VALUED OUTRANKING RELATIONS IN ELECTRE
PROVIDING MANAGEABLE
DISAGGREGATION PROCEDURES

CAHIER N° 189
janvier 2002

Vincent MOUSSEAU
Luis DIAS

received: June 2001.

1 DIMACS, Rutgers University, CoRE Building, 96 Frelinghuysen Road Piscataway NJ 08854-8018, USA (mousseau@dimacs.rutgers.edu), and LAMSADL, Université Paris-Dauphine, Place du Maréchal De Lattre de Tassigny, 75775 Paris Cedex 16, France (mousseau@lamsade.dauphine.fr).

2 Faculty of Economics – University of Coimbra, Av. Dias da Silva, 165, 3004-512 Coimbra, Portugal, and INESC-Coimbra, R. Antero de Quental 199, Coimbra, Portugal (ldias@pombo.inescc.pt).
Contents

Table of Contents ii
Résumé iii
Abstract iv

1 The valued outranking relation in Electre III 2
1.1 Outranking relations for a single criterion 2
1.2 Concordance relation 2
1.3 Discordance relation for a single criterion 3
1.4 Overall non-discordance relation 3
1.5 Valued outranking relation 4
1.6 Discussion on the Electre III valued outranking relation 4
  1.6.1 Implementation of the non-discordance principle 4
  1.6.2 Difficulties with integrating $S(a, b)$ in inference programs 4

2 New Electre-like valued outranking relations 5
2.1 Definitions 5
  2.1.1 Partial discordance indices $d'_j(a, b)$ 5
  2.1.2 Overall non-discordance relation $ND'(a, b)$ 6
  2.1.3 Overall non-discordance relation $ND''(a, b)$ 7
2.2 Comparative analysis 7

3 Benefit of the revised index with respect to parameter inference programs 9
3.1 Inferring a valued outranking relation from crisp outranking statements 9
  3.1.1 Global inference program 9
  3.1.2 Inferring the weights $(w_j, j \in F)$ and cutting level ($\lambda$) only 11
3.2 Inferring Electre tri parameters from assignment examples 12
  3.2.1 Brief reminder on Electre tri 12
  3.2.2 Inference programs 13
3.3 Miettinen & Salminen Electre Like method [13] 14

Conclusion 14

References 16
Résumé

Dans les méthodes ELECTRE, construire une relation de surclassement \( S \) revient à valider ou invalider, pour chaque paire d'alternatives \((a, b) \in A\), l'assertion \( aSb \). Une telle comparaison s'appuie sur les vecteurs d'évaluation de \( a \) et \( b \), ainsi que sur une information additionnelle concernant les préférences du/des décideur(s) (DM(s)); elle a recours à deux conditions: la concordance et la non-discordance.
Abstract

In ELECTRE methods, the construction of an outranking relation $S$ amounts at validating or invalidating, for any pair of alternatives $(a, b) \in A$, an assertion $aSb$. This comparison is grounded on the evaluation vectors of both alternatives, and on additional information concerning the DM’s preferences, accounting for two conditions: concordance and non-discordance.

In decision processes using these methods, the analyst should interact with DM(s) in order to elicit values for preferential parameters. This can be done either directly or through a disaggregation procedure that infers the parameters values from holistic judgements provided by the DM(s). Inference is usually performed through an optimization program that accounts for the aggregation model and minimizes an “error function”. Although disaggregation approaches have been largely used in additive models, only few advances have been made towards a disaggregation approach for ELECTRE type methods. This probably reflects the “optimization unfriendly” character of the most recent ELECTRE methods.

In this paper we are concerned with a slight adaptation of the valued outranking relation used in the ELECTRE III and ELECTRE TRI that preserves the original ideas and is more optimization-friendly for parameter inference programs. Such modification is shown to preserve the original discordance concept. We show that the modified outranking relation makes it easier to solve inference programs.

Keywords: Multiple Criteria Analysis, Valued Outranking Relations, Veto effect, Parameter Inference Procedures, ELECTRE
Introduction

Let us consider a decision situation involving a finite set of alternatives \( A = \{a_1, a_2, \ldots, a_i\} \) evaluated on \( n \) criteria \( g_1, g_2, \ldots, g_n \), \( (F = \{1, 2, \ldots, n\}) \) denotes the set of criteria indices). In the field of Multiple Criteria Decision Aiding (MCDA), a class of methods ground the recommendations to the Decision Maker(s) (DM(s)) on the construction of one (or several) binary relation(s) representing the preference among pairs of alternatives (see [22]) rather than on the construction of a synthesizing utility function (see [10]). These methods are usually referred as outranking methods in the MCDA literature and belong to the so-called European school of MCDA (see [24]).

The construction of an outranking relation \( S \) amounts at validating or invalidating, for any pair of alternatives \( (a, b) \in A^2 \), an assertion \( aSb \), whose meaning is “\( a \) is at least as good as \( b \)” or synonymously “\( a \) is not worse than \( b \)”.

This comparison is grounded on the evaluation vectors of both alternatives \( a \) and \( b \), i.e., \( (g_1(a), g_2(a), \ldots, g_n(a)) \) and \( (g_1(b), g_2(b), \ldots, g_n(b)) \), and on additional information concerning the DM’s preferences. To validate a statement \( aSb \), two basic conditions should be verified: concordance and non-discordance (or non-veto).

A criterion \( g_k \) is said to be concordant with the assertion \( aSb \) if \( a \) is at least as good as \( b \) with respect to criterion \( g_k \). The concordance condition is satisfied for the assertion \( aSb \) if the subset of criteria concordant with \( aSb \) is “sufficiently” large. A criterion \( g_k \) is said to oppose a veto to the assertion \( aSb \) if the difference of evaluation \( g_k(b) - g_k(a) \) is incompatible with the assertion \( aSb \), whatever the evaluation on the other criteria. The non-discordance condition is fulfilled iff no criterion opposes a veto to the assertion \( aSb \).

Several outranking methods using these concepts of concordance and non-discordance (see [19]) have been proposed in the literature (see [2], [22], [25], [18], [12], [17]) and put these concepts into a concrete form in different ways.

In a decision process using these methods, the analyst usually interacts with the DM(s) in order to elicit values for preference-related parameters. This can be done either directly or through a disaggregation procedure that infers the parameters values from holistic preferences provided by the DM(s) (see [9]). Inference is usually performed through an optimization program that accounts for the aggregation model and minimizes an “error function”. This disaggregation approach has been largely used in additive models (e.g. see [8]). However, only few advances have been made towards a disaggregation approach for outranking methods (see [13], [15], [11]). A possible reason for this is that the outranking methods, namely the well-known Electre methods [23], originated from real-world applications and are rather “optimization unfriendly”.

Various alternative implementations of the concordance/non-discordance ideas have been proposed ([19] define a wide class of operators, among which, \( \min(C(a, b), 1 - d_j(a, b)) \)). In this paper we are concerned with some adaptations of the valued outranking relation used in Electre III (see [21]) and Electre Tri (see [26], [23]) that preserves the original ideas and is

\[ ^1 \text{We will assume without loss of generality that preferences are increasing with the value on } g_j, \text{ i.e., the greater } g_j(a) \text{ the better } a. \]
more optimization-friendly for parameter inference programs. More specifically, the modification proposed concerns the implementation of the non-discordance concept. The aim of this modification is to reduce the computational complexity of the mathematical program to be solved so as to infer the parameters values from holistic preferences. The modifications are also useful for robustness analysis [6] and other approaches [13]. The paper is organized as follows. The first section will describe how the Electre III and Electre Tri methods define the outranking relation $S$ emphasizing the nature of the difficulties for disaggregation procedures. Modifications of Electre III’s outranking relation in the way it accounts for veto phenomena are proposed in section 2. Such modifications are shown to preserve the original discordance concept. Section 3 shows that the modified outranking relations make it easier to solve inference programs, namely for the Electre Tri method.

1 The valued outranking relation in Electre III

1.1 Outranking relations for a single criterion

Electre III builds a valued outranking relation $S_j$ restricted to a single criterion for each criterion $g_j$. $S_j(a, b)$ is defined by (1) on the basis of $g_j(a)$, $g_j(b)$ and two thresholds functions: indifference $q_j(g_j)$ and preference $p_j(g_j)$ ($0 \leq q_j(g_j) < p_j(g_j)$). $S_j(a, b)$ represents the degree to which alternative $a$ outranks (is at least as good as) $b$ (see Figure 1).

$$S_j(a, b) = \frac{p_j(g_j(a)) - \min\{q_j(b) - q_j(a), p_j(q_j(a))\}}{p_j(g_j(a)) - \min\{g_j(b) - g_j(a), q_j(g_j(a))\}}$$

(1)

![Figure 1: Partial valued outranking relation](image)

1.2 Concordance relation

The valued concordance relation $C(a, b)$ is grounded on the relations $S_j$ ($j = 1, 2, ..., n$) and represents the level of majority among the criteria in favor of the assertion “$a$ is at least as good as $b$”. When computing this majority level, each criterion $g_j$ has a weight $w_j \geq 0$ representing its voting power. Without any loss of generality, we will consider $\sum_{j=1}^{n} w_j = 1$. Therefore, $C(a, b)$ can be written as follows:

$\text{We will consider } q_j(g_j) < p_j(g_j), \text{ although Electre also consider the case } q_j(g_j) = p_j(g_j)$
\[ C(a, b) = \frac{1}{\sum_{j=1}^{n} w_j} \sum_{j=1}^{n} w_j S_j(a, b) = \sum_{j=1}^{n} w_j S_j(a, b) \]  

(2)

1.3 Discordance relation for a single criterion

Electre III builds a valued discordance relation \( d_j \) restricted to a single criterion for each criterion \( g_j \). \( d_j(a, b) \) is defined by (3) on the basis of \( g_j(a) \), \( g_j(b) \), a veto threshold function \( v_j(g_j) \) and the preference threshold function \( p_j(g_j) \) \( (p_j(g_j) > v_j(g_j)) \) (see Figure 2).

\[ d_j(a, b) = 1 - \frac{v_j(g_j(a)) - \min\{g_j(b) - g_j(a), v_j(g_j(a))\}}{v_j(g_j(a)) - \min\{g_j(b) - g_j(a), p_j(g_j(a))\}} \]  

(3)

![Figure 2: Partial valued outranking relation](image)

1.4 Overall non-discordance relation

The valued discordance relation \( ND(a, b) \) is grounded on \( C(a, b) \) and on the relations \( d_j, j = 1, 2, \ldots, n \), it represents the degree of hesitation about the conclusion \( a \succ b \) due to the assertion \( a \succ b \) that \( a \) and \( b \) do not collectively oppose a veto to the assertion \( a \succ b \). A classical way of defining \( ND(a, b) \) is given in (4). \( ND(a, b) = 0 \) corresponds to a situation where the minority criteria are totally opposed to \( a \succ b \) whereas \( ND(a, b) = 1 \) means that the non-consequence opposes \( a \succ b \) to \( S \sim \).

\[ ND(a, b) = \prod_{j \in F} \frac{1 - d_j(a, b)}{1 - C(a, b)} \text{ where } F = \{ j \in F / d_j(a, b) > C(a, b) \} \]  

(4)

We give hereafter in (5)-(7) an equivalent formula to define \( ND(a, b) \). Such definition will be helpful in order to compare \( S(a, b) \) with the new outranking relation \( S'(a, b) \) we define in section 2. Let us define \( ND_j(a, b), j \in F, a, b \in A \) as

\[ ND_j(a, b) = \begin{cases} 1 & \text{if } d_j(a, b) \leq C(a, b) \\ \frac{1 - d_j(a, b)}{1 - C(a, b)} & \text{if } d_j(a, b) > C(a, b) \end{cases} \]  

(5)

\[ ^3 \text{We will consider } p_j(g_j) < v_j(g_j), \text{ although Electre also consider the case } p_j(g_j) = v_j(g_j) \]
Definition (5) is equivalent\(^4\) to:

\[
ND_j(a, b) = \min \left\{ 1, \frac{1 - d_j(a, b)}{1 - C(a, b)} \right\}
\]  
(6)

We can then formulate \(ND(a, b)\) as in (7) (equivalent to (4)) in which the product considers each criterion in \(F\).

\[
ND(a, b) = \prod_{j \in F} ND_j(a, b)
\]  
(7)

### 1.5 Valued outranking relation

Electre III combines the concordance and non-discordance relations in order to define the outranking relation \(S\) as shown in (8)

\[
S(a, b) = C(a, b) \cdot ND(a, b)
\]  
(8)

From the valued outranking relation \(S(a, b)\), it is possible to define a family of nested crisp outranking relation \(S_\lambda\); these crisp relations correspond to \(\lambda\)-cuts of \(S(a, b)\), where the cutting level \(\lambda \in [0.5, 1]\) represents the minimum value for \(S(a, b)\) so that \(aS_\lambda b\) is true.

### 1.6 Discussion on the Electre III valued outranking relation

#### 1.6.1 Implementation of the non-discordance principle

Let us analyze the way the non-discordance condition is implemented through \(ND(a, b)\). If \(g_j(b) - g_j(a)\) exceeds \(v_j(g_j(a))\) for at least one criterion then \(aSb\) is invalidated, i.e., \(\exists j \in F : d_j(a, b) = 1 \Rightarrow S(a, b) = 0\). Furthermore, the partial discordance indices \(d_j(a, b)\) are defined in such a way that veto effects (i.e., situations in which \(d_j(a, b) > 0\)) can occur even when \(g_j(b) - g_j(a) < v_j(g_j(a))\). However, so as to avoid to account for low values of \(d_j(a, b)\), the overall non-discordance relation defined in (4) considers the \(d_j(a, b)\) only for criteria such that \(d_j(a, b) > C(a, b)\).

Another specific feature of \(ND(a, b)\) lies in the fact that its value accounts both for the values of \(d_j(a, b)\) and \(C(a, b)\): the way \(ND(a, b)\) accounts for \(d_j(a, b)\) is amplified when \(C(a, b)\) is low. The reason for this is that a veto situation should be accentuated when the concordance relation is not firmly established.

#### 1.6.2 Difficulties with integrating \(S(a, b)\) in inference programs

In order to elicit values for preference-related parameters (i.e., \(w_j, v_j(g_j), p_j(g_j), g_j(a)\), and limits of categories in Electre Tri) it is possible to proceed using a disaggregation procedure that infers the parameters values from holistic preferences provided by the DM(s). Hence, it is necessary to formalize \(S'_{\lambda}(b, a)\) within an optimization program that minimizes an "error

\(^4\)when \(d_j(a, b) > C(a, b)\), then it holds \(\frac{1-d_j(a, b)}{1-C(a, b)} < 1\), thus \(ND_j(a, b) = \frac{1-d_j(a, b)}{1-C(a, b)}\); when \(d_j(a, b) \leq C(a, b)\), then it holds \(\frac{1-d_j(a, b)}{1-C(a, b)} \geq 1\), thus \(ND_j(a, b) = 1\). Let us remark that we can state \(C(a, b) < 1\), as the case \(C(a, b) = 1\) corresponds to a situation where no discordant criterion exists.
function". However, $S(a, b)$ is rather "optimization unfriendly". Difficulties arise mainly from the way the non-discordance condition is implemented, i.e., the way $ND(a, b)$ is defined.

More precisely, two features of the non-discordance relation are concerned. First, the subset of criteria $F$ (see (4)) is difficult to integrate into an optimization program. Second, the fact that $C(a, b)$ intervenes in the definition of $ND(a, b)$ implies that the optimization program will necessarily be non-linear, even when all the parameters are fixed except the weights.

Previous research [4] studying $S(a, b)$ under imprecise information on the criteria weights and veto thresholds has shown that this continuous, non-differentiable, non-linear function is quasi-concave in the domain where it is strictly positive, when $a$ and $b$ are fixed. One consequence of this result is that a constraint like $S(a, b) < \lambda$ does not define a convex set.

2 New Electre-like valued outranking relations

The definition of these outranking relations originated from previous unpublished work that has been presented in [14]. The modified outranking relations $S'(a, b)$ and $S''(a, b)$ are designed to provide an easier way for $S'(a, b)$ and $S''(a, b)$ to be integrated in inference optimization programs. Hence, the modifications proposed aim at:

1. defining $S'(a, b)$ (and $S''(a, b)$) as linear functions of the weights $w_j$ when the performances $(g_j(a)$ and $g_j(b))$ and thresholds $(q_j, p_j)$ are fixed,

2. making $S'$ and $S''$ as "close" as possible to $S$ both in terms of the results and in terms of the underlying philosophy,

More precisely, $S'(a, b)$ and $S''(a, b)$ will differ from $S(a, b)$ only by its implementation of the discordance concept: new non-discordance relations are defined $ND'(a, b)$ and $ND''(a, b)$ (the outranking relations restricted to a single criterion $S_j(a, b)$ and the overall concordance relation $C(a, b)$, remain identical), $\forall w_j \in \text{weights} \Rightarrow \forall w_j \in \text{weights}, ND'(a, b) = \cap \{u_j(b) = \cap \{u_j(a'), b\} \cap \cap \{u_j(a), b\} \cap \cap \{a_j(a), b\}, a_j(b) \in \text{Sat}, ND''(a, b), a_j(b) \in \text{Sat}\}$. Moreover, it should be noted that the way $S'$ ($S''$, respectively) is defined imply $S = S'$ ($S = S''$, respectively) when veto phenomenon are either totally effective or totally ineffective (i.e., $\forall a, b$ such that $g_j(b) - g_j(a) \notin [p_j, v_j], \forall j$)

2.1 Definitions

2.1.1 Partial discordance indices $d_j'(a, b)$

$d_j'(a, b)$ is defined by (9) on the basis of $g_j(a)$, $g_j(b)$, a veto threshold function $v_j(g_j)$ and an additional threshold function $u_j(g_j)$ (such that $p_j(g_j) \leq u_j(g_j) < v_j(g_j)$). $u_j(g_j(a))$ represents the difference of evaluation $g_j(b) - g_j(a)$ above which the discordance condition starts to weaken concordance $C(a, b)$ in the definition of $S(a, b)$. Hence, $d_j'(a, b)$ represents the degree to which criterion $g_j$ opposes a veto to the assertion $aSb$ (see Figure 3). The new threshold $u_j(g_j)$ can be considered either:

---

5 We consider $u_j(g_j) < v_j(g_j))$ although $u_j(g_j) = v_j(g_j))$ can also be considered as an extreme case in which discordance is effective only when the veto threshold is exceeded.
as an additional preferential parameter to be elicited either directly through an interaction with the DM, or indirectly using a disaggregation procedure, or

as a fixed technical parameter (rather than a preference-related one) that defines the extent to which differences of evaluation \( g_j(b) - g_j(a) < v_j(g_j(a)) \) should (or should not) weaken the concordance \( C(a, b) \) in the definition of \( S(a, b) \) (a reasonable value for \( u_j \) depending on \( p_j \) and \( v_j \) is discussed in section 2.2).

\[
d_j'(a, b) = 1 - \frac{\frac{g_j(b) - \min\{g_j(b), v_j(g_j(a))\}}{v_j(g_j(a))}}{\min\{g_j(b) - g_j(a), v_j(g_j(a))\}}
\]  (9)

Figure 3: Partial discordance relation \( d_j'(a, b) \)

2.1.2 Overall non-discordance relation \( ND'(a, b) \)

The valued non-discordance relation \( ND'(a, b) \) is grounded on the relations \( d_j'(a, b) \), \( j = 1, 2, ..., n \). It is defined hereafter in (10). It should be noted that criteria that intervene in the product are not restricted to those for which \( d_j'(a, b) > C(a, b) \), i.e., small values of \( d_j'(a, b) \) will impact \( ND'(a, b) \). Moreover, the concordance relation \( C(a, b) \) does not intervene in the non-discordance implementation.

\[
ND'(a, b) = \prod_{j \in F} 1 - d_j'(a, b)
\]  (10)

This valued non-discordance relation \( ND'(a, b) \) can be defined equivalently as formulated in (11)-(12), where \( \alpha_j \in [0, 1], j \in F \) is a parameter that should be defined such that \( u_j = p_j + \alpha_j(v_j - p_j) \). The values for \( \alpha_j \) can be either equal for each \( j \in F \), or distinct if the DM(s) has specific arguments to account for “weak veto situations” differently among criteria.

\[
ND'(a, b) = \prod_{j \in F} ND_j'(a, b)
\]  (11)

\[
ND_j'(a, b) = \min \left\{ 1, \frac{1 - d_j(a, b)}{1 - \alpha_j} \right\}
\]  (12)
2.1.3 Overall non-discordance relation \( ND''(a, b) \)

The valued non-discordance relation \( ND''(a, b) \) is grounded on the relations \( d_j'(a, b) \), \( j = 1, 2, ..., n \) (9). It is defined hereafter in (13). It should be noted that criteria that intervene in the Min operator are not restricted to those for which \( d_j'(a, b) > C(a, b) \). Moreover, the concordance relation \( C(a, b) \) does not intervene in the non-discordance implementation.

\[
ND''(a, b) = \min_{j \in F} (1 - d_j'(a, b))
\]

(13)

2.2 Comparative analysis

As already mentioned, \( S(a, b) \), \( S'(a, b) \) and \( S''(a, b) \) differ only on the way the non-discordance condition is implemented. Let us recall that the modifications intervening in \( S'(a, b) \) and \( S''(a, b) \) aim at providing easier ways to integrate the outranking relation in disaggregation procedures. It should be emphasized that \( S'(a, b) \) is closely related to \( S(a, b) \); the similarity appears when comparing (12) and (6). As \( S'(a, b) \) is very similar to \( S'(a, b) \) \( S''(a, b) \) account for the "strongest" veto, whereas \( S'(a, b) \) can account for several veto effects, as \( S(a, b) \) does), we will mainly focus on the comparison between \( S(a, b) \) and \( S'(a, b) \). Two modifications have been introduced in \( S' \) as compared to \( S \):

- \( ND'(a, b) \) account for \( d_j'(a, b) \) only. Hence a veto situation is not accentuated when the concordance relation is not firmly established as it is the case in \( ND(a, b) \). Although disabling this feature removes some refinements, it also distinguishes more clearly the way the two concepts of concordance and non-discordance are implemented. Moreover, a low value for \( C(a, b) \) still impact directly \( S'(a, b) \), but not indirectly through \( ND'(a, b) \) as it is the case with \( S(a, b) \).

- As in \( S(a, b) \), \( S'(a, b) \) avoids to account for discordance situations that are not firmly established. Such feature is done in \( S(a, b) \) by accounting in \( ND(a, b) \) for discordant criteria such that \( d_j(a, b) > C(a, b) \) only. \( S'(a, b) \) also do not account for "weak veto": although \( ND'(a, b) \) considers all discordant criteria \( ND'(a, b) = \prod_{j \in F} (1 - d_j'(a, b)) \), the way \( d_j'(a, b) \) are defined induce lower values (as compared to \( d_j(a, b) \)) for the same difference \( g_j(b) - g_j(a) \), namely \( d_j'(a, b) = 0, \forall a, b \in A \) such that \( g_j(b) - g_j(a) \leq u_j(g_j(a)) \). Figures 4 and 5\(^6\) show how \( ND(a, b) \) and \( ND'(a, b) \) vary as a function of \( g_j(b) \) when \( g_j \) is the only discordant criterion, i.e., depict \( ND_j(a, b) \) and \( ND_j'(a, b) \).

One important question related to the way \( S(a, b) \) and \( S'(a, b) \) implement discordance is the following: if \( u_j \) is not considered as a preference parameter, how should it be defined in order for \( S(a, b) \) and \( S'(a, b) \) to be "as close as possible"?

Let us remark that, for \( S(a, b) \) and \( S'(a, b) \), it holds:

- discordance operates by weakening \( C(a, b) \),
- for any \( \lambda \)-cut \( S'_\lambda \) (\( S'_\lambda \) respectively) of \( S(a, b) \) (\( S'(a, b) \) respectively), the assertion \( aS_\lambda b \) \( aS'_\lambda b \), respectively) can not hold for any \( (a, b) \) such that \( C(a, b) < 0.5 \).

\(^6\)In Figure 5, \( \varepsilon \) corresponds to \( p_j(g_j(a)) + C(a, b) \cdot (u_j(g_j(a)) - p_j(g_j(a))) \) and hence varies in the interval \([p_j(g_j(a)), u_j(g_j(a))]\) as \( C(a, b) \) varies in \([0, 1] \).
It follows from these two preliminary remarks that it is sufficient so as to compare \( S(a, b) \)
and \( S'(a, b) \) to restrict the analysis to the pairs \((a, b)\) such that \( C(a, b) \geq 0.5 \).

In order for \( S'(a, b) \) to be "close" to \( S(a, b) \), \( ND(a, b) \) should not differ too much from \( ND'(a, b) \), i.e., each \( ND(a, b) \) should be close to its average value. For this purpose, we shall define a non-differential value \( \alpha \) such that \( ND(a, b) = ND'(a, b) \). \( ND(a, b) \) is as small as possible on average, when \( C(a, b) \in [0.4, 1] \) and \( g_j(b) \in (g_j(a)) \cup (g_j(a) + v_j(g_j(a))) \). Figures 6 and 7 represent \( ND_j \) and \( ND_j' \) as functions of \( C(a, b) \) and \( a, b \). In order to do so we should set \( \alpha_j = 0.75 \), i.e., \( a = \alpha_j g_j(b) + 0.75 (g_j(a) - p_j(g_j(b))) \). The value \( \alpha_j = 0.75 \) is obtained by minimizing the following expression: \( \min_{\alpha_j \in [0,1]} \{ C(a, b) \cdot (1 - \alpha_j) \cdot ND_j(a, b) \cdot ND_j'(a, b) \} \).

Alternatively, it is possible to define \( \alpha_j \) as equal to the cutting level \( \alpha \) when the value for \( \alpha \) is fixed and known. This ensures that any event of \( S \) and \( S' \) are identical, but requires to determine the value for \( \alpha \) beforehand.

In order to appreciate the effective deviation between \( S'(a, b) \), \( S''(a, b) \) and \( S'(a, b) \), we have performed an empirical study on several scenarios from real-world case studies reported in the literature ([7] and [26]). More specifically, we observe how much \( S'(a, b) \) and \( S''(a, b) \) deviate from \( S(a, b) \) on real data and analyze to what extent subtracting \( S'(a, b) \) (or \( S''(a, b) \)) from \( S(a, b) \) affects the conclusions of these studies. As a result, we have found that the maximum deviation between \( S(a, b) \) and \( S''(a, b) \), \( a \in A, b \in B \) is equal to 0.1. Although it is possible to design specific
situations in which the assignments using $S'(a, b)$ (or $S''(a, b)$) and $S(a, b)$ are different, it seems that such cases do not occur frequently on real data.

3 Benefit of the revised index with respect to parameter inference programs

Assigning values to the parameters involved in the definition of $S'$ and $S''$ is a difficult task for the DM(s). The disaggregation approach allows to infer preferential parameter values from
relation, but can state crisp statements about this relation for some specific pairs of alternatives \((a, b)\), i.e., either \(aSb\) or \(-aSb\). Our purpose is to define a valued outranking relation and a cutting level that best account for the DM(s) statements.

Let us denote \(S^+ = \{(a, b) \in A^2 \text{ such that the DM(s) stated } aSb\}\) and \(S^- = \{(a, b) \in A^2 \text{ such that the DM(s) stated } -aSb\}\). Then, a combination of parameter values is able to restore the DM(s)’ request iff \(S(a, b) \geq \lambda, \forall (a, b) \in S^+\) and \(S(a, b) < \lambda, \forall (a, b) \in S^-\), which may be written as \(S(a, b) - \lambda \geq 0, \forall (a, b) \in S^+\) and \(\lambda - S(a, b) + \varepsilon \geq 0, \forall (a, b) \in S^-\) (\(\varepsilon\) being a small positive value). The mathematical program given below (14)-(19) maximizes a common slack \(\alpha\) for all these constraints, to obtain a relatively “central” combination of parameter values. Whenever the optimum value of \(\alpha\) is negative, there is no combination of parameter values complying to all the constraints, i.e., the DM(s) provided inconsistent information (a procedure to deal with such inconsistencies is proposed in [3]). Alternative objective functions can be considered (see [1] and [15]).

\[
\begin{align*}
\text{Max: } & \alpha \\
\text{s.t. } & \alpha \leq S(a, b) - \lambda, \ \forall (a, b) \in S^+ \\
& \alpha \leq \lambda - S(a, b) + \varepsilon, \ \forall (a, b) \in S^- \\
& \lambda \in [0.5, 1] \\
& v_j(g_j) \geq p_j(g_j) \geq q_j(g_j) \geq 0, \ \forall j \in F \\
& \sum_{j=1}^{n} w_j = 1; \ w_j \geq 0, \ \forall j \in F.
\end{align*}
\]

Some additional constraints can be added to this program, in order to integrate explicit
statements of the DM(s) concerning the values of some parameters. From (4) and (8), it is obvious that this is a difficult nonlinear program when all the parameters are considered as variables (recall Section 1.6.2). A solution to circumvent this difficulty is to formulate partial inference programs, where only a subset of the parameters are considered as variables, while the remaining ones are fixed. In the context of a decision aiding process where the DM(s) interactively revise the information they provide and observe the results of the mathematical program, partial inference problems allow them to focus their attention on a subset of parameters at a time and to better understand the consequences of their modifications. Indeed, we believe that inference programs should not be considered as a problem to be solved once, but rather as problems to be solved many times in an interactive learning process. Among the partial inference problems, previous research on related problems has focused mainly on inferring the weights and the cutting level (see [16], [6], [13]). This is an important partial inference problem because the weights and the cutting level are the only parameters involving inter-criteria judgements (the remaining parameters do not interrelate the criteria).

3.1.2 Inferring the weights \((w_j, j \in F)\) and cutting level \((\lambda)\) only

If we consider the case where only the weights \((w_j, j \in F)\) and cutting level \((\lambda)\) are variables, (all other parameters being fixed), then the constraints (15) and (16) can be rewritten in as in (20) and (21). These two constraints are obviously nonlinear, since they represent products of functions involving \(C(a, b)\), which in turn involve the \(w_j\) variables (see (2)).

\[
\alpha \leq C(a, b) \cdot \prod_{j \in F} \underset{\text{Min}}{\text{Min}} \left\{1, \frac{1 - d_j(a, b)}{1 - C(a, b)}\right\} - \lambda, \quad \forall (a, b) \in S^+ \quad (20)
\]

\[
\alpha \leq \lambda - C(a, b) \cdot \prod_{j \in F} \underset{\text{Min}}{\text{Min}} \left\{1, \frac{1 - d_j(a, b)}{1 - C(a, b)}\right\} + \varepsilon, \quad \forall (a, b) \in S^- \quad (21)
\]

Let us now consider the same problem when \(S(a, b)\) is substituted by \(S'(a, b)\). In this case the constraints (15) and (16) become (22) and (23). Now, each \(\prod_{j \in F} (1 - d_j(a, b)) = ND'(a, b)\) is a fixed number and the constraints \(\gamma(2a)\) and \(\gamma(2b)\) are hence linear, since \(C(a, b)\) is an affine function of the weights.

\[
\alpha \leq C(a, b) \cdot \prod_{j \in F} (1 - d_j'(a, b)) - \lambda, \quad \forall (a, b) \in S^+ \quad (22)
\]

\[
\alpha \leq \lambda - C(a, b) \cdot \prod_{j \in F} (1 - d_j'(a, b)) + \varepsilon, \quad \forall (a, b) \in S^- \quad (23)
\]

Thus, considering \(S'(a, b)\) instead of \(S(a, b)\), the weights and the cutting level can be inferred by solving a linear program whose variables are \(\alpha, w_1, ..., w_n, \text{ and } \lambda\), where (22) and (23) appear as (25) and (26):
Max $\alpha$
\[\begin{align*}
s.t. \ & \alpha \leq \sum_{j=1}^{n} w_j \cdot S_j(a, b).ND'(a, b) - \lambda, \ \forall (a, b) \in S^+; \\
& \alpha \leq \lambda - \sum_{j=1}^{n} w_j \cdot S_j(a, b).ND'(a, b) + \epsilon, \ \forall (a, b) \in S^-; \\
& \lambda \in [0.5, 1], \\
& \sum_{j=1}^{n} w_j = 1; \ w_j \geq 0, \ \forall j \in F.
\end{align*}\]

If the maximum value of $\alpha$ is positive, then the values of $w_1, \ldots, w_n$, and $\lambda$ at the optimum are able to restore all the statements defining $S^+$ and $S^-$. Otherwise, the inferred values provide suggestions for changing those examples. The DM(s) should ponder whether they want to change the the sets $S^+$ and $S^-$, or to analyse the non-discordance levels. Indeed, some of the differences among the current model and the DM(s)' requests may stem from inadequate non-discordance levels. Considering $S''(a, b)$ instead of $S'(a, b)$ leads to a similar linear program.

### 3.2 Inferring Electre tri parameters from assignment examples

#### 3.2.1 Brief reminder on Electre tri

Electre Tri (see [26], [23]) assigns alternatives to pre-defined ordered categories. The assignment of an alternative $a \in A$ results from comparing it with the profiles defining the limits of the categories. Let $B = \{b_1, b_2, \ldots, b_p\}$ denote the set of profiles defining $p+1$ categories, $b_h$ being the upper limit of category $C_h$ and the lower limit of category $C_{h+1}$, $h = 1, 2, \ldots, p$ (profiles $b_{p+1}$ and $b_0$ correspond to the ideal and anti-ideal alternatives, respectively). Let $K = \{C_1, C_2, \ldots, C_{p+1}\}$ be the set of categories that corresponds to $B$. Electre Tri assigns alternatives to categories following two consecutive steps:

- Construction of a crisp outranking relation $S \subseteq (A \times B) \cup (B \times A)$; the definition of $S$ corresponds to $\lambda$-cut of $S(a, b)$ described in section 1, except that the thresholds $q_j, p_j$ and $v_j$ are values attached to the profiles $(q_j(b_h), p_j(b_h)$ and $v_j(b_h), \forall j \in F, \forall b_h \in B)$, rather than dependent on the alternatives in $A$.

- Exploitation of the crisp relation $S$ in order to assign each alternative to a specific category using a pessimistic or optimistic procedure (in what follows we will restrict our analysis to the pessimistic procedure). The pessimistic procedure is defined as follows:

a) compute $S(a, b_i)$ successively for $i=p, p-1, \ldots, 0$,
b) $b_h$ being the first profile such that $S(a, b_h) \geq \lambda$,
assign $a$ to category $C_{h+1}$ ($a \rightarrow C_{h+1}$).

Hence, the pessimistic procedure of Electre Tri assigns alternative $a$ to category $C_h$ ($b_{h-1}$ and $b_h$ being the lower and upper profiles of $C_h$, respectively) iff $S(a, b_{h-1}) \geq \lambda$ and $S(a, b_h) < \lambda$ ($\lambda \in [0.5, 1]$ is the chosen cutting level).
3.2.2 Inference programs

Suppose the DM has specified a set of assignment examples, i.e., a subset of $A^* \subset A$ such that each $a_k \in A^*$ is associated with $C^M(a_k)$ ($C^m(a_k)$, respectively) the maximum (minimum, respectively) category to which $a$ should be assigned according to his/her holistic preferences. Hence $C^m(a_k)$, $C^M(a_k)$ define, in turn, two possible categories to which $a_k$ can be assigned to. $C^m(a_k) = C^M(a_k) = c_h$, means that $a_k \rightarrow_{DM} C_h$, precisely (we will note $a_k \rightarrow_{DM} C_h$ such statement), while $C^m(a_k) < C^M(a_k)$ corresponds to an imprecise statement ($a_k \rightarrow_{DM} [C^m(a_k), C^M(a_k)]$). Inferring all Electre Tri parameters can be formulated through the following mathematical program (29)-(35), see [15]. Note that all alternatives in $A^*$ are assigned by Electre Tri (using the inferred parameters) consistently with the DM(s)' examples if and only if the optimal value objective function is positive.

Max $\alpha$ \\
$s.t.$ $\alpha \leq S(a_k, b_{C^m(a_k)-1}) - \lambda, \quad \forall a_k \in A^*$, \\
$\alpha \leq \lambda - S(a_k, b_{C^M(a_k)}) + \epsilon, \quad \forall a_k \in A^*$, \\
$\lambda \in [0.5, 1]$, \\
g_j(b_{h+1}) \geq g_j(b_h) + p_j(b_h) + p_j(b_{h+1}), \forall j \in F, \forall h \in B$, \\
v_j(b_h) \geq p_j(b_h) \geq q_j(b_h) \geq 0, \quad \forall j \in F \forall b_h \in B$, \\
$\sum_{j=1}^{n} w_j = 1; \quad w_j \geq 0, \forall j \in F$. 

(29) \hspace{1cm} (30) \hspace{1cm} (31) \hspace{1cm} (32) \hspace{1cm} (33) \hspace{1cm} (34) \hspace{1cm} (35)

If we consider all preference parameters as variables, this mathematical program is nonlinear due to constraints (30) and (32). Indeed, the constraints (30) and (31) are similar to the constraints (15) and (16) in the mathematical program presented in Sec. 3.1.1.

If we consider the case where only the weights ($w_j, j \in F$) and cutting level ($\lambda$) are variables (all other parameters being fixed), then the constraints (30) and (31) will be similar to (20) and (21), hence the mathematical program (29)-(35) remains nonlinear. Previous work ([16], [6]) presented linear programming formulations assuming that there was no discordance, i.e. $S(a, b) = C(a, b)$. One of the motivations for considering $S'(a, b)$ instead of $S(a, b)$ is that it becomes easy to infer the weights and the cutting level even when the veto-related parameters make $S(a, b) < C(a, b)$.

Indeed, when considering $S'(a, b)$, the weights and the cutting level can be inferred by solving a linear program whose variables are $\alpha, w_1, ..., w_m$, and $\lambda$. The linear program for this partial inference problem is equal to (24)-(28) in Sec. 3.1.2, if we define:

$S^+ = \{ (a_k, b_{C^m(a_k)-1}) \in A^* \times B : a_k \rightarrow_{DM} [C^m(a_k), C^M(a_k)] \}$

(36)

$S^- = \{ (a_k, b_{C^M(a_k)}) \in A^* \times B : a_k \rightarrow_{DM} [C^m(a_k), C^M(a_k)] \}$

(37)

Considering $S'(a, b)$ instead of $S'(a, b)$ leads to a similar linear program.

--

The constraint (33) is introduced to ensure the consistency of category definition, see [26]
3.3 Miettinen & Salminen Electre Like method [13]

[13] proposed a method using the Electre III valued outranking relation that aims at "providing the DM(s) descriptive information about the weighting vectors producing a specific alternative as the best", i.e., placed first in a preference ranking. Such procedure requires to solve inference programs. In [13], the preference rankings do not result from the same exploitation procedure as in Electre III (see [21]), but from the use of the "min" procedure (see [20]), i.e., alternatives are ranked based on the minimum outranking degree $S(a, b)$ of each alternative $a, \forall b \in A$. In this approach, checking whether or not an alternative $a \in A$ can be ranked first for at least a weight vector amounts at verifying whether the constraints (38)-(39) define a consistent system. Such analysis is performed with fixed values for all the parameters except the weights $w_j$. Furthermore, the problem is rather difficult because the constraints (38)-(39) are nonlinear, unless the $v_j(g_j)$ are fixed sufficiently large so as no veto phenomenon to occur, i.e., unless discordance is removed from the model.

$$\text{Min}_{a' \in A-(a)} \{S(a, a')\} - \text{Min}_{a' \in A-(a)} \{S(b, a')\} > \varepsilon, \quad \forall b \in A - \{g\}$$

$$\varepsilon > 0, \quad \sum_{j \in F} w_j = 1, \quad w_j \geq 0, \quad \forall j \in F$$

(38) \hspace{1cm} (39)

Different objective functions to optimize subject to (38)-(39) are proposed in [13]. Optimization programs are build in order to:

- determine ranges for $w_j$ such that $a$ is ranked first (Max and Min $w_j$ s.t. (38)-(39)),
- rank $a$ first in the most “robust” way (Max $\varepsilon$ s.t. (38)-(39)),
- rank $a$ first without omitting any criterion (Max Min $w_j$ s.t. (38)-(39)).

If discordance is removed from the model, then these optimization programs can be solved using standard linear programming techniques\(^8\). However, if we replace $S'(a, b)$ by $S''(a, b)$ in the preceding optimization programs, it becomes obvious that the restriction that [13] impose on discordance ($v_j(g_j(a)) > g_j(b) - g_j(a), \forall a, b \in A, \forall j \in F$) is no longer necessary to simplify the problem. In fact, considering $S''(a, b)$, it is possible to solve their optimization programs using linear programming even when veto phenomena occur (the $v_j$ functions being defined).

The same statement can be made when considering $S''(a, b)$ instead of $S'(a, b)$.

Conclusion

This paper presents a slight adaptation of the valued outranking relation used in the ELECTRE III (see [21]) and ELECTRE TRI (see [26], [23]); the modifications introduced concerns the implementation of the non-discordance condition in the outranking relation. The two new outranking relations $S'$ and $S''$ preserves the original idea of qualitative and numerical discordance concept) and are designed to be more optimization-friendly for parameter inference programs.

\(^8\)This requires to add supplementary variables to account for the min operator in (38)
We show that the modified outranking relation makes it easier to solve inference programs. $S'$ and $S''$ are equivalent as regards the complexity of inferring the weights and cutting level, but $S''$ is more friendly in what regards inferring veto thresholds (see [5]).

Acknowledgements: This work has benefited from the grant n°500B4 (ICCTI/Ambassade de France au Portugal). The authors are grateful to Bernard Roy for his comments and remarks on earlier versions of this text.
References


[26] W. Yu. Aide multicritère à la décision dans le cadre de la problématique du tri : concepts,