the concept of the worst solution, the following definition, proposed in [9], will be used here.

Definition 2. Given a typical instance I of an NPO problem Π, the worst solution of I is the optimal solution of a new NPO problem $\tilde{\Pi}$ where items 1 to 3 of definition 1 are identical for both Π and $\tilde{\Pi}$, and

$$\text{opt}(\tilde{\Pi}) = \begin{cases} \max & \text{opt}(\Pi) = \min \\ \min & \text{opt}(\Pi) = \max \end{cases}$$

One of the features of the differential ratio is to be stable under affine transformation of the objective function of a problem and so it does not create a dissymmetry between minimization and maximization problems. This is very clear in the case of TSP. Dealing with min_TSP it is very well-known that its general version is not approximable in polynomial time within better than $2^p(n)$ for a polynomial p. On the other hand, its maximization version, max_TSP, the NP-hardness of which is immediately proved if one replaces distance $d(i,j)$ for min_TSP by $M - d(i,j)$ in max_TSP, for an M greater than the largest edge distance in the input graph of min_TSP, can be approximated in polynomial time within $5/7$ ([20]).

Let us recall some standard terminology from the theory of the polynomial approximation of the NP-hard problems (for the standard approximation framework). Given an NP minimization (resp., maximization) problem Π, a constant-ratio approximation algorithm for Π is a polynomial time approximation algorithm (PTAA) guaranteeing approximation ratio bounded above (resp., below) by a fixed constant, i.e., by a constant that does not depend on any input-parameter of Π. APX is the class of the NP optimization problems solved by constant-ratio PTAs. A polynomial time approximation schema (PTAS) for Π is a sequence of PTAAAs (receiving as inputs any instance of Π and a fixed constant ϵ) guaranteeing approximation ratio bounded above (resp., below) by $1 + \epsilon$ (resp., $1 - \epsilon$), for every $\epsilon > 0$. If a PTAS is polynomial in both n and $1/\epsilon$, then it is called fully polynomial time approximation schema (FPTAS). For the differential approximation, the ratio achieved by polynomial time approximation schemata is $1 - \epsilon$ for both minimization and maximization. Finally, APX-complete is the class of problems
for ϵ. In [4] is proved that for any $\epsilon > 0$, it is NP-hard to approximate min_TSP12 within ratio smaller than, or equal to, $3475/3476 - \epsilon$; in other words the result of [10] gives a value equal to $1/3476 - \epsilon$, $\forall \epsilon > 0$ — for the hardness threshold ϵ of min_TSP12 refining the negative results of [18, 10]. Finally another restrictive version of the metric min_TSP, the Euclidean min_TSP can be solved by a standard PTAS ([1]). A complete list of standard-approximation results for min_TSP is given in [6].

In what follows, we show, that in the differential approximation framework the classical 2OPT algorithm, originally devised in [7] and revisited in numerous works (see, for example, [15]), approximately solves min_TSP with edge-distances bounded by a polynomial of n within differential approximation ratio 1/2. In other words, 2OPT provides for these graphs solutions “fairly close” to the optimal and, simultaneously, “fairly far” from the worst one. We also prove that, in the opposite of what happens in the standard framework, metric min_TSP and general min_TSP are equi-approximable in the differential framework. Moreover we prove that min_TSP12 is approximable within 3/4.

For max_TSP things are much more optimistic for standard approximation, since this problem is in APX. By the end of 70s it has been proved in [12] that 2OPT guarantees approximation ratio 1/2 for max_TSP. More recently, in [20] is proved that max_TSP can be solved by a standard PTAA within ratio 5/7, if the distance vector is symmetric and within 38/63, if it is asymmetric. The dissymmetry in the approximability of min_ and max_TSP can be considered as somewhat curious given the structural symmetry existing between them. In fact the transformation $d \leftrightarrow M-d$ mentioned above and revisited in detail in section 6 is affine. Since differential approximation is stable under affine transformation of the objective function, min_TSP and max_TSP are equi-approximable.

In what follows, we will denote by $V = \{v_1, \ldots, v_n\}$ the vertex-set of K_n, by E its edgeset and, for $u_i v_j \in E$, we denote by $d(u_i, u_j)$ (or by $d(i, j)$ when no ambiguity occurs) the distance of the edge $u_i v_j \in E$; we consider that the distance-vector is symmetric and integer. Given a feasible TSP-solution $T(K_n)$ of K_n (both min_ and max_TSP have the same set of feasible solutions), we denote by $d(T(K_n))$ its (objective) value; T will be indexed by min or max depending on whether it deals with min_ or max_TSP. When necessary, the values of the worst case solution, the approximated one and the optimal one for min_TSP (max_TSP) will be denoted by $\omega_{\text{min}}(K_n)$, $\lambda_{\text{min}}^\text{max}(K_n)$ and $\beta_{\text{min}}(K_n)$ ($\omega_{\text{max}}(K_n)$, $\lambda_{\text{max}}^\text{max}(K_n)$ and $\beta_{\text{max}}(K_n)$), respectively. Given a graph G induced by K_n, we denote by $V(G)$ its vertex-set. Finally, given any set C of edges, we denote by $d(C)$ the total distance of C, i.e., the quantity $\sum_{u_i v_j \in C} d(i, j)$.

2 Preserving differential approximation for several min_TSP versions

This section is a preliminary one containing several results about how differential approximation is preserved between several restrictive versions of min_TSP.

Proposition 1. Metric min_TSP and general min_TSP are differentially equi-approximable.

Proof. Obviously, metric min_TSP being a special case of the general one, can be solved within the same differential approximation ratio with the latter.

Suppose now that metric min_TSP is approximately solved within differential ratio δ. Given an instance $I = (K_n, \delta)$ of general min_TSP (set $d_{\text{max}} = \max \{d(i, j) : u_i v_j \in E\}$), one can transform it into a new one $I' = (K_n, \delta')$ by changing, $\forall u_i v_j \in E$, distance $d(i, j)$ of the former to $d'(i, j) = d_{\text{max}} + d(i, j)$. It is easy to see that I' is metric, and that every feasible tour $T(I)$ of (K_n, δ) remains feasible for (K_n, δ'). The cost of such a tour becomes $d(T(I')) = d(T(I)) + nd_{\text{max}}$. Then the δ-PTAA for metric min_TSP will achieve

$$\delta = \frac{\omega(I') - d(T(I'))}{\omega(I') - \beta(I')} = \frac{\omega(I) + nd_{\text{max}} - d(T(I)) - nd_{\text{max}}}{\omega(I) + nd_{\text{max}} - \beta(I) - nd_{\text{max}}} = \frac{\omega(I) - d(T(I))}{\omega(I) - \beta(I)}.$$
Consequently, every PTAA for metric min _ TSP can simultaneously solve general min _ TSP within the same differential approximation ratio.

Let \(d_{\min} = \min \{ d(i, j) : v_i v_j \in E \} \). Then, if one transforms every distance \(d(i, j) \) into \(d(i, j) - d_{\min} + 1 \), one obtains a complete graph where \(d_{\min} = 1 \) and with arguments completely analogous to the ones of proposition 1, the following holds.

Proposition 2. General min _ TSP and min _ TSP with \(d_{\min} = 1 \) are differentially equi-approximable.

We next consider another class of instances, the one where the edge-distances are either \(a \), or \(b \) (notorious member of this class of min _ TSP-problems, denoted by min _ TSPab, is the min _ TSP12). Suppose, without loss of generality that \(a < b \). Then, by proposition 2, min _ TSPab is equi-approximable with min _ TSP1b. Consider now an instance of the latter problem. If one sets \(b = 2 \) for all the \(b \)-edges (edges of distance \(b \)), then by arguments completely similar to the ones of the proof of proposition 1 (and since for a tour \(T \) containing \(k_b \) \(b \)-edges, \(d(T) = n + (b - 1)k_b \)), the following result holds.

Proposition 3. min _ TSPab and min _ TSP12 are differentially equi-approximable.

Note that results analogous to the ones of propositions 1, 2 and 3 do not hold in the standard approximation framework.

3 2 _ OPT and differential approximation for the general minimum traveling salesman

In what follows, we denote by D-APX the analogous of the class APX, the class of NPO problems solved by a constant-ratio PTAA, for the differential approximation framework.

Theorem 1. min _ TSP is differentially approximable within approximation ratio \(1/2 \) and this ratio is tight.

Proof. In what follows, suppose that a tour is listed as the set of its edges and consider the following algorithm of \([7]\).

BEGIN /2 _ OPT/
(1) start from any feasible tour \(T \);
(2) REPEAT
(3) \quad pick a new set \(\{v_i v_j, v_i v_j'\} \subset T \);
(4) \quad IF \(d(i, j) + d(i', j') > d(i, i') + d(j, j') \) THEN \(T \leftarrow \{v_i v_j, v_i v_j'\} \cup \{v_i v_i', v_j v_j'\} \) FI
(5) \quad UNTIL no improvement of \(d(T) \) is possible;
(6) OUTPUT \(T \);
END. /2 _ OPT/

Suppose now that, starting from a vertex denoted by \(v_1 \), the rest of the vertices is ordered following the tour \(T \) finally computed by 2 _ OPT (so, given a vertex \(v_i \), \(i = 1, \ldots, n - 1 \), \(v_i + 1 \) is its successor with respect to \(T \); \(v_{n + 1} = v_1 \). Let us fix one optimal tour and denote it by \(T^* \). Given a vertex \(v_i \), denote by \(v_{s^* (i)} \) its successor in \(T^* \) (remark that \(v_{s^* (i)+1} \) is the successor of \(v_{s^* (i)} \) in \(T^* \); in other words, edge \(v_{s^* (i)} v_{s^* (i)+1} \in T^* \)). Finally let us fix one (of the eventually many) worst-case (maximum total-distance) tour \(T_w \).

The tour \(T \) computed by 2 _ OPT is a local optimum for the 2-exchange of edges in the sense that every interchange between two non-intersecting edges of \(T \) and two non-intersecting edges of \(E \setminus T \) will produce a tour of total distance at least equal to \(d(T) \). This implies in particular that, \(\forall i \in \{1, \ldots, n\} \),

\[
d(i, i + 1) + d(s^*(i), s^*(i)+1) \leq d(i, s^*(i)) + d(i + 1, s^*(i)+1);
\]
so, writing the expression above for all $i \in \{1, \ldots, n\}$, we get

$$
\sum_{i=1}^{n} (d(i, i + 1) + d(s^*(i), s^*(i) + 1)) \leq \sum_{i=1}^{n} (d(i, s^*(i)) + d(i + 1, s^*(i) + 1)) \tag{1}
$$

Moreover, it is easy to see that the following holds:

$$
\bigcup_{i=1}^{n} \{v_i v_{i+1}\} = \bigcup_{i=1}^{n} \{v_{s^*(i)} v_{s^*(i)+1}\} = T \tag{2}
$$

$$
\bigcup_{i=1}^{n} \{v_i v_{s^*(i)}\} = T^* \tag{3}
$$

$$
\bigcup_{i=1}^{n} \{v_{i+1} v_{s^*(i)+1}\} = \text{some feasible tour } T' \tag{4}
$$

Let us show that $T' = \bigcup_{i=1}^{n} \{v_{i+1} v_{s^*(i)+1}\}$ is feasible. Recall that an acyclic permutation is a bijective function $f : \{1, \ldots, n\} \to \{1, \ldots, n\}$ such that, $\forall i \in \{1, \ldots, n\}$:

$$
\begin{cases}
 f^{(k)}(i) = i & k < n \\
 f^{(n)}(i) = i
\end{cases}
$$

Every feasible tour T, oriented as mentioned above, can be seen as an acyclic permutation. Consider now the following mappings

$$
s^* : i \mapsto s^*(i)
$$

$$
f : i \mapsto i + 1
$$

$$
h : i \mapsto s^*(i - 1) + 1.
$$

It is easy to see that if s^* is an acyclic permutation and f is a permutation, then $h = f \circ s^* \circ f^{-1}$ is an acyclic permutation. Moreover, it is not hard to see that pairs $(i, h(i))$ correspond (mod n) to the edges of T'.

Combining expression (1) with expressions (2), (3) and (4), one gets:

$$
\sum_{i=1}^{n} d(i, i + 1) + \sum_{i=1}^{n} d(s^*(i), s^*(i) + 1) = 2\lambda_{2_{\text{opt}}}(K_n) \tag{5}
$$

and expressions (1) and (5) lead to

$$
2\lambda_{2_{\text{opt}}}(K_n) \leq \beta(K_n) + \omega(K_n) \iff \frac{\omega(K_n) - \lambda_{2_{\text{opt}}}(K_n)}{\omega(K_n) - \beta(K_n)} \geq \frac{1}{2}
$$

Consequently, $\delta_{2_{\text{opt}}} \geq 1/2$.

Consider now a K_{4n+8}, $n \geq 0$, set $V = \{v_i : i = 1, \ldots, 4n + 8\}$, let

$$
\begin{align*}
 d(2k + 1, 2k + 2) &= 1 & k &= 0, 1, \ldots, 2n + 3 \\
 d(4k + 2, 4k + 4) &= 1 & k &= 0, 1, \ldots, n + 1 \\
 d(4k + 3, 4k + 5) &= 1 & k &= 0, 1, \ldots, n \\
 d(4n + 7, 1) &= 1
\end{align*}
$$
and set the distances of all the remaining edges to 2. Then,

\[T = \{v_i v_{i+1} : i = 1, \ldots, 4n + 7\} \cup \{v_{4n+8} v_1\} \]
\[T^* = \{v_{2k-1} v_{2k+2} : k = 0, \ldots, 2n + 3\} \cup \{v_{2k+2} v_{4k+4} : k = 0, \ldots, n + 1\} \]
\[\cup \{v_{4k+3} v_{4k+5} : k = 0, \ldots, n\} \cup \{v_{4n+7} v_1\} \]
\[T_w = \{v_{2k+2} v_{2k+3} : k = 0, \ldots, 2n + 2\} \cup \{v_{2k+1} v_{2k+4} : k = 0, \ldots, 2n + 1\} \]
\[\cup \{v_{2k+2} v_{2k+5} : k = 0, \ldots, 2n + 1\} \cup \{v_{4n+8} v_1\} \].

In figure 1, \(T^* \) and \(T_w \) are shown for \(n = 1 \) (\(T = \{1, \ldots, 11, 12, 1\} \)). Hence, \(\delta_{2_OPT}(K_{4n+8}) = 1/2 \) and this completes the proof of the theorem.

![Figure 1. Tightness of the 2_OPT approximation ratio for \(n = 1 \).](image)

From the proof of the tightness of the ratio of 2_OPT, the following corollary is immediately deduced.

Corollary 1. \(\delta_{2_OPT} = 1/2 \) is tight even for min_TSP12.

A first case of polynomial complexity for algorithm 2_OPT (even if edge-distances of the graph are exponential in \(n \)) is for graphs where the number of (feasible) tour-values, denoted by \(\sigma(K_n) \), is polynomial in \(n \). Here, since there exists a polynomial number of different min_TSP solution-values, achievement of a locally minimal solution (starting, at worst for the worst-value solution) will need a polynomial number of steps (at most \(\sigma(K_n) \)) for 2_OPT.

Theorem 1 obviously works in polynomial time when \(d_{max} \) is bounded above by a polynomial of \(n \). However, even when this condition is not satisfied, there exist restrictive cases of min_TSP for which 2_OPT remains polynomial.

Consider now complete graphs with a fixed number \(k \in \mathbb{N} \) of distinct edge-distances, \(d_1, d_2, \ldots, d_k \). Then, any tour-value can be seen as \(k \)-tuple \((n_1, n_2, \ldots, n_k)\) with \(n_1 + n_2 + \ldots + n_k = n \), where \(n_1 \) edges of the tour are of distance \(d_1 \), \(\ldots \), \(n_k \) edges are of distance \(d_k \) (\(\sum_{i=1}^{k} n_i d_i = d(T) \)). Consequently, the consecutive solutions retained by 2_OPT (in line (4)) before attaining a local minimum are, at most, as many as the number of the arrangements with repetitions of \(k \) distinct items between \(n \) items (in other words, the number of all the distinct \(k \)-tuples formed by all the numbers in \(\{1, \ldots, n\} \)), i.e., bounded above by \(O(n^k) \).
Another class of polynomially solved instances is the one where $\beta(K_n) = O(P(n))$ where P is a polynomial of n. Recall that, from proposition 1, general and metric min_TSP are differentially equi-approximable. Consequently, given an instance K_n where $\beta(K_n)$ is polynomial, K_n can be transformed into a graph K'_n as in proposition 1. Then, if one runs the algorithm of [5] in order to obtain an initial feasible tour T (line (1) of algorithm 2_OPT), then its total distance, at most 3/2 times the optimal one, will be of polynomial value and, consequently, 2_OPT will need a polynomial number of steps until attaining a local minimum.

Let us note that the first and the fourth of the above cases cannot be decided in polynomial...
4.1 Specification of the min_TSP12-algorithm and evaluation of $\lambda(K_n)$

In the sequel, we will first specify a PTAA min_TSP12 and estimate the value $\lambda_{TSP12}(K_n) = d(T(K_n))$ of the Hamiltonian tour computed. Next, we will compute a lower bound for $\omega(K_n)$. As for theorem 1, we will exhibit a feasible tour of a certain value. Since worst solution's value is larger than the value of every other Hamiltonian tour of K_n, the value of the tour exhibited will be the bound claimed.

Let M' be an optimal triangle-free 2-matching of K_n (recall that, as we have mentioned, such a matching is maximal, i.e., it does only contain cycles). Starting from M', one can easily construct an optimal 2-matching M^* where every patching of two cycles strictly increases its value. In what follows, we will call M^* 2-minimal. Construction of M^* can be done in polynomial time by the following procedure.

BEGIN /2_MIN/
 $M_p \leftarrow \emptyset$;
 REPEAT
 pick a new set $\{C_1, C_j\} \subseteq \hat{M}$;
 FOR all $v_1v_1 \in C_1, v_pv_q \in C_j$ DO
 $M_p \leftarrow \hat{M} \setminus \{C_1, C_j\} \cup \text{CYCLE_PATCH}(C_1, C_j)$
 IF $d(\hat{M}) > d(M_p)$ THEN $\hat{M} \leftarrow M_p$ FI
 OD
 UNTIL no improvement of $d(\hat{M})$ is possible;
 OUTPUT $M^* \leftarrow \hat{M}$;
END. /2_MIN/

Remark 1. In any 2-minimal matching M there exists at most one cycle C containing 2-edges (edges of distance 2). In fact, if not, procedure CYCLE_PATCHING can always be applied in order to patch two distinct cycles containing 2-edges into one cycle with total distance no longer than the sum of the distances of the two cycles patched. Moreover, if $M = C$, then M is an optimal solution for min_TSP (in general, a Hamiltonian cycle being a particular triangle-free 2-matching, $d(M) \leq \beta_{\min}(K_n)$).

Fix a 2-minimal triangle-free matching $M^* = (C_1, C_2, \ldots, C_{p+1})$ (recall that M^* is a minimum total-distance triangle-free 2-matching) and suppose, without loss of generality, that $p > 0$ and that cycles C_1, \ldots, C_p contain only 1-edges (edges of distance 1) and that only cycle C_{p+1} contains, eventually, some 2-edges. Finally, recall that it is assumed that $|C_i| \geq 4$. The following facts can be concluded regarding M^*.

Fact 1. $\forall (C, C') \in M^* \times M^*$ such that $C \neq C'$, $\forall uv \in C, \forall u'v' \in C'$, $\max\{d(u, u'), d(v, v')\} = d(u, v') = d(u', v) = 2$.

Fact 2. If vertex u is adjacent to a 2-edge in C_{p+1}, then $\forall u' \notin V(C_{p+1}), d(u, u') = 2$.

Fact 3. If uu' and vv' are two distinct non-adjacent 2-edges of C_{p+1}, then $d(u, v) = d(u', v') = d(u'v) = d(u'v') = 2$.

Given $M^* = (C_1, \ldots, C_{p+1})$, we first perform the following preprocessing on C_1, \ldots, C_p.

BEGIN /PREPROCESS/
 $P_R \leftarrow \emptyset$;
 WHILE possible DO
 arbitrarily pick $C_1, C_j \in M^* \setminus \{C_{p+1}\}$ linked by at least one 1-edge;
BEGIN /PREPROCESS/
PR ← PR ∪ \{C_i, C_j\};
M* ← M* \{C_i, C_j\};
OD
OUTPUT PR;
END /*PREPROCESS*/

Suppose the WHILE loop of PREPROCESS executed \(q\) times and denote by \(\{C^*_1, C^*_2\}\) the cycles considered during the \(s\)th execution of the loop, \(s = 1, \ldots, q\). Then \(PR = \bigcup_{s=1}^{q} \{C^*_1, C^*_2\}\). Set \(r = p - 2q\) and denote by \(D_t, t = 1, \ldots, r\), the cycles in \(\{C_1, \ldots, C_p\} \cup \bigcup_{s=1}^{q} \{C^*_1, C^*_2\}\). Under all this,

\[
M^* = \left\{ \bigcup_{s=1}^{q} \{C^*_1, C^*_2\} \right\} \cup \left\{ \bigcup_{t=1}^{r} D_t \right\} \cup C_{p+1}.
\]

The following facts hold and complete the above discussion.

Fact 4. \(2q + r \geq 1\) if \(2q + r = 1\) then \(C_{p+1} \neq \emptyset\).

Fact 5. \(\forall s \in \{1, \ldots, q\}, \forall \ell \in \{1, 2\}, \forall e \in C^*_\ell, d(e) = 1\).

Fact 6. \(\forall t \in \{1, \ldots, r\}, \forall e \in D_t, d(e) = 1\).

Fact 7. \(\forall s \in \{1, \ldots, q\}, \exists i^s \in V(C^*_1), \exists j^s \in V(C^*_2)\) such that \(d(i^s, j^s) = 1\).

Fact 8. \(\forall (t, t') \in \{1, \ldots, r\} \times \{1, \ldots, r\}, t \neq t', \forall (u, v) \in V(D_t) \times V(D_{t'})\), \(d(u, v) = 2\).

In the sequel, for \(s = 1, \ldots, q\), we denote by \(a^s\) and \(b^s\) (resp., \(A^s\) and \(B^s\)) the vertices adjacent to \(i^s\) (resp., \(I^s\)) in \(C^*_1\) (resp., \(C^*_2\)). We set \(c = \sum_{s=1}^{q} (|C^*_1| + |C^*_2|), d = \sum_{t=1}^{r} |D_t|, E2 = \{e \in C_{p+1} : d(e) = 2\}\). Following these notations, \(n = c + d + |C_{p+1}|\) and, denoting by \(|E2|\) cardinality of the set \(E2\),

\[
d(M^*) = n + |E2|
\]

We are well-prepared now to describe the algorithm proposed. Informally, it first patches cycles \(C^*_1\) and \(C^*_2\) into a single cycle \(C^*\), \(s = 1, \ldots, q\). Next, it patches cycle \(C^1\) with \(C^2\) to produce a cycle \(C^*\) which will be patched with \(C^3\), and so on, finally producing a single cycle \(C\). It does so for the cycles \(D_t, t = 1, \ldots, r\), producing a single cycle \(D\). Then it patches \(C\) and \(D\) in order to produce a partial tour \(\hat{T}\) and finally it patches \(\hat{T}\) and \(C_{p+1}\) obtaining so the final TSP-tour \(T(K_n)\).

4.1.1 Construction and evaluation of \(C\)

Construction of \(C\) is performed by means of the following procedure.

BEGIN /C/
FOR s ← 1 to q DO using edge \(i^sI^s\) \(C ← CYCLE_PATCH(C^*_1, C^*_2)\); OD
C ← C^1;
FOR s ← 1 TO q − 1 DO
 replacing as many 2-edges as possible \(C ← CYCLE_PATCH(C, C^{s+1})\);
OD
OUTPUT C;
END. /C/

The call of algorithm CYCLE_PATCH in the first FOR-loop of \(C\) is a very slightly different variant of the corresponding procedure presented above where one imposes to the 1-edge \(i^sI^s\) (fact 7) to be one of the cross-edges entering cycle \(C^s\).
Lemma 1. The 2-matching \((C^1, C^2, \ldots, C^q)\) produced during the \(q\) executions of the first FOR-loop of algorithm \(C\) has value \(d(C^1, C^2, \ldots, C^q) = c + q\).

Proof of lemma 1. Patching of \(C^1_2\) and \(C^2_2\) into \(C^2\) is done using 1-edge \(i^5I^5\) (fact 7), \(s = 1, \ldots, q\). Consequently, only one 2-edge has been included in \(C^2\) (the one used with \(i^5I^5\) to patch \(C^1_2\) and \(C^2_2\)). Such an edge always exists because of fact 1. So, for \(s = 1, \ldots, q\), execution of \(\text{CYCLE_PATCH}(C^1_2, C^2_2)\) in the first FOR-loop of \(C\) will produce in all exactly \(q\) 2-edges replacing and \(q\) 1-edges replacing 2q 1-edges. Consequently, \(d(C^1, C^2, \ldots, C^q) = \sum_{i=1}^{q} (|C^1_2| + |C^2_2|) + q = c + q\) and this completes the proof of lemma 1.

During the executions of \(\text{CYCLE_PATCH}\) in the second FOR-loop of \(C\), we try that the total distance of the resulting cycle is no longer than the sum of the total distances of the cycles patched. In other words, we try to not produce additional 2-edges in the resulting cycle. Here the following lemma holds.

Lemma 2. The cycle \(C\) produced during the second FOR-loop of algorithm \(C\) does not increase \(d(C^1, C^2, \ldots, C^q)\).

Proof of lemma 2. The proof is done by induction on \(q\).

4.1.1.1 \(q = 1\)

The proof of this case is an immediate application of lemma 1 with \(q = 1\).

4.1.1.2 \(q = k\)

Suppose that during the \(k\) first executions of the FOR-loop, the number of 2-edges is at most \(k\).

4.1.1.3 \(q = k + 1\)

Suppose now that there exists at least one 2-edge in \(C\) (note also that \(C^{k+1}\), since it has been not processed yet, always contains the 2-edge produced by the execution of the first FOR-loop). Since the patching with \(C^{k+1}\) is done by algorithm \(C\) using two 2-edges, there is no additional 2-edge created. On the other hand, if no 2-edge exists in \(C\), the patching of \(C\) with \(C^{k+1}\) will produce at most \(2 \leq k + 1\) new 2-edges and this concludes induction and the proof of lemma 2.

\[d(C) \leq c + q\] (7)

4.1.2 Construction and evaluation of \(D\)

The following procedure is used to construct \(D\).

BEGIN /D/
 \(D \leftarrow D_{1}\);
 \FOR \(t \leftarrow 1\) \TO \(r - 1\) \DO
 \(D \leftarrow \text{CYCLE_PATCH}(D, D_{t+1});\)
 \END
 \OUTPUT D;
END. /D/\

Exactly analogous arguments to the ones of the proof of lemma 2 applied to algorithm \(D\) and thanks to fact 8 induce

\[d(D) \leq d + r\] (8)

Also, let us note that any patching of cycles \(D_{t}\) between them will create an additional cost of \(r\).
4.1.3 Construction and evaluation of \(\hat{T} \)

BEGIN /\hat{T}/
replacing as many 2-edges as possible \(\hat{T} \leftarrow \text{CYCLE_PATCH}(C,D); \)
OUTPUT \(\hat{T} \);
END. /\hat{T}/

With the same arguments as in lemma 2, the following holds for \(|\hat{T}| \):

\[
\begin{align*}
 \{ & d(\hat{T}) \leq c + d + q + r \
 & 2q + r \geq 2 \
 d(T) = d \quad (q,r) = (0,1)
\end{align*}
\]

(9)

4.1.4 Overall specification of the \texttt{min_TSP12}-algorithm, construction and evaluation of \(T \)

Once \(\hat{T} \) constructed, call of \texttt{CYCLE_PATCH}(\(\hat{T} \), \(C_{p+1} \)), changing as many as 2-edges (at most 2) as possible, constructs the final TSP-solution \(T(K_n) \) and the whole \texttt{min_TSP12-PTAA} is the following. The 2-matching \(\hat{M} \) produced in the first line of the algorithm below is supposed to be optimal and without cycles on less than, or equal to, four edges.

BEGIN /TSP12/
call the algorithm of [14] to produce \(R \);
\(\hat{R} = (C_1, \ldots, C_{p+1}) \leftarrow 2_MIN(\hat{R}); \)
\(M^* \leftarrow \text{PREPROCESS}(\hat{R}) \cup \bigcup_{c=1}^{p} \{ D_c \} \cup C_{p+1}; \)
\(C \leftarrow C(M^*); \)
\(D \leftarrow D(M^*); \)
\(\hat{T} \leftarrow \text{CYCLE_PATCH}(C,D); \)
OUTPUT \(T(K_n) \leftarrow \text{CYCLE_PATCH}(\hat{T}, C_{p+1}); \)
END. /TSP12/

It is easy to see that, since all the algorithms called are polynomial, TSP12 works in polynomial time.

If \((q,r) = (0,1) \) (in this case, by fact 4, \(C_{p+1} \neq \emptyset \)), then patching of \(D_1 \) with \(C_{p+1} \) constructs a tour with \(d(T(K_n)) = d(D_1) + d(C_{p+1}) + 1 = d(M^*) + 1 = d(M^*) + q + r. \)

Suppose \(2q + r \geq 2 \). Then, by expression (9), \(d(\hat{T}) \leq c + d + q + r \). If \(d(\hat{T}) < c + d + q + r \), i.e., \(d(\hat{T}) \leq c + d + q + r - 1 \), even if \(\hat{T} \) does not contain any 2-edge, patching of \(\hat{T} \) with \(C_{p+1} \) will create only one additional 2-edge so, finally, \(d(T(K_n)) \leq d(\hat{T}) + d(C_{p+1}) \leq c + d + q + r + |C_{p+1}| + |E_2| \)
and, by expression (6), \(d(T(K_n)) \leq d(M^*) + q + r. \) If \(d(\hat{T}) = c + d + q + r \), we simply exchange two 2-edges and the same expression for \(d(T(K_n)) \) always holds.

The discussion above leads to the following concluding expression for the quantity \(d(T(K_n)) \):

\[
d(T(K_n)) = \lambda_{TSP12}(K_n) \leq v(M^*) + q + r
\]

(10)

4.2 A bound for \(\omega(K_n) \)

In what follows, we will exhibit a TSP12-solution, the objective value of which will provide us with a lower bound for the value \(\omega(K_n) \) of the worst TSP12-solution on \(K_n \). For this we define a set \(W \) of disjoint elementary paths (d.e.p.), \textit{any one of them containing only 2-edges}. Obviously, if \(W = \{ w_1, \ldots, w_{|W|} \} \), one, by properly linking \(w_i \)'s, can easily construct a tour \(T' \) verifying \(d(T') \geq n + \sum_{w_i \in W} |w_i| \) which is a lower bound for \(\omega(K_n) \).
4.2.1 Disjoint elementary paths on \(V(C) \)

Recall that, for \(q \neq 0 \), \(d(i^q, I^q) = 1 \); hence, by fact 1, \(d(a^q, A^q) = d(a^q, B^q) = d(b^q, A^q) = d(b^q, B^q) = 2 \), \(s = 1, \ldots, q \). Always by fact 1, either \(d(i^q, B^q) = 2 \), or \(d(I^q, b^q) = 2 \). Without loss of generality, we suppose all over the rest of the proof of theorem 2 that \(d(i^q, B^q) = 2 \).

Consequently, for \(s = 1, \ldots, q \), set \(W_C := \{ b^q A^q, A^q a^q, a^q B^q, B^q i^q \} \) and the set of d.e.p. on the vertices of \(C \) is \(W_C = \cup_{s=1}^q W_C \). with

\[
|W_C| = 4q
\]

(11)

4.2.2 Disjoint elementary paths on \(V(D) \)

If \(r > 1 \), we choose, for \(t = 1, \ldots, r \), a sequence \(\{w_t, x_t, y_t, z_t\} \in V(D_t) \). Then, the set of d.e.p. and its cardinality on \(V(D) \) is

\[
W_D = \{w_1, w_2, \ldots, w_r, x_1, x_2, \ldots, x_r, y_1, y_2, \ldots, y_r, z_1, \ldots, z_r\}
\]

(12)

\[
|W_D| = 4(r - 1) + 3 = 4r - 1
\]

(13)

If \(r \leq 1 \), then we set \(W_D = \emptyset \).

4.2.3 Disjoint elementary paths on \(V(\hat{T}) \)

4.2.3.1 \(q > 0 \)

Suppose first \(r \neq 1 \). If \(r = 0 \), then \(W_T = W_C \). Suppose now \(r > 1 \). Then, by fact 1, there exists vertex \(v_1 \in V(D_1) \) such that either \(d(v_1, B^1) = 2 \), or \(d(v_1, I^1) = 2 \). Let \(e \) be this 2-edge. Without loss of generality, we can suppose \(v_1 = u_1 \) (see the paragraph just above). Then the set of d.e.p. on \(V(\hat{T}) \) is \(W_T = W_C \cup W_D \cup \{e\} \) with (see expressions (11) and (13))

\[
|W_T| = 4q + 4r - 1 + 1 = 4(q + r)
\]

(14)

Suppose \(r = 1 \). Consider cycles \(C_1^1 \), \(C_2^1 \) and \(D_1 \) and denote by \(a^1 \) (resp., \(A^1 \)) the vertex, distinct from \(i^1 \) (resp., \(I^1 \)) in \(C_1^1 \) (resp., \(C_2^1 \)) adjacent to \(a^1 \) (resp., \(A^1 \)). If for any \(u \in V(D_1) \) and for any \(v \in \{a^1, b^1, A^1, B^1\} \), \(d(u, v) = 2 \), then let \(w, x, y, z \) be four vertices of \(V(D_1) \) and set \(W_1 = \{w^1, a^1 x, w^1 b^1, b^1 y, y^1, A^1 x, z B^1, B^1 z^1\} \).

Suppose now that there exist \(x \in v(D_1) \) and \(v \in \{a^1, b^1, A^1, B^1\} \) with \(d(x, v) = 1 \); assume \(v = a^1 \) (so, \(d(xa^1) = 1 \)). Let \(w, y, z \) be three vertices in \(V(D_1) \) such that \(w, x, y, z \) are subsequent in \(D_1 \). Then, by fact 1, \(d(w, a^1) = d(w, i^1) = d(y, a^1) = d(y, i^1) = 2 \).

If \(d(y, I^1) = d(x, A^1) = 2 \), then \(W_1 = \{I^1 y, y a^1, a^1 w, w i^1, a^1 B^1, B^1 b^1, b^1 A^1, A^1 x\} \). If not, we can suppose (up to renaming of cycles \(C_1^1 \), \(C_2^1 \) and \(D_1 \) in the discussion that follows) \(d(y, I^1) = 1 \). Then, by fact 1 one of the edges \(i^1 x \) and \(a^1 y \) is a 2-edge; let us denote it by \(e \). Set \(f = a^1 y \) if \(e = i^1 x \) or \(f = i^1 w \) if \(e = a^1 y \). Then, \(W_1 = \{a^1 w, i^1 y, a^1 A^1, A^1 b^1, b^1 B^1, B^1 z^1\} \cup \{e, f\} \). Figure 2 illustrates this case. In all the above cases set \(W_T = (W_C \setminus W_C) \cup W_1 \) is a set of d.e.p (remark that the hypothesis \(d(i^q, B^q) = 2 \) does not intervene in the specification of the set \(W_T \)) of cardinality

\[
|W_T| = 4q + 4 + 8 = 4(q + r)
\]

(15)

From expressions (14) and (15) we conclude for the case \(q > 0 \):

\[
|W_T| = 4(q + r)
\]

(16)
4.2.3.2 $q = 0$

Consider first $|E2| = |C_{p+1}|$. Remark that $r \geq 1$ (if not $T(K_n) = C_{p+1}$ is a minimum-distance Hamiltonian tour); note also that C_{p+1} can eventually be empty. From facts 2, 3 and 8, for any cycle D_t, $t = 1, \ldots, r$ the only 1-edges (other than the ones of D_t) incident to vertices of $V(D_t)$ are pairs of $V(D_t) \times V(D_t)$ not included in D_t. However, in any feasible Hamiltonian tour, one cannot use more than $\sum_{t=1}^{r}(|D_t|-1) = d - r$ of them and, consequently, no less than $n - (d - r) = |C_{p+1}| + r$ 2-edges. Hence, $\beta(K_n) \geq n + |C_{p+1}| + r = d(M^*) + r = |T(K_n)|$ and the solution computed by algorithm TSP12 is optimal. For case $|E2| < |C_{p+1}|$, we set $W_\mathcal{F} = W_D$ if $r > 1$, and $W_\mathcal{F} = \emptyset$, if $r = 1$.

4.2.4 Disjoint elementary paths on $V(K_n)$

4.2.4.1 $q > 0, |E2| < |C_{p+1}|$

Consider set $W = W_\mathcal{F} \cup E2$. Using expression (16), we get $|W| = 4(q + r) + |E2|$.

4.2.4.2 $q > 0, |E2| = |C_{p+1}|$

Let $uv \in C_{p+1}$ and u' be a vertex with $|\Gamma_{W_\mathcal{F}}(u')| = 1$, where by $\Gamma_{W_\mathcal{F}}(u')$ we denote the set of neighbors of u' belonging also to $V(W_\mathcal{F})$. Remark that such a vertex u' exists because $W_\mathcal{F}$ is a simple set of paths. Fact 2 ensures $d(u, u') = 2$. We then set $W = W_\mathcal{F} \cup (C_{p+1} \setminus \{uv\}) \cup \{uu'\}$ with (see expression (16)) $|W| = 4(q + r) + |E2|$.

13
4.2.4.3 \(q = 0, |E2| < |C_{p+1}| \)

Let us first suppose \(r = 1 \). Then, let \(H = \{e_1, e_2, e_3, e_4\} \) be an elementary path on four edges in \(C_{p+1} \) with endpoints \(u \) and \(v \) and such that \(d(e_1) = 1 \) and \(d(e_2) = 2 \); let \(M = \{w, x, y, z\} \) be a sequence of four successive vertices in \(V(D_1) \) and set \(H2 = \{e \in H : d(e) = 2\} \). Then, using facts 1 and 2, we can construct (see figure 3), between paths \(H \) and \(M \), a path \(P \) containing at least \(4 + |H2| \) 2-edges where \(|\Gamma P(v)| \leq 1 \). We set \(W = P \cup (E2 \setminus H2) \) that constitutes a d.e.p with \(|W| = (4 + |H2|) + (|E2| - |H2|) = |E2| + 4 \).

![Figure 3. Construction of W supposing vz = argmax{d(v', y), d(v, z)}.](image)

Let us now suppose \(r > 1 \) and let \(uv \) be an 1-edge of \(C_{p+1} \). Moreover, from the previous paragraph, for the case we deal with, \(W_F = W_D \), where \(W_D \) is given by expression (12). By fact 1 we have that either \(x_1u \) or \(y_1v \) is a 2-edge; let us suppose \(d(x_1u) = 2 \). Then, the set \(W = W_F \cup E2 \cup \{x_1u\} \) forms a d.e.p composed of \(|W| = (4r - 1) + |E2| + 1 = 4r + |E2| = 4(q + r) + |E2| \) 2-edges.

Consequently, dealing with \(W \), we always have \(|W| \geq 4(q + r) + |E2| \). One can obtain a tour \(T_w(K_n) \) by properly linking d.e.p.s by edges (at worst by 1-edges) in order that they form a Hamiltonian cycle on \(K_n \). The so obtained \(T_w(K_n) \) has objective value \(d(T_w(K_n)) \geq n + 4(q + r) + |E2| \); so, using expression (6)

\[
\omega(K_n) \geq d(T_w(K_n)) \geq n + 4(q + r) + |E2| = d(M^*) + 4(q + r).
\] (17)
4.3 The differential approximation ratio of TSP12

We have already seen that if \(q = 0 \) and \(|E| = |C_{p+1}|\), then \(\delta(\text{min-TSP12}) = 1 \). So, for \(q > 0 \) or \(q = 0 \) and \(|E| < |C_{p+1}| \) expressions (10), (17) and the fact that \(\beta(K_n) \geq d(M^*) \), we get

\[
\delta_{\text{TSP12}}(K_n) = \frac{\omega(K_n) - \lambda_{\text{TSP12}}(K_n)}{\omega(K_n) - \beta(K_n)} \geq \frac{d(M^*) + 4(q + r) - (d(M^*) + (q + r))}{d(M^*) + 4(q + r) - d(M^*)} = \frac{3(q + r)}{4(q + r)} = \frac{3}{4}.
\]

4.4 Ratio 3/4 is tight for TSP12

![Figure 4. Tightness of the TSP12 approximation ratio.](image)

Consider two cliques and number their vertices by \(\{1, \ldots, 4\} \) and by \(\{5, 6, \ldots, n + 8\} \), respectively. Edges of both cliques have all distance 1. Cross-edges \(ij \), \(i = 1, 3 \), \(j = 5, \ldots, n + 8 \), are all of distance 2, while every other cross-edge is of distance 1.

Unraveling of TSP12 will produce:

- \(T = \{1, 2, 3, 4, 5, 6, \ldots, n + 7, n + 8, 1\} \) cycle-pathing on edges \((1, 4) \) and \((5, n + 8) \)
- \(T_w = \{1, 5, 2, 6, 3, 7, 4, 8, \ldots, n + 7, n + 8, 1\} \) using 2-edges \((1, 5), (6, 3), (3, 7) \) and \((n + 8, 1) \)
- \(T^* = \{1, 2, n + 8, n + 7, \ldots, 5, 4, 3, 1\} \) using 1-edges \((4, 5), (2, n + 8) \)

i.e., \(\lambda(K_{n+8}) = n + 9 \), \(\beta(K_{n+8}) = n + 8 \) and \(\omega(K_{n+8}) = n + 12 \) (in figure 4, \(T^* \) and \(T_w \) are shown for \(n = 2 \), \(T = \{1, \ldots, 10, 1\} \)). Consequently, \(\delta_{\text{TSP12}}(K_{n+8}) = 3/4 \) and this completes the proof of theorem 2.

Let us note that the differential approximation ratio of the 7/6-algorithm of [18], when running on \(K_{n+8} \), is also 3/4. The authors of [18] bring also to the fore a family of worst-case instances for their algorithm: one has \(k \) cycles of length four arranged around a cycle of length \(2k \). We have performed a limited comparative study between their algorithm and the our one, for \(k = 3, 4, 5, 6 \) (on 24 graphs). The average differential and standard approximation ratios for the two algorithms are presented in table 1.

5 Further results for minimum traveling salesman

5.1 Bridges between differential and standard approximation

Let us consider the following approximation-preserving reduction proposed in [16], strongly inspired by the \(A \)-reduction of [17] between pairs \((\Pi, R) \), where \(\Pi \) is an NPO problem and \(R \) an
<table>
<thead>
<tr>
<th>k</th>
<th>TSP12</th>
<th>The algorithm of [18]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>0.931100364</td>
<td>0.846702091</td>
</tr>
<tr>
<td>4</td>
<td>0.9000002</td>
<td>0.833333</td>
</tr>
<tr>
<td>5</td>
<td>0.920289696</td>
<td>0.833333</td>
</tr>
<tr>
<td>6</td>
<td>0.9222222</td>
<td>0.833333</td>
</tr>
</tbody>
</table>

Differential ratio	3	0.923350955	0.87013
	4	0.9094018	0.857143
	5	0.92646313	0.857143
	6	0.928178	0.857143

Table 1: A limited comparison between TSP12 and the algorithm of [18] on some worst-case instances of the latter.

approximation measure. In what follows, we denote by $R[\Pi](I, S)$ the value of the approximation measure R relative to a solution S of an instance I of Π. We suppose that R has values in $[0, 1]$ (for the standard approximation, we inverse the approximation ratio in the case of minimization problems).

Definition 3. A G-reduction of the pair (Π_1, R_1) to (Π_2, R_2), denoted by $(\Pi_1, R_1) \leq^G (\Pi_2, R_2)$, is a triplet (∞, g, c) such that:

- $\infty: \mathcal{I}_1 \rightarrow \mathcal{I}_2$ polynomially transforms instances of Π_1 into instances of Π_2;
- $g: S(\infty(I)) \rightarrow S(I)$ polynomially transforms solutions for Π_2 into solutions for Π_1;
- $c: [0, 1] \rightarrow [0, 1]$ ($c^{-1}(0) = \{0\}$) is such that, $\forall \varepsilon \in [0, 1], \forall I \in \mathcal{I}_1, \forall S \in S(\infty(I))$,

$$R_2[\Pi_2](\infty(\varepsilon), S) \geq \varepsilon \Rightarrow R_1[\Pi_1](I, g(S)) \geq c(\varepsilon).$$

The following easy lemma holds.

Lemma 3. Consider an NPO problem $\Pi = (\mathcal{I}, S, \nu, \text{opt})$. If $\exists t > 0$ such that, $\forall I \in \mathcal{I}$, $|\omega(I) - \beta(I)| \leq t \min\{\omega(I), \beta(I)\}$, then $(\Pi, \rho) \leq^G (\Pi, \delta)$ with

$$c_t(\varepsilon) = \begin{cases} \frac{t+1}{t+1-t\varepsilon} & \text{opt = max} \\ \frac{t}{t+1-t\varepsilon} & \text{opt = min} \end{cases}$$

Remark that for \min_{TSPab} we have

$$\omega(K_n) - \beta(K_n) \leq bn - an \leq (b-a)n \leq \frac{b-a}{a} \beta(K_n)$$

and by application of lemma 3 the following theorem holds.

Theorem 3.

$$\min_{\text{TSPab}, \delta} \leq^G \min_{\text{TSPab}, \delta} \text{ with } c(\varepsilon) = \frac{a}{b-a}$$
Theorem 3 implies $1/\rho_{\text{TSP12}} \geq 4/5$; in other words, $\rho_{\text{TSP12}} \leq 5/4$. This ratio is better than the one of [5] for this particular case, but with no operational impact since it is dominated by the result of [18].

Recall that min_TSP12 and min_TSPab are equi-approximable in the differential approximation framework. Consequently, using theorem 3 with $\delta = 3/4$, the following corollary holds.

Corollary 3. min_TSPab is approximable within

$$\rho \leq \frac{3}{4} + \frac{1}{4} \frac{b}{a}$$

in the standard framework. This ratio tends to ∞ with b.

Let us now denote by A_{max} and A_{min} a maximum and a minimum spanning tree of K_n, respectively, and by $c(A_{\text{max}})$ and $c(A_{\text{min}})$ their respective costs. Then, the following proposition holds.

Proposition 4. If $c(A_{\text{max}})/c(A_{\text{min}}) \leq \nu$, $\nu > 1$, then $(\text{min}_TSP, \rho) \leq (\text{min}_TSP, \delta)$ with $c(\varepsilon) = 1/(\nu(1 - \varepsilon) + \varepsilon)$.

Proof. Let $T_w(K_n)$ and $T^*(K_n)$ be a worst-value tour and an optimal tour of K_n, respectively. Set $d_w = \min_{v \in V \in T_w(K_n)} \{d(i, j)\}$ and $d_{\beta} = \max_{v \in V \in T^*(K_n)} \{d(i, j)\}$. Since $T_w(K_n) \setminus \{\min_{v \in V \in T_w(K_n)} \{d(i, j)\}\}$ and $T^*(K_n) \setminus \{\max_{v \in V \in T^*(K_n)} \{d(i, j)\}\}$ are obviously spanning trees of K_n, $c(A_{\text{max}}) \geq \omega(K_n) - d_w$, $c(A_{\text{min}}) \leq \beta(K_n) - d_{\beta}$. Remark also that $d_w \leq \omega(K_n)/n$ and $d_{\beta} \geq \beta(K_n)/n$. So, $c(A_{\text{max}}) \geq \omega(K_n)(1 - 1/n)$ and $c(A_{\text{min}}) \leq \beta(K_n)(1 - 1/n)$. Consequently,

$$\frac{\omega(K_n)}{\beta(K_n)} \leq \frac{c(A_{\text{max}})}{c(A_{\text{min}})} \left(1 - \frac{1}{n}\right) \leq \frac{c(A_{\text{max}})}{c(A_{\text{min}})} \leq \nu.$$

Hence, $\omega(K_n) - \beta(K_n) \leq (\nu - 1)\beta(K_n)$, and using lemma 3 for $t = (\nu - 1)$ we get $c(\varepsilon) = (\nu(1 - \varepsilon) + \varepsilon)^{-1}$.

5.2 An inapproximability result

We first note that one can prove very easily (with arguments similar to the ones of theorem 6.13 in [13]) that min_TSP cannot be solved by a differential PPTAS unless $P=NP$. We now restrict ourselves to min_TSP12 and revisit theorem 3. It is easy to see that it does not only establish links between the approximabilities of min_TSP12 in standard and differential frameworks, but it also establishes limits on its approximability in the two frameworks. Plainly, since approximation of min_TSP12 within $\delta = 1 - \varepsilon$ implies its approximation within $\rho = 2 - (1 - \varepsilon) = 1 + \varepsilon$, $0 \leq \varepsilon \leq 1$, if there exists an ε_0 such that, under a very likely complexity theory hypothesis, min_TSP12 is inapproximable within $\rho_0 \leq 1 + \varepsilon_0$, then it is inapproximable within $\delta_0 \geq 1 - \varepsilon_0$. In other words, the hardness thresholds for standard and differential frameworks are identical.

Theorem 4. If under a complexity theory hypothesis min_TSP12 is inapproximable within $1 + \varepsilon_0$, then, under the same hypothesis, min_TSP12 is differentially inapproximable within $1 - \varepsilon_0$.

Recall the negative result of [4]: $\forall \varepsilon > 0$, no PTAA can guarantee standard approximation ratio less than, or equal to, $3477/3476 - \varepsilon$ unless $P=NP$. Using theorem 4, $\forall \varepsilon > 0$, it is NP-hard to approximate min_TSP12 with differential ratio better than $3475/3476 + \varepsilon$. Since min_TSP12 is a special case of general min_TSP, the following corollary holds concluding the section.

Corollary 4. min_TSP cannot be approximated within differential ratio greater than, or equal to, $3475/3476 + \varepsilon$, for every positive ε, unless $P=NP$.

Finally, let us note that the inapproximability result of [11] for dense graphs holds also in the differential approximation framework with the same hardness threshold.
6 Differential approximation of maximum traveling salesman

We have also mentioned that in the opposite of min-TSP, max-TSP (certainly less popular than its cousin), although it is APX-hard ([20, 18]), can be solved by a PTAA achieving standard approximation ratio $\rho = 5/7$ (this ratio is somewhat worst – 38/63 – when the input-graph is directed).

The purpose of this section is to show that, in the differential approximation framework, the two cousins are equi-approximable establishing so a kind of natural symmetry between the two problems at hand.

Theorem 5. max-TSP is equi-approximable with min-TSP; consequently it is in D-APX.

Proof. Observe first that, given a graph K_n, there exists a very interesting symmetry between min- and max-TSP with respect to worst-case and best objective values:

\[
\begin{cases}
\beta_{\min} (K_n) = \omega_{\max} (K_n) \\
\beta_{\max} (K_n) = \omega_{\min} (K_n)
\end{cases}
\]

Expression (18) confirms what we said in the introduction of the paper that the worst value of a problem can be as hard to compute as the optimal one.

Given a complete graph K_n, let us denote by \bar{K}_n the complete graph on n vertices when one replaces distance $d(i,j)$ by $\bar{d}(i,j) = M - d(i,j)$, $i,j = 1, \ldots, n$, for $M = \max_n, n \in \{d(i,j)\} + \min_n, n \in \{d(i,j)\}$. It is easy to see that $\bar{K}_n = K_n$. Moreover, any TSP-feasible solution for K_n is TSP-feasible for \bar{K}_n.

Given a Hamiltonian cycle T, we use notation T_{\min} (resp., T_{\max}) in order to indicate that we deal with a solution of min-TSP (resp., max-TSP). We then have

\[
\begin{align*}
|T_{\min} (K_n)| &= mn - |T_{\max} (\bar{K}_n)| \\
|T_{\max} (K_n)| &= mn - |T_{\min} (\bar{K}_n)|
\end{align*}
\]

and, more particularly,

\[
\begin{align*}
\omega_{\min} (K_n) &= mn - \beta_{\min} (\bar{K}_n) = mn - \omega_{\max} (\bar{K}_n) \\
\omega_{\min} (K_n) &= mn - \beta_{\max} (\bar{K}_n) = mn - \omega_{\min} (\bar{K}_n) \\
\lambda_{\min} (K_n) &= mn - \lambda_{\max} (\bar{K}_n)
\end{align*}
\]
An improvement of the standard ratio for the maximum traveling salesman with distances 1 and 2

Application of lemma 3 in the case of \(\text{max}_t \text{TSP} \) with \(t = (b - a)/a \) gets
\[
\rho = c_{k-a}(\delta) = \frac{b-a}{b} \delta + \frac{a}{b}
\]
and for \(\delta = \frac{3}{4} \) we have
\[
\rho = c_{k-a}(\delta) = \frac{3}{4} + \frac{1}{4} a
\]
(22)

The above ratio is always bounded below by \(3/4 \). Here we see another impact of the asymmetry between minimization and maximization versions of TSP in the standard approximation framework. Recall that, as we have seen in section 5.1, the standard approximation ratio for \(\text{min}_t \text{TSP} \) tends to \(\infty \) with \(b \) and this obviously holds for every PTAA.

Set now \(a = 1 \) and \(b = 2 \) and revisit expression (22). Then, the following theorem immediately holds.

Theorem 7. \(\text{max}_t \text{TSP} \) is polynomially approximable within \(\rho_{\text{max}} \geq 7/8 \).

Such an improved ratio \((7/8 > 5/7) \) for \(\text{max}_t \text{TSP} \) seems that it cannot be immediately achieved by the interesting work of [20].

Consider now the following algorithm for \(\text{max}_t \text{TSP} \).

BEGIN /MTSPALG/

construct \(K_n \);

call the algorithm of [18] to compute a tour \(T_{\text{min}}(K_n) \);

OUTPUT \(T_{\text{max}}(K_n) \leftarrow T_{\text{min}}(K_n) \);

END.

Recall that the algorithm called in the first line of the algorithm just above guarantees \(\rho_{\text{min}} \leq 7/6 \). Then, using expressions (20), (21) and some easy algebra, one gets \(\rho_{\text{MTSPALG}}(K_n) \geq 2/3 \).

Towards stronger differential-inapproximability results for the traveling salesman

Recall that an NP-complete problem \(\Pi \) is called simple ([19]) if its restriction \(\Pi_k \) to instances verifying, for every fixed constant \(k \in \mathbb{N} \), \(|\beta(I)| \leq k \) can be solved in polynomial time. Analogously, we will call \(\Pi \) \(D \)-simple if its restriction \(\Pi_k \) to instances verifying, for every fixed constant \(k \in \mathbb{N} \), \(|\omega(I) - \beta(I)| \leq k \) is polynomial. Then the following proposition holds.

Proposition 5. If \(\Pi \) is not \(D \)-simple, then there exists \(k_0 \in \mathbb{N} \) such that \(\delta(\Pi) < k_0/(k_0 + 1) \).

Proof. Suppose \(\Pi \) not \(D \)-simple and \(\delta(\Pi) \geq k/(k + 1) \), \(\forall k \in \mathbb{N} \). Then, \(\forall I \in \mathcal{I} \),
\[
\omega(I) - \lambda(I) \geq \omega(I) - \beta(I) - \frac{\omega(I) - \beta(I)}{k + 1}.
\]
(23)

Consider now an instance \(I' \in \mathcal{I} \) such that \(\omega(I') - \beta(I') \leq k \). Then, since objective function's values are integer (item 3 of definition 1), expression (23) gives \(\omega(I') - \lambda(I') = \omega(I') - \beta(I') \). Consequently, it suffices to set \(k_0 = \min \{ k : \Pi_k \text{ non polynomial} \} \) in order to complete the proof.

In other words, problems which are not \(D \)-simple do not admit differential PTAS (this is the differential-equivalent of the result of [19] for the standard approximation). The proposition above allows achievement of stronger hardness thresholds provided that \(k_0 \) is a fixed constant. We conjecture that TSP is not \(D \)-simple and this for a small \(k_0 \). If this was true, the hardness threshold of corollary 4 could be meaningfully improved.
References

