A conceptual framework for a normative theory of "decision-aid".

Bernard ROY

N°3-1976 février 1976

To be published in Management Science. Special issue on multicriteria decision-making. 1976
A CONCEPTUAL FRAMEWORK FOR
A NORMATIVE THEORY OF "DECISION-AID".

B. ROY
Professeur à l'Université de Paris
Conseiller Scientifique à la SEMA
(France)

Abstract

The intent of this paper is to develop a conceptual framework for a normative theory of "decision-aid". Here the word normative does not apply to the decision-maker, for whom aid is provided, but to the scientist and to his work of analysis and modelling. This framework is appropriate to problems with multiple conflicting objectives. The traditional optimization on a fixed set of alternatives (mutually exclusive actions) is treated as a particular case. More generally, cases dealing with either fixed or evolutive sets of potential actions not necessarily pairwise incompatible are considered.

Amongst others, the concept of a consistent family of criteria together with those of true-criterion, precriterion, semi-criterion, pseudo-criterion are introduced. Reasons for which multicriteria decision-aid may not fit in with the assessment of a unique true-criterion are briefly discussed. Several situations calling for a modelling of global preferences so as to "extract" good actions from a given set, otherwise than by optimizing a value function, are considered.

Lastly, a new interactive procedure called "evolutive target procedure" leading to compromises, in the presence of n conflicting criteria and flexible constraints, is proposed.
Decision-aid refers to the activity of a scientist who tries, by means of more or less formalised models, to help a decision-maker, so as to improve his control (this word having its cybernetical connotation) of the decision-making process. To improve in this context signifies to increase the coherence between the evolution of the process and the different objectives intervening in it. This presumes amongst others things to elicit the objectives, to clarify their antagonisms and to find implementable solutions which exceed them.

In this perspective, modelling has firstly a passive role in helping to comprehend, by mastering the various possible actions and by the reflections it gives to pre-existing preferences, and secondly an active role in the sense that the model contributes to the formation and evolution of the preferences of the different actors on stage so as to make acceptable or uncover possibilities which were previously refuted or not considered.

In this vein I would like to analyse the "hinge" phase of modelling and propose a conceptual framework, useful to the scientist's work. This I intend to do by considering, successively in sections I, II, III, the three stages in modelling shown in table 1.

TABLE 1

THE THREE STAGES IN MODELLING

<table>
<thead>
<tr>
<th>STAGE I</th>
<th>SUBJECT MATTER OF THE DECISION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Formal definition of the set A of POTENTIAL ACTIONS: case globalised, fragmented, fixed, evolutive (cf. table 2)</td>
</tr>
<tr>
<td></td>
<td>- Choice of PROBLEM FORMULATION: "one", "all", "some" (cf. table 4).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE II</th>
<th>ELEMENTARY CONSEQUENCES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Formal description of the cloud of consequences (V(a)): SCALES, `VALUATION on each dimension, THRESHOLDS, .. (cf. tables 5, 6, 7).</td>
</tr>
<tr>
<td></td>
<td>- Choice of a CONSISTENT FAMILY OF CRITERIA, (g_1, ..., g) adapted to the discriminating power and to measurability or gradability on each scale (cf. table 8 and question Q1).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>STAGE III</th>
<th>GLOBAL PREFERENCE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Formal definition of BEST, WORST, GOOD and BAD: comparability, independence properties, trade-offs, sub-aggregation, (cf. table 9 and question Q2).</td>
</tr>
<tr>
<td></td>
<td>- Choice of an OPERATIONAL ATTITUDE adapted to the degrees of complexity, fuzziness and uncertainty of the "aggregation logic" and decision process (cf. table 10).</td>
</tr>
</tbody>
</table>

The retroaction shown on the left side of this table points out that, having reached stage III, the scientist is frequently led to modify work previously accomplished in stage I and stage II, either because his first deductions incite him to do so or because he places himself at a different level of insertion into the decision process.
I. 1 - Potential actions

Before we can even begin to talk about an optimum we must first make reference to:

- alternatives conceived as mutually exclusive, each one representing a global action a including in a extensive way every aspect of the decision.
- a set A embracing all imaginable global actions but only those which are implementable (usually called feasible, or non-negative).

However, there may be problems for which it is futile or simply maladroit to use such a set as a starting basis for decision-aid. Firstly, the frontier between the acceptable and the unacceptable is often fuzzy. Sometimes this depends on the nature of the boundaries: a factory's maximum production capacity is affected by recourse to overtime or sub-contractors, the possibility of loading certain machines beyond their normal capacity or increasing their potential by annexing other equipment. In other cases (job planning with delivery date, portfolio composition, diet for an overweight person, ...) it is the diagnosis of acceptability in its globality which will create the problems, due to the complex arrangement of the diverse fragments constituting the envisaged actions. Secondly, insufficient performance brought to light by a preliminary calculation, the clash of ideas between the principal actors in the decision-making process, or simply the impossibility of imagining, a priori, all possible actions, are all circumstances which lead to the evolution of set A (cf. table 2).

Moreover, let us point out that analysis of the subject matter of the decision often brings out the artificial and uselessly complicated character of a conception which necessitates definition of mutually exclusive actions. Many false problems are born from this conception. Let us consider, for example, the decision regularly taken in a bank in relation to requests for credit or in a private firm in relation to the remuneration of personnel, by a panel in connection with a diploma, by an individual with regard to his meal in the factory cafeteria, ...
The important factor, in connection with the set \(A \), is that the potential actions (1) within the context of a given stage in decision-aid are clearly identified. This by no means signifies that the actions are mutually exclusive or independent, but that they may be considered separately from one another, without becoming devoid of meaning. This does not mean either that they are all immediately acceptable, there is nothing binding and some may be considered unacceptable in a subsequent stage.

Depending on the problem studied, \(A \) may be defined (modelled):

- by a list which very precisely identifies each potential action (e.g. 5, 11, 17, 23 in table 3);
- by a "generator" enabling systematic generation (at least in theory) of all potential actions (e.g. 3, 4, 19, 20 in table 3);
- as the solution set of a series of conditions or constraints, expressed mathematically, on the characteristics of the potential actions (e.g. 4, 12, 13, 15 in table 3).

1.2 Problem formulation

In conjunction with this option as to the conception of the set \(A \), the scientist must take another, just as fundamental. It concerns the choice of the type of problem formulation, account being taken of the level of intervention of the model and its present stage of development.

It is often thought that the problem formulation \(\alpha \) in table 4 is the only natural one. The unique quality of the final decision in the case of \(A \) globalised has come to reinforce this belief. By experience we know how difficult it is for a scientist to convince the principal actors in the decision-making process that the optimal solution in keeping with his model is the one which should be adopted. Moreover, this particular problem formulation \(\alpha \) ceases to be self-evident when \(A \) is evolutive and/or fragmented. The scientist may then consider either problem formulations \(\beta \) or \(\gamma \). Let us give a brief presentation of each one.

(1) I feel that the terms "action" and "potential" are better respectively, than "alternative" and "feasible or admissible" which seemed to be too strongly related to case \(A \) globalised for the former and to case \(A \) fixed, for the latter.

TABLE 2

FOUR CASES FOR THE MODELLING OF THE SET \(A \) OF POTENTIAL ACTIONS.

<table>
<thead>
<tr>
<th>The elements of (A) are mutually exclusive</th>
</tr>
</thead>
<tbody>
<tr>
<td>YES</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>YES</td>
</tr>
<tr>
<td>case globalised and fixed</td>
</tr>
<tr>
<td>case fragmented and fixed</td>
</tr>
<tr>
<td>NO</td>
</tr>
<tr>
<td>case globalised and evolutive (or flexible)</td>
</tr>
<tr>
<td>case fragmented and evolutive (or flexible)</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>-----</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>1, 2</td>
</tr>
<tr>
<td>3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>1, 2</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>3, 3</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>2, 3</td>
</tr>
</tbody>
</table>

Example of a chosen (cf. table 4) natural according to anterior options (cf. table 10)
TABLE 4

TYPE OF PROBLEM FORMULATION ON A.

<table>
<thead>
<tr>
<th>the objective of problem formulation is to select</th>
<th>(\alpha)</th>
<th>(\beta)</th>
<th>(\gamma)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{"one"}) one and only one action considered the "best"</td>
<td>(\text{"all"}) all those actions which seem "good" amongst those studied</td>
<td>(\text{"some"}) several actions amongst the "best" studied</td>
<td></td>
</tr>
</tbody>
</table>

When the actions of \(A \) imply an examination with, for example, a view to entry into an educational establishment, the awarding of a diploma, the allotment of credit, a grant or a subsidy, the acceptance of a minor or exploratory research and development project, etc..., the scientist may envisage the problem in the following terms: accept all the "sufficiently" good actions, reject all those "far too" bad and ask for a complementary examination of the others. He is then led for instance to use a procedure using a trichotomy of the set \(A \):

\[
A = A_1 \cup A_2 \cup A_3 \quad A_h \cap A_k = \emptyset \quad \text{for } h \neq k
\]

an action \(a \in A \) being:

- in \(A_1 \) if it calls for acceptance without the intervention of the decision-maker,
- in \(A_3 \) if it calls for rejection without the intervention of the decision-maker,
- in \(A_2 \) if it calls for a complementary examination (requesting supplementary information, discussion, decision-maker's judgement, ...).

There are many cases in which the decision-maker, without being constrained to accept only a single action of \(A \), knows a priori that he must give up the idea of accepting all of the good ones. This may be the case when the actions concern, for example, important research and development operations for a firm, regional development projects, equipment conceived to carry out certain functions, candidates destined to fill a series of similar posts, press supports before starting an advertising campaign, stocks or bonds entering into a portfolio, ... In these examples the idea of competition prevails. The elements of \(A \) can for instance be regrouped into equivalence classes, as small as possible, these classes being ordered so as to define a weak order on \(A \). It is this weak order which will be used to establish the final decision: the demarcation line (acceptance/rejection) may either be a subject for the decision-maker's judgement,
who will judge its level of acceptability (financial, physical, psychological, ...) or else a subject for negotiation, or even a local study.

This double option (cf. tables 2 and 4) leads to $4 \times 3 = 12$ cases, each corresponding to a real situation. A superficial analysis may leave us with the impression that the globalised cases imply the \mathcal{X} type problem formulation. In actual fact, they do not, because decision aid has for objective to present all of the efficient actions (optimal in the Pareto sense) with respect to $n(\geq 2)$ criteria (problem formulation \mathcal{P} - cf. 4 and 16, table 3) or even the actions forming the kernel of an outranking relation (problem formulation \mathcal{Y}, cf. 6 and 18): the fragmented cases do not exclude problem formulation \mathcal{X} since decision-aid can then proceed by successive iterations, each consisting of a selection of a "best fragment" (cf. 7 and 19).

These examples anticipate, to a slight extent, section III but in so doing they illustrate the retroaction from the 3rd to the 1st stage in the modelling: the choice of operational attitude is at the same time cause and consequence of the choice of problem formulation, in truth successive problem formulations adapted to the progressive development of the model.

In my view it is the quality of the insertion in the decision-making process (and not the facility in resolution) which is determinant in the fixing of:

- the nature of the potential actions backing up the reasoning and the structure and nature of the data;
- the problem formulation, guideline for deduction and discussion, widely responsible for the adoption (or total rejection) of the model: problem formulation unacceptable, unrealistic, incomprehensible to the principal actors.

Now, having thus clarified the subject matter of the decision, the scientist has to bear in mind that a decision is very rarely the reflection of preferences of a single person or even of a well-identified group of people. The decision is an important moment in the evolution of a process involving many actors and providing decision-aid means to take part in this process. This implies the identification of the one among those actors who play a determinant role in the achievement of the process for whom or in whose name decision-aid is provided.

This means that decision-aid is very rarely conceivable without the scientist's acceptance (provisionally) to "play the game" for a certain decision-maker. The scientist can do this by treating the global preference modelling problem not only for the decision-maker, but successively, for several of the actors in the decision-making process. In fact, the notions of best, worst, good and bad have, only exceptionally, an absolute sense and it is unrealistic, I believe, to talk about preferences without specifying the actor who expresses them and wants to have them accepted in the decision-making process.

Nevertheless, the analysis of the elementary consequences of the diverse potential actions can generally go ahead independently of the chosen decision-maker. Then the scientist will have a scientific attitude since he will clearly dissociate:

- the formal description of all the elementary consequences that one at least of the actors may wish to be considered; he will be able to try to synthesise them by using a consistent family of criteria which is acceptable and comprehensible to all (this will be the subject of the second section);
- the modelling of global preference taking into account the decision-maker's personality; he will be able to try to do this according to the operational attitude which seems to him to be the most effective in the decision-making process (this will be the subject of the third section).

II. FROM CONSEQUENCES TO THE CONSISTENT FAMILY OF CRITERIA.

Even relative to a clearly identifiable decision-maker (a manager, a selection committee, a community), the consequences of a potential action \(a \), on which this action is supposed to be judged (with a view to eventually comparing it with others) will appear at first sight imprecise, badly differentiated, multiple and confused. For this reason we call this complex reality the cloud of consequences of the action \(a \), and denote it by \(\psi(a) \).

II. 1 - Primary concepts

The scientist must therefore devote himself to analysing and modelling in order to construct an abstract representation of \(\psi(a) \) integrating all the relevant consequences needed for the assessment of global preferences. The elaboration of such a model is generally based on several primary concepts. I have attempted to define these concepts in table 5 so that they underly a coherent methodology which is as general as possible (cf. examples in table 3). Let us illustrate these definitions by an example.

In a problem (manufacturing of windshields, printing of a magazine, ...) involving the choice of priority rules designed to establish sequencing of operations in a workshop and to determine the conditions under which recourse to exceptional means are necessary (overtime, sub-contractors, ...) three elementary consequences can be identified:

a) operating costs (energy, manpower, the fixed assets),
b) customer satisfaction in relation to delivery dates,
c) complexity of management in relation to planned adaptation in order to cope with habitual problems (breakdowns, illness, unforeseen jobs).

With regard to the elementary consequence a) there is a financial aspect and a state indicator to appraise the average annual outlay using a certain priority rule. A single point evaluation will be judged satisfactory even if it is approximate (it is important that it be unbiased).

A delay dimension is convenient to fix the possible states of elementary consequence b). Here the concept of average delay may be judged too rough to satisfactorily compare two priority rules on this single dimension. If the scientist does not wish to lay himself open to prematurely prejudging the way in which this consequence influences global preferences, he need only introduce a non single point state indicator completed by a moduation indicator (cf. table 6). The evaluation of the rule \(a \) on this dimension \(i \) can then be constituted by:

- the set \(\gamma_i(a) \) of possible delays for an order, expressed by the number of working days,
- the distribution \(\delta_i(a) \) indicating the degree of importance of each delay \(e \in \gamma_i(a) \), on the basis of the number of orders (per year) having a delay equal to \(e \) or of a theoretical probability of such a delay for an order.
<table>
<thead>
<tr>
<th>DEFINITIONS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspect or attribute of $\mathfrak{C}(a)$ considered pertinent to the problem and for which the possible states can be evaluated on a dimension by a state indicator.</td>
</tr>
<tr>
<td>Common feature of the set of states associated with an elementary consequence determining a complete order and destined to justify their comparison in relation with preferences.</td>
</tr>
<tr>
<td>Process which is operational and homogeneous from the point of view of comparison used by the scientist to identify, in relation to the dimension i, the state or states, to which the potential action a may lead. Formally we set: $\mathfrak{C}_i(a) \subseteq E_i$ (scale associated with the dimension i).</td>
</tr>
<tr>
<td>Completely ordered set taken as the formal representation of the state set associated with dimension i.</td>
</tr>
<tr>
<td>Element of a scale representing a state relative to the corresponding dimension.</td>
</tr>
<tr>
<td>Order relation translating on E_i the inherent order in the dimension i.</td>
</tr>
<tr>
<td>List of dimensions considered necessary and sufficient (for the problem) to make the description of $\mathfrak{C}(a)$ realistic and complete on the basis of corresponding state indicators, possibly completed by modulation indicators.</td>
</tr>
<tr>
<td>Complementary information about $\mathfrak{C}_i(a)$ when the valuation is not single point on the dimension i. (see table 6).</td>
</tr>
<tr>
<td>$\mathfrak{C}_i(a)$ if $\mathfrak{C}_i(a) \in E_i$ the valuation is then said to be single point</td>
</tr>
<tr>
<td>$[\mathfrak{C}_i(a) \neq \delta_i(a)]$ otherwise the valuation is then said to be non single point.</td>
</tr>
</tbody>
</table>
With regard to the last elementary consequence we associate a dimension "degree of flexibility" reflecting the capacity of a priority rule to absorb incidents encountered in normal management (without provoking excessive tensions, damaging disorder, ...). The associated scale can only be qualitative (without spending a great deal of time on its definition and corresponding valuations). It is not easy to code a priority rule on such a scale, although the head of the organisation and methods bureau often attaches a great deal of importance to the global and subjective idea he has of this degree of flexibility. Therefore a realistic way to go about this might be to ask an expert to classify the different rules by means of this dimension, without seeking to code the states and their modulations; i.e. only the relation established by the judge is important. This is an example of a relational case (cf. table 6).

In certain cases the scientist may proceed in a different way. Let us suppose that an analysis of past activities of the shop reveals a small number of typical situations:

- normal situation,
- conjuncture producing a sudden increase in the workload,
- functioning below capacity because of the unavailability of a key machine or a specialised labour force,

... easily discriminant with respect to operating costs, customer satisfaction and the adaptation possibilities for each rule. Let \(\mathcal{E} \) denote the set of elements, called events, characterising each of the considered situations. For each dimension \(i \), the set of states, \(\mathcal{Y}_i(a) \) to which a specified event \(E \) may lead, can generally be reduced to a proper subset of \(\mathcal{Y}_i \). On certain dimensions, \(\mathcal{Y}_i(a) \) may be systematically reduced to a single element of \(E_i \); this is (for a class of exclusive events) the case "single indexed event" of table 6. As for the dimensions for which this is not the case, a modulation indicator must specify (in a distributional or relational way) the relative importance of the states of \(\mathcal{Y}_i(a) \):

this is the case "complex indexed event" of table 6.

We will leave it to the reader to reflect on this by reconsidering the preceding elementary consequences in this context. Anyway, the act of clarifying the class \(\mathcal{E} \) has, when the discriminant influence stands out clearly on at least two dimensions, the merit of bringing to light a causal liaison that global preference modelling can not ignore.

Within or outside of "indexed event" cases, there may exist other relations between the modelling indicators which can subsequently supply useful information and it is in the scientist's interest to diagnose them at this stage of the analysis. These relations are laid down at the end of table 7.

In order to illustrate the remainder of table 7, let us return to the three dimensions, finance, delay and flexibility, introduced above. Note that for each of the three corresponding scales, the objective is to achieve (even if unobtainable) one of the two extreme grades (cost nil, no delays, maximum degree of flexibility). It could quite well be otherwise. Let us suppose that deliveries are a source of problems for customers. Each grade will then represent an algebraic difference between the actual and contractual delivery dates and the goal "no delay" will no longer be at the end of the scale. If two grades of the same
The events of the class ξ may lead to a set of parts of $\gamma_1(a)$ used by the scientist to characterise each event of the class ξ, $\gamma_1(a)$ then associated with a probability distribution, $p_1(a)$.

$\gamma_1(a)$ used by the scientist to establish a relation (preference) $\gamma_1(a)$ and $\gamma_1(a')$ for each potential action by the scientist to quantify the relative importance of the population concerned, to a degree of fuzziness with respect to dates, ...
DEFINITIONS

\(e' \in E_i\) \(e'\) is preferred to or is indifferent from \(e\) when
or \(o_i \leq i e' < i e\)

\(\phi\) (of the same scale) indiscriminated by the actors who do
not distinguish; it may vary along the scale;
\(\phi\) (of the same scale) for which the imprecision of the state
will be separated for certain; it may vary along the scale;
\(\phi\) (of the same scale) for which the quality of the previsions
cannot be distinguished for certain; it may vary along the scale;

a mixture of the preceding thresholds such that :
e when :
\(i\) or \(o_i \leq i e' < i e\)

(defined by reference to a measure: number of grades, ...) an absolute value \(s^i(e)\); for a smaller interval there is a situation which includes those of indifference and large preference (cf.

\(\phi\) of \(E_i\) such that :
\(n:\)

or \(o_i \leq i e < e\)

(defined by reference to a measure) remains strictly less than \(n\) or a larger interval, there is large or strict preference

\(\phi_h(a) E_h\) leading to a modification of the modulation \(\delta_i(a)\)

dimension \(i\) conditioned by \(e_h\)

all the modular informational relations
The personality of the actors, the nature of the potential actions and scales, the mode of elaboration of the state and modulation indicators are the basis of different types of frequently intermingled thresholds. To admit that the different actors are indifferent to two priority rules leading to the same valuations, except regarding average operating costs for which valuations are e and e - η, may very well raise different explanations:

- η is a negligible sum in comparison with the sums in play elsewhere and with the sensitiveness of each actor in this dimension;
- η is too low a sum in view of the techniques implemented for data collection;
- η is a non-significant sum in view of the risks that the mode of calculation sets aside.

By definition (cf. table 7), s_i^+(e) is the maximum value of η (on the financial dimension i considered) such that e - η is not recognised as significantly better than e. For η ≤ s_i^+(e), the scientist may consider, either e - η as presumed preference to e, or (more simply) e - η as indifferent from e (s_i^+(e) = q_i^+(e)).

To avoid giving a discriminating role to differences of little significance, the scientist will sometimes be led to pay particular attention to such thresholds in the neighbourhood of the goal, and for example define an
According to the discriminative power recognised for the criterion k, I suggest to call (see the end of table 8):
- pseudo-criterion (most general case): a criterion for which an indifference threshold $q^+_k(x)$ and a threshold of presumed preference $s^+_k(x)$, $s^+_k(x) \geq q^+_k(x)$ are defined;
- semi-criterion: a pseudo-criterion for which $q^+_k(x) = s^+_k(x)$;
- precriterion: a pseudo-criterion for which $q^+_k(x) = 0$ or is not defined;
- true-criterion: a pseudo-criterion for which $q^+_k(x) = s^+_k(x) = 0$ (every difference is significant).

These thresholds can not be any function of x, as is indicated in table 8 for a threshold of presumed preference, but remains true for an indifference threshold. This is quite simply explained by the fact that, for $y > x$ there can not exist (without inconsistencies) a value z of g_k such that:

$$y + s^+_k(y) < z \leq x + s^+_k(x).$$

On studying the underlying structure of each one of these types of criterion, it is easy to deduce that we are concerned with:
- a complete order for a true-criterion;
- a semi-order for a semi-criterion;
- what appears to be an orientated semi-order for a precriterion;
- a more complex structure for a pseudo-criterion, to which I shall refer under the name of pseudo-order.

In what follows a semi-order is characterised by the definition of two relations I and P such that:

a) I is reflexive and symmetric (which corresponds to indifference);
b) P is an anti-symmetric "complement" of I in the sense that one and only one of the following three possibilities holds $\forall x, y$:

$$x I y, \quad x P y, \quad y P x$$

(which corresponds to strict preference);
c) $P I P \subseteq P$ (implies the transitivity of P);
d) $P^2 \cap I^2 = \emptyset$

(for further details, see FISHBURN (22) or JACQUET-LAGREZE (34).

In order to complete an elucidation of the use that the scientist may make of the criterion k, he must investigate the relations which connect any two intervals of the type:

$$w^+_k = [x_k, x_k + \omega_k] \quad \text{and} \quad w^-_k = [x'_k, x'_k + \omega'_k]$$

defined by two ordered-pairs (a, b) and (a', b') of potential actions such that:

$$g_j(a) = g_j(b) = g_j(a') = g_j(b') \forall j \neq k, \quad g_k(a) = x_k, \quad g_k(a') = x'_k$$

$$g_k(b) - g_k(a) = \omega_k \geq 0, \quad g_k(b') - g_k(a') = \omega'_k \geq 0$$
Do such intervals sufficiently reveal an underlying reality to assess, in a significant and operational way, a comparison between the superiority of \(b \) over \(a \) and that of \(b' \) over \(a' \)? The objective of this comparison is to lead the scientist to opt (as in table 9) in favour of one of the following fundamental mutually exclusive situations:

- **superiority identical**: \((x_k + \omega_k')\) differs from \(x_k\) exactly as \((x_k + \omega_k')\) differs from \(x_k\);
- **superiority strictly greater**: \((x_k + \omega_k')\) differs from \(x_k\) strictly more than \((x_k + \omega_k')\) differs from \(x_k\);
- **superiority weakly greater**: \((x_k + \omega_k')\) differs from \(x_k\) at least as much as \((x_k + \omega_k')\) differs from \(x_k\) but it is impossible to say if it is strictly or exactly;
- **superiority incomparable**: neither of the three former situations dominate.

These considerations lead me to formulate the question:

\[Q_l \]

> How to discriminate the preceding four fundamental mutually exclusive situations so as to compare the "importance" of any two intervals of the type \(\omega_k - \omega_k' \)?

When one of the two intervals is null, the reply to this question has already been given through the concepts of thresholds (which may depend on the abscissa \(x_k \) of the non null interval). Thus it is with the other cases that we are
Table 8: Modelling \(\mathfrak{V}(a) \) on the Basis of a Consistent Family of Criteria

<table>
<thead>
<tr>
<th>Concepts and Notations</th>
<th>Definitions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria vector (g(a) = [g_1(a), \ldots, g_n(a)] \in \mathbb{R}^n)</td>
<td>Exhaustive résumé (for the problem) of (\mathfrak{V}(a)) given by the (n) values assumed, with regard to action (a), by the criteria (g_j) (j = 1, \ldots, n) forming a consistent family relative to the (n) dimensions considered.</td>
</tr>
</tbody>
</table>
| **Consistent family \(F \) of criteria** \(g_j, \ j = 1, \ldots, n \) or \(j \in F \) | A family of \(n \) functions (called criteria) subject to three conditions:
1. Exhaustivity condition: the \(g_j(a) \) are real-valued functions, argument of which are the state and modulation indicators constituting the valuations of \(a \) on the \(n \) dimensions; they are defined in such a way that:
\[g_j(a) = g_j(a') \quad j = 1, \ldots, n \quad \iff \quad a \text{ is indifferent from } a'; \]
2. Non incomparability condition: if \(a \) and \(a' \) are two actions such that:
\[g_j(a) = g_j(a') \quad \forall j \neq k \text{ and } g_k(a') > g_k(a) \]
then \(a' \) is preferred to or is indifferent from \(a \) (see table 9);
3. Non redundancy condition: dropping any one of the \(g_j \) of the family invalidates one or more of the preceding conditions (for a pair of actions \((a, a') \) real or fictitious). |
| \(g_j(a) = \mathfrak{V}_j(a) \) | This implies:
- the valuation on the dimension \(j \) is single point \(\forall a \in A \)
- \(o_j \) is the highest grade of \(E_j \) which grades are identified by figures |
| **Single point equivalent on the dimension \(i \)** | The valuation on the dimension \(i \) is not single point (at least for one action) but it occurs only in a single criterion, which is justified by the existence of a single point equivalent (average value, certainty equivalent, realised value, ...) substitutable for the couple state indicator, modulation indicator, \(g_j \) appears as a résumé of the valuations relative to the dimensions \(i_1, \ldots, i_p \)
- The valuation on the dimension \(i \) intervenes, by at least one of its indicators, in more than one criterion. |

Note: The table provides a structured framework for understanding the concepts of criteria and the conditions under which they operate. It highlights the importance of exhaustivity, non-incomparability, and non-redundancy in constructing a consistent family of criteria, which is essential for evaluating actions in decision-making processes.
The table below outlines the conditions for evaluating criteria. For a true criterion g_k, if the condition 2 above implies strict preference (indifference and presumed preference being excluded), the criteria can be characterized by a threshold function $s_k^+(x)$:

- Presumed preference if $g_k(a) = x < g_k(a') \leq x + s_k^+(x)$
- Strict preference otherwise

So as not to lead to inconsistencies, $s_k^+(x)$ must also satisfy:

$$s_k^+(x) - s_k^+(y) \geq -1 \text{ where } x, y \text{ are possible values for the precriterion } g_k$$

For a semi-criterion g_k, if the condition 2 above involves, besides strict preference, indifference situations which can be characterized by a threshold function $q_k^+(x)$:

- Indifference if $g_k(a) = x < g_k(a') \leq x + q_k^+(x)$
- Strict preference otherwise (large preference here is excluded)

So as not to lead to inconsistencies $q_k^+(x)$ must also satisfy the same condition as that above relative to a precriterion.

For a pseudo-criterion g_k, if it is a precriterion for which presumed preference involves besides large preference (see Table 9) indifference situations which can be characterized by a threshold function $q_k^+(x) \leq s_k^+(x)$:

- Indifference if $g_k(a) = x < g_k(a') \leq x + g_k^+(x)$
- Large preference if $x + q_k^+(x) < g_k(a') \leq x + s_k^+(x)$

Here $q_k^+(x)$ must satisfy the same condition as $s_k^+(x)$.
These four axioms do not imply measurability as the reader may verify by reconsidering the example of II.1 relative to the elementary consequence c) : adapt-

Suppose that the scale E_i adopted is the following :

- e_1 : rule very rigid,
- e_2 : rule involving non negligible rigidity factors,
- e_3 : rule normally flexible,
- e_4 : rule exceptionally flexible,

and to which corresponds a single point valuation giving rise to a true-

criterion $g_k : g_k(a) = \text{index of the grade}$

The scientist may then reply to question Q, (in agreement with

axioms 2, 3, 4) by defining on the set of non null intervals, a weak order (transitive

and complete binary relation) such as the following :

$$(0, 1)_{e_1}, (l, 2)_{e_2}, (2', 3)_{e_3}$$

The table below shows that there are various transformations of the

criterion g_k which render the lengths of the intervals compatible with the above

classification but which lead to very different values for the ratios

<table>
<thead>
<tr>
<th>e_1</th>
<th>e_2</th>
<th>e_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>12</td>
</tr>
<tr>
<td>2</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>3</td>
<td>6</td>
<td>11</td>
</tr>
</tbody>
</table>

A set of actions necessary and sufficient (1) to imply measurability may be

obtained by completing axioms 1, 2, 3, 4 by the following :

AXIOM 5 : for all three values of g_k. a unique value y

of g_k such that the superiority of y over x is identical to that of y' over x'.

Past experience has shown that in a good many real world problem, it is

impossible for the scientist to justify the exact values which axiom 5 postulates (ei-

ter because there is more than one single value or because none is acceptable to all th

actors who intervene in the decision-making process). The reliance on the idea of ap-

proximation to justify the arbitrary part included in the selected values (and in

order to remain within the framework of the set of axioms) is not always a realistic

attitude.

(1) The author thanks Ph. VINCKE for his contribution to the verification of the

exactness of this assertion.
In fact this difficulty arises usually because axiom 1 is not operational. It follows that axiom 4 has also to be reconsidered.

I suggest to call the criteria which satisfy axioms 2 and 3 *graduable* and to use the term of *graduation* to designate those (graduable) for which the values allow a direct comparison of the intervals (in the above table g_k is graduable but only the last three criteria are graduations).

The structure introduced by an axiom similar to axiom 4) on the set of intervals of the type w_k by replies to question Q_1, is intimately related to the techniques used to assess these replies. In the case of graduable criteria we can characterise the criteria:

- truly-graduable: weak order structure (see above);
- semi-graduable: semi-order structure (see what follows);
- pregraduable: oriented semi-order structure;
- pseudo-graduable: pseudo-order structure.

In the example of II.1 let us consider a semi-criterion g associated with the dimension "delay" defined as follows:

$$g(a) = x, \quad q^+(x) = \min(q.x, 100 - x), \quad 0 \leq q \leq 1.$$

$$x \in \{0, 1, 2, \ldots, 100\}$$

expresses the percentage of orders for which the delay exceeds a week.
<table>
<thead>
<tr>
<th>SITUATIONS</th>
<th>DEFINITIONS</th>
</tr>
</thead>
</table>
| Four | **indifference** The two actions are indifferent in the sense that there exist clear and positive reasons to choose equivalence.
| | example: \(g_j(a) = g_j(a') \forall j \) some of those equalities not being necessarily rigorous but only approximate. |
| fundamental | **strict preference** One of the two actions (which one being known) is strictly preferred to the other.
| mutually exclusive | example: \(g_j(a) = g_j(a') \forall j \neq k, g_k(a') - g_k(a) \geq \delta \) a significant difference. |
| situations | **large preference** One of the two actions (which one being known) is not strictly preferred to the other, but it is impossible to say if the other is strictly preferred to or indifferent from the first one because neither of the two former situations dominates.
| | example: \(g_j(a) = g_j(a') \forall j \neq k, g_k(a') = g_k(a) \) neither sufficiently small to justify indifference nor sufficiently large to justify strict preference. |
| incompatibility | **incomparability** The two actions are not comparable in the sense that neither of the three former situations dominates.
| | example: \(g_j(a) > g_j(a') \) for \(j = 1, \ldots, p, g_j(a') > g_j(a) \) for \(j = p + 1, \ldots, n \) the majority of the differences being significant. |
| Two | **presumed preference** This excludes the strict preference and incomparability situations, and consequently embraces indifference and large preference situations be they separated or only assumed separable.
| important | example: see tables 7 and 8 (prescription concept). |
| re-groupings | **preference** This covers the two situations of strict and large preference separated or assumed separable and consequently excludes indifference and incomparability.
| | example: see table 7 and 8 (condition 2 and the quasi-criterion concept). |
The scientist may envisage appreciating the importance (in terms of quality of service) of an interval \(w = [x, x + \omega] \) (percentage increased from \(x \) to \(x + \omega \)) by an indicator such as:

\[
v(w) = \frac{\omega}{100 - (x + \omega)}
\]

More precisely he may assess the comparison of the intervals \(w \) and \(w' \) on those of the "degrees of importance" \(v(w) \) and \(v(w') \). He may admit, for example, that (for \(v(w) \geq v(w') \)):

- the importance of \(w \) is strictly greater than that of \(w' \) if:

\[
v(w) \geq v(w') + \frac{\text{Min}(q.x, 100 - x)}{100 - [x + \text{Min}(q.x, 100 - x)]}
\]

- the importance of \(w \) is identical to that of \(w' \) otherwise

Then \(g \) will appear as a semi-criteria semi-graduable.

Although table 9 has a general bearing, the comparison of two potential actions has only been studied up until now, in the particular case when
Such is the fundamental problem of global preference modelling. In fact it proves to be intimately related as much to the underlying nature of the criteria (cf. II.2), as to the operational attitude adopted by the scientist concerning the way in which decision-aid is to be provided.

Let us point out that if the reply to question Q_2 is, irrespective of the pair a a' of potential actions considered, independent of the values $g_j(a) = g_j(a') \quad j \in F - J$ (supposed non-empty), then the sub-family J of criteria can be said preferentially independent of the complementary sub-family $F - J$. Preferential independence so introduced generalises this classical concept (cf. (35) and (64)) to cases in which none of the four fundamental situations of table 9 is a priori excluded; comparisons being established on the basis of a consistent family non exclusively made of true-criteria.

It is by looking for such independence properties, trying to specify the relative importance of the n criteria ... in connection with question Q_2 that the scientist will progress in global preferences modelling. But how far has he to go in such a modelling?

Most often the scientist seeks a complete and explicite reply to Q_2 which a priori conforms with the following axiom:

AXIOM OF COMPLETE TRANSITIVE COMPARABILITY:

a) indifference situations define on A a binary relation \sim, symmetric and transitive

b) preference situations define on A a binary relation \succ, antisymmetric and transitive

c) large preference and incomparability situations do not exist.

Let us call \succ the relation defined by:

$a \succ a' \iff a \succ a'$ or $a \sim a'$

If the three conditions of the axiom are satisfied, then \succ defines a weak order on A (and vice-versa). In real world problems, it is always possible (1) (and in an infinite number of ways) to characterise such a weak order by means of a function.

$V_A(a) = V_A \left[g_1(a), \ldots, g_n(a) \right] \in \mathbb{R}$

such that

$V_A(a) = V_A(a') \iff a \sim a'$

$V_A(a) \succ V_A(a') \iff a \succ a'$

Such a function, then appears like a true-criterion aggregating the n criteria of the family F.

Making this function explicit is an attitude which has proved its efficacy (see table 10) particularly when the scientist adopts the problem formulation \times on a globalised and fixed set A (cf. ex. 1, 2, 3, 5 table 3) and

(1) See FISHBURN (22) theorem 3.1.
model the preferences through the intermediary of an

"...only those preferences he is capable of establishing objectively

...and complete way of the criteria forming the consistent
gstrating to the context, the economic function, ordinal function, value

tion of votes, declasements, comprises, goal programming, economic

ty theory (cf. [6], [2], [3], [2]), [2], [2], [2], [2].

express the preferences by a unique criterion

...and the following procedure, as a local optimum relative to an implicit

on maker or his representatives (eventually to the demander) a

the demander), or more compromises based on local preferences

maker or his representatives, eventually to the demander), or more compromises based on local preferences

his reactions and so doing, regathering information relative to

the demander), or more compromises based on local preferences

a unique criterion

"...only those preferences he is capable of establishing objectively

...and complete way of the criteria forming the consistent
gstrating to the context, the economic function, ordinal function, value

tion of votes, declasements, comprises, goal programming, economic

ty theory (cf. [6], [2], [3], [2]), [2], [2], [2], [2].

express the preferences by a unique criterion

...and the following procedure, as a local optimum relative to an implicit
this, to such a point that for many problems it is the only envisageable attitude. This attitude is nevertheless a source of encumbrance for the scientist who may notably:

a) for certain pairs of actions, not know how to, not want to, not be able to compare them (cf. B. ROY (53));
b) for rough, qualitative, random valuations, or expressed in heterogeneous units (francs, minutes, number of inhabitants, degree of similarity) be in no position to extract a common dimension (cf. ex. 12 and 22, Table 3);
c) under criteria which are more or less correlated, non measurable, counterbalancing within a complex imprecise logic, not know how to synthesise them in unique criterion (cf. ex. 11 and 18, Table 3);
d) for an a priori delimited set of potential actions with frontiers almost artificial in their clarity, not feel capable of appreciating, a priori and in all their aspects, the structural transformations to be integrated in the definition of a unique criterion acceptable within A, so as to extend it to the frontier and a little beyond (cf. ex. 15 and 17, Table 3);
e) for an evolutive set A and/or consisting of non-exclusive potential actions and/or problem formulation for which the objective is not to directly select a unique action, not judge, this an appropriate attitude (cf. ex. 19 and 24, Table 3).

For these reasons or for others, he may renounce this first attitude, or wish to make it more flexible, or even to defer it.

Recent results in multi-attribute utility theory have slightly moved forward limits of this attitude but always within the same framework: complete transitive comparability axiom, F exclusively made of true criteria.

Let us now briefly examine the two others attitudes of Table 10.

With the second attitude the scientist is more prudent. He limits his ambition as far as modelling is concerned but tries to increase the reliability and the acceptability of his model. It is precisely this which was at the origin of the notion of outranking which I briefly recall (cf. B. ROY (53) or below.

By definition an outranking relation is a binary relation \succ defined on A such that for all $a, a' \in A$:

a) the relation (i.e. outranking) holds in both senses $a \succ a'$ and $a' \succ a$, if and only if the scientist estimates that, for the decision-maker, the pair (a, a') corresponds to an indifference situation;
b) the relation holds only in one sense, for example $a \succ a'$ if and only if the scientist estimates that for the decision-maker the pair (a, a') corresponds to a preference situation (strict or large preference).
c) the relation holds in neither of the two senses when the scientist
can not, does not want to, does not know how to choose between one or other of
the two preceding cases.

The outranking relation does not pretend to be the exact reflection
of all the decision-maker's preferences, and in general it does not lead to a
weak order and probably not an indifference.

As an illustration let us return to the example of II.1 comparing
rules of priority a_0, a_1, a_2, a_3, a_4 globally according to:

<table>
<thead>
<tr>
<th>TABLE 11</th>
<th>COMPARISON ON 2 CRITERIA</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>a_0 inferred slightly more flexible</td>
</tr>
<tr>
<td>a_1</td>
<td>a_2 perceived equally</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred slightly more economical</td>
</tr>
<tr>
<td>a_3</td>
<td>a_4 inferred slightly less flexible</td>
</tr>
<tr>
<td>a_4</td>
<td>a_2 inferred slightly more economical</td>
</tr>
<tr>
<td>a_4</td>
<td>a_0 inferred slightly more economical</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equally</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equally</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_1 inferred equal</td>
</tr>
<tr>
<td>a_1</td>
<td>a_0 inferred equal</td>
</tr>
<tr>
<td>a_0</td>
<td>a_2 inferred equal</td>
</tr>
<tr>
<td>a_2</td>
<td>a_0 inferred equal</td>
</tr>
</tbody>
</table>
- the precriterion g_1: adaptability to perturbations
- the semi-criterion g_2: direct functioning costs.

Table 11 gives the estimates of each of the 5 rules according to each criterion. If the scientist considers that for the decision-maker, a significant difference in adaptability can not be compensated by a saving inferior to 10%, he is naturally led to the following outranking relation shown in table 11.

Under such a relation and within the context of problem formulation, the scientist may advise the decision-maker to choose between a_0 and a_4 because the subset N_{a_0} is a kernel for the relation that is to say:

- each N is outranked by at least one element of N;
- elements of N are strongly contrasted as far as they are incomparable.

There are well defined techniques for constructing outranking relations and numerous ways in which they can be used: details can be found in B. ROY, (54) and (56). Let us only remark here that:

- the scientist may be more or less insistent that the outranking is accepted. It is for this reason that he frequently introduces several interrelated relations for the same problem (cf. (1), (14), (18), (66), (43)). It is clear that the richer an outranking relation is the more risky it is, risk of misguiding the decision-maker's real preference and consequently of giving him bad advice. The scientist's conviction to opt for an outranking, may in certain cases be formalised through a degree of credibility in the outranking, which leads to the concept of fuzzy outranking (cf. (56).

- outranking relations are evidently only an intermediary; they are often incomplete models of the decision-maker's preference but in many real-world problems it will suffice in the framework of decision-aid. In some cases complementary work by the scientist will be required.

We come finally to the third operational attitude (see table 10). It can be characterized in that it refers to three ... iterative sequence (cf. for example 11.2) which leads to the interactive elaboration of one or more compromises.

- Research mechanism: by this the scientist exploits the data re-gathered as a result of the previous reaction (cf. c) in order to make headway in the elaboration of compromises. It is concerned with:
 - the analysis and comparison of the new data with the old;
 - research (taking into account the results of the analysis of compromise projects and/or of certain of their characteristics (maximum performances, shadow prices, ...).
b) **Reinitialisation mechanism**: it is this which creates, having taken into account the results of a), the new conditions under which the next reaction must be performed. It concerns:
- translation, into a language comprehensible by the decision-maker or his representative, of those results or situations (real or fictitious) they have to understand;
- obtaining the necessary conditions (understanding certain results, reflection on antagonisms between certain criteria, ...) so that the regathered data during the reaction will be as significant as possible.

c) **Reaction mechanism**: it is this which, within the framework of a previously developed condition (cf. b), leads to regathering information on the local preferences of the decision-maker. It may take extremely different forms:
- discussion as unbiased as possible;
- discussion based on a pre-prepared questionnaire;
- reactions to insertion in a business-game;
- methodology of agreement;
- voting procedure;
- survey;
- ...

In practice, even if these two latter mechanisms have no reason to be dissociated, it is important in spite of all, I think, to ensure that the function they are destined to fulfil are effectively fulfilled in the course of the interactive process.

This third attitude may, on condition that the appropriate procedures are used, be made operational, even when the decision-maker's preference are not completely formed or susceptible to be progressively influenced as new information or new results appear. Although the scientist traditionally seeks to determine hidden preferences which he postulates the pre-existence and coherence, the reality is often quite different (cf. JACQUET-LAGREZE [33], TERNY [63], YU [70] or the examples 17, 21, 22 of table 3).

To reveal these preferences, especially within the framework of an interactive procedure, is not neutral: their emergence is hardly ever conceivable without a certain adaptation because of other actors preferences, a certain reajustment because of impossibilities. For this reason care must be taken that this interactive elaboration of compromises does not become, all things considered, synonymous with compromising.

Be that as it may, we are in the right to question ourselves on the significance of the compromises resulting from this attitude which certain people may judge too pragmatic. In fact an "acceptable procedure" must guarantee that there does not exist any potential action which we can prove, having recourse only to regathered data, to be strictly preferable to any of the final compro-
mises. To verify that this is so may well uncover difficult theoretical problems.

III. 2 - The evolutive target procedure (E.T.P.)

Most of the actually proposed interactive procedures do not tackle the problem in the way described above. They are concerned in a mathematical programming framework, with reference to strongly coherent answers provided by the decision-maker so that the final compromise can appear, under a more or less realistic hypothesis as an optimum. To achieve this, or for other different reasons, they neglect the two latter types of mechanisms and concern themselves with the former. Their practical application because of this is often limited. Nevertheless, they appear as very useful starting point.

By conceiving a new procedure (see table 12) I tried to pay equal attention to each of the three above types of mechanisms.

The word "evolutive" in the denomination E.T.P. not only applies to the modelling of A (cf. I.1.) but also to the "capturing" of global preferences which are assumed capable of evolution (apprenticeship of the decision-maker or his representatives during the process). The idea of the "target", as well as its role in the elaboration of a compromise, was designed in such a way as to be operational using the most general coherent families, therefore not exclusively composed of true-criteria.

These are the most original aspects of E.T.P. By many aspects, this procedure is close to those elaborated by BENAYOUN (cf. STEP and STEM Methods: (10) and ZELENY (cf. Method of Displaced Ideal: Linear Multiobjective Programming. Springer Verlag, 1974); it also interferes with YU's ideas on persuasion and negociation (cf. 70).
Each box of table 12 concerns a part of one (but only one) of the mechanisms a) b) c) which occurs in an iterative sequence as it is shown.

At each iteration (pass through box a) the set A is redefined to take into consideration:

- the extension of A authorized by the data regathered, according to the case, in box b) or in box c) (relaxing certain constraints, integrating supplementary variables, introduction of structural transformations, ...);
- the priority coordinate \(i^0 \) when \(\alpha \) follows \(\gamma \); this being done by adding the constraint

\[
g_{i^0}(a) \geq g_{i^0}^0 + \Delta_{i^0},
\]

\(\Delta_{i^0} \) denotes the minimum improvement which remains significant (it may be associated with threshold estimates by the scientist).

By definition, the target associated with A, is a point \(g^* \) of the criteria space having as coordinates:

\[
g_i^* = \max_{a \in A} g_i(a) \quad i = 1, ..., n
\]

i.e. the best value that a potential action may give to the criterion \(i \) (concerning the \(i \)th coordinate).

Generally, this target is out of reach; it is this the scientist has to make understood by the decision-maker or his representatives in \(\gamma \); for example, when none of the \(\alpha \) appear no longer capable of being lowered, or when, first of all, a little flexibility or quite simply imagination relative to \(A \) seems necessary, we seek (cf. d) to obtain, from the decision-maker or his representatives, all the interesting possibilities taking into account the various aspects (constraints, value of parameters, structural features, ...) which seem responsible for the gap between \(A \) and \(\gamma \).
The box δ and the path leading either to the box α or to a cul-de-sac are self explanatory.

As for the box γ it deals with obtaining additional information on preferences in a small region surrounding the target. The objective is to specify the coordinates $\tilde{g}_i \leq \bar{g}_i$ of a point \tilde{g} significantly different from \bar{g} which, if accessible, would appear to be a "best" compromise in the neighbourhood of \bar{g}. The reaction may be provoked for example, by a set of "minimum losses":

$$p_i = \bar{g}_i^* - \tilde{g}_i \quad i = 1, \ldots, n$$

which must be adjusted

- render the $p_i \neq 0$ approximately equivalent whilst remaining significant of a real difference (account taken of the different thresholds);
- conserve $p_i = 0$ each time that a significant difference creates a loss heavier than that realised by the $p_i \neq 0$.

Box γ' finally leads to select the potential action (or actions) minimizing for the present definition of A.

The action a^0 thus selected appears, at this stage as the best compromise possible to obtain. This must be explained to the decision-maker or his representatives. It may be interesting for that, to compare $j(a^0)$ with A and to examine individual performances on each criterion.

When, because of this comparison or of the absolute performances a^0 is refused, additional or revised information are required to progress. They concern (cf. box γ'):

- the choice of the coordinate 1^0 which appears as the most responsible for the refusal and to which priority must be given in order to improve the performance;
- the definition of A which can be reconsidered mainly in order to try to reduce the gap between \bar{g}_0 and \tilde{g}_0; moreover in certain cases, it is desirable to test the opportunity of conserving the constraints which the coordinates selected in γ' during the preceding iterations have led to the addition of...
TABLE 12: EVOLUTIVE TARGET PROCEDURE

\[a^* \in A \text{ such that } g(a^*) = g^* ? \]

Determination of the target

\[g^* \text{ associated with the initial set } A \]

Reinitialisation with the new target:

- in so far as the goals, \(g_1^*, \ldots, g_n^* \) are individually attainable, globally they are not (examples ...)
- Will you consider accepting slightly inferior compromises?

YES

Will you accept it as a compromise?

YES

Reaction with a view to re-gathering the data (constraints, parameters, variables, ...) so as to possibly extend the set \(A \)

Reinitialisation with the new possible compromise

\[a^0 \text{ dominating action of } A \]
REFERENCES

(1) ABUGEGUEN, R. - "La sélection des supports de presse". R. Laffont, 1971

(2) AIR FRANCE - "Une méthode de classements d'objets en fonction de leurs qualités selon divers points de vue - Application au recrutement des hôtesses",

(3) ALEXANDRE, A.; BARDE, J.P. - "L'implantation des aéroports - Peut-on en évaluer les coûts et les avantages ?". Analyse et Prévision, T. XI, avril 1973, 385-420,

BORGOLTZ; ROUSSEL - "Choix d'une politique industrielle en fonction de critères multiples - Application à la province du Khorassan (Iran)". Mémoire Science des Organisations, Université Paris IX Dauphine, 1972.

(17) BRAGARD, L. - "Une méthode de programmation multicritère". Communication au Congrès EURO1, Bruxelles, janvier 1975.

(19) CLAIR - "Gestion automatisée des hôpitaux - Établissement de menus diététiques à l'aide d'un ordinateur". Thèse de Gestion, Université Paris IX Dauphine, 1974.

(32) JACQUET-LAGREZE, E. - "How we can use the notion of semiorders to build outranking relations in multicriteria decision making". Revue METRA, Vol. XIII, n°1, 1974.

(34) JACQUET-LAGREZE, E. - "La modélisation des préférences - Préordres, quasiordres et relations floues". Thèse, Université Paris V, juin 1975.

(54) ROY, B. - "Critères multiples et modélisation des préférences (l'apport des relations de surclassement)". Revue d'économie politique, N° 1, 1974.

(58) ROY, B.; SIMMONARD, M. - "Nouvelle méthode permettant d'explorer un ensemble de possibilités et de déterminer un optimum". Revue Française de Recherche Opérationnelle, n°18, 1er trimestre 1961.

(67) VINCKE, Ph. - "Une méthode interactive en programmation linéaire à plusieurs fonctions". Communication au Congrès EURO 1, Bruxelles 1975.

(73) ZELENY, M. - "Linear multiobjective programming". Springer-Verlag, 1974.

(74) ZIONTS, THIRIEZ Ed. - "Multiple criteria decision making conference". Proceedings. Springer Verlang.