An extension of ELECTRE III for dealing with a multiple criteria environmental problem with interaction effects between criteria

M. Bottero, V. Ferretti, J.R. Figueira, S. Greco, B. Roy
An extension of ELECTRE III for dealing with a multiple criteria environmental problem with interaction effects between criteria

M. Botteroᵃ, V. Ferrettiᵃ, J.R. Figueiraᵈ, S. Grecoᵇ, B. Royᶜ

a) Department of Regional and Urban Studies and Planning, Politecnico di Torino, Italy
b) Department of Economics and Business, University of Catania, Sicily, Italy
c) LAMSADE, Université Paris-Dauphine, Paris, France
d) CEG-IST, Instituto Superior Técnico, Universidade de Lisboa, Portugal

Abstract: Many decisions can be affected by certain types of interaction effects among and between some criteria of a coherent family of criteria, as for example, those resulting from a synergy or a redundancy phenomenon. However, in real-world decision aiding situations the relevant interactions (which should be modeled) are those that generally occur only between a small number of criteria pairs. Presently there is only a few number of methods to deal with such interaction effects. These interactions should thus be taken into account when comparing two different actions or projects. The interaction between pairs of criteria is of a very particular importance in the field of assessing sustainable development. The purpose of this paper is to study the applicability of the ELECTRE III method with interaction between pairs of criteria. In order to reach this objective, we are interested in the ranking of five alternative projects, compared on the basis of six different criteria, for the re-qualification of an abandoned quarry located in Northern Italy. A focus group of experts (in economic evaluation, environmental engineering, and landscape ecology) has been constituted with the aim of being in charge of the process leading to the assignment of numerical values to the weights and the interaction coefficients. We relate on the way the process evolved and on the difficulties that we have encountered to obtain consensual sets of values. Taking into account these difficulties we have considered other sets of weights and interaction coefficients. Our aim was to study the impact on the final ranking of the fact that these numerical values, assigned to the parameters, were not perfectly defined. This allowed us to formulate robust conclusions which have been then presented to the members of the focus group.

Keywords: Multiple criteria analysis, Group decisions and negotiations, Decision Support Systems, ELECTRE methods, Interaction between criteria.

Résumé: Beaucoup de décision peuvent être conditionnées par des effets d’interactions entre critères (effets de redondance, de synergie...). Dans les problèmes réels d’aide à la décision ces effets d’interaction, lorsqu’ils existent, ne concernent en général qu’un petit nombre de paires de critères. L’aide à la décision doit alors prendre en compte la façon dont ces paires de critères interviennent pour comparer deux actions ou projets. Actuellement il n’existe qu’un petit nombre de méthodes qui permettent de le faire. Ces interactions entre critères sont particulièrement présentes dans les problèmes de développement durable où il est difficile d’apprécier séparément l’impact des critères économiques, environnementaux et écologiques. L’objet de cet article est de tester l’applicabilité de la méthode ELECTRE III avec interactions entre critères dans le domaine de l’évaluation de projets d’aménagements de territoires lorsque des effets d’interaction doivent être pris en compte. Dans ce but nous nous sommes intéressés à l’évaluation de cinq projets concernant la requalification d’une carrière abandonnée dans l’Italie du nord. Un focus groupe d’experts (en évaluation économique, ingénierie environnementale et écologie du territoire) a été constitué afin de prendre en charge le processus destiné à attribuer des valeurs numériques aux poids et aux coefficients d’interaction. Nous relatons la façon dont ce processus s’est déroulé ainsi que les difficultés rencontrées pour parvenir à des jeux de valeur consensuels. Compte tenu de ces difficultés nous nous sommes intéressés à d’autres jeux de poids et de coefficients d’interactions afin d’étudier l’impact que pouvait avoir sur le rangement des projets le fait que la valeur numérique qu’il convenait d’attribuer à ces paramètres n’était pas parfaitement définie. Cela nous a permis de formuler des conclusions robustes qui ont été présentées au focus groupe.
Contents

1 Introduction 3

2 Theoretical and methodological background 4
 2.1 Basic data 4
 2.2 Preference modeling through a pseudo-criterion model 4
 2.3 Building an outranking relation 5
 2.3.1 Concordance, discordance, and credibility 5
 2.3.2 Interactions between criteria 7
 2.3.3 An extension of the concordance index 8
 2.4 Exploiting the outranking relation 8

3 Case study: The re-qualification of an abandoned quarry 9
 3.1 A brief description of the context 9
 3.2 Actors: Their concerns, values, and expectations 10
 3.3 Building a coherent family of criteria 12
 3.3.1 Criteria 12
 3.3.2 Performances table 12
 3.3.3 Thresholds 13
 3.4 Choosing an MCDA model 13

4 Conditions for the application of Electre III with the participation of a focus group 14
 4.1 Phase 1 (learning): construction of a set of individual weights 15
 4.2 Phase 2: construction of a common set of weights 17
 4.3 Phase 3: details of the implementation on how to take into account the interaction between criteria 18
 4.3.1 First Step 18
 4.3.2 Second Step 19
 4.3.3 Third Step 20

5 Sensitivity analysis and robustness concerns 23
 5.1 Results with the common set of weights: Analysis of the interaction effects 23
 5.2 Analysis with some sets of weights “close” to the common set of weights 25
 5.3 Analysis with the set of weights of expert E_1 26

6 Conclusions 28

References 29
1. Introduction

Many decision-aiding situations or problems can be affected by interaction effects between some pairs of criteria. By definition we consider that there exist an “interaction between an ordered pair of criteria” when in the model used for decision aiding the way the first criterion intervenes for comparing two projects must take into account the way this two projects are compared by the second criterion. From a theoretical point of view, interactions may occur between one criterion and several others but for the purpose of this paper we have only to consider interactions between two criteria. Let us precise that reasons for which we prefer to speak of “interactions” instead of “dependencies” are presented in Roy (2009) The interaction between criteria is of particular importance in the domain of sustainability assessment, where neither an economic nor ecological reductionism are possible (Munda, 2005). Since, in general, economic sustainability has an ecological cost and ecological sustainability has an economic cost, an integrated evaluation framework is needed for tackling sustainability issues properly. In the particular context of sustainability assessments, the different decision aspects (required for the definition of criteria) usually interact among each other, reflecting the natural dynamics of the environmental and territorial systems. Consequently, it is particularly interesting to investigate these interaction dynamics in order to highlight potential synergies, redundancies, or other phenomena among coalitions of criteria.

For taking into account these interactions, different authors (Grabisch, 1996; Grabisch and Labreuche, 2008; Marichal and Roubens, 2000) have proposed some methods based on the Choquet integral (Choquet, 1953) and the Sugeno Integral (Rico, 2002). Multi-Attribute Utility/Value Theory (MAUT/MAVT) constitutes a possible way to take such interactions into account (Greco et al., 2014; Keeney, 1981, 1992). Another type of approaches based on the constitution of a set of decision rules has been proposed by Greco et al. (2001). Within the framework of ELECTRE methods, Figueira et al. (2009) proposed an approach to take into account some interaction effects based on a generalization of the definition of concordance.

Starting from the theory defined by the aforementioned paper, the purpose of the present study is to experiment the use of the ELECTRE III method by considering criteria interaction in a real-world problem in the domain of environmental planning. The decision problem under analysis concerns the comparison of alternative projects for the re-qualification of an abandoned quarry located in Northern Italy. In particular, the study is related to the analysis and the comparison of five alternative projects in order to select the most sustainable one.

After this introduction, the rest of the paper is organized as follows. Section 2 provides the methodological background for the ELECTRE methods considering the classical version and the extended version for taking into account the interaction between criteria. Section 3 presents the real world case on which the applicability of the extension of ELECTRE III with interactions has been studied. This study made intervene a focus group of experts. In section 4 we relate on the way the focus group has worked in order to define the numerical values of the different parameters which intervene in the method. The encountered difficulties are highlighted and the consensus finally obtained is presented. Section 5 is dedicated to the presentation and interpretations of the results obtained by the application of the method when we take into account sets of values for the parameters that are different from the consensual set of values but plausible with respect to the encountered difficulties. Finally, Section 6 contains the main conclusions that can be drawn from the research done.
2. Theoretical and methodological background

This section is devoted to present the fundamentals of ELECTRE III with interaction between criteria. We shall avoid to present some aspects of ELECTRE III, as for instance, the direct and inverse variable thresholds (Roy et al., 2014), and the details of the distillation procedures. For a more complete description of this particular method the reader can refer to Roy and Bouyssou (1993). The family of ELECTRE methods was designed into two main phases. The first one consists of the construction of one or more outranking relations, while the second is related to the exploitation of these relations (Figueira et al., 2005a,b, 2013; Roy, 1985, 1991, 1996). One of the crucial steps of the methodology applied the present work is described in Figueira et al. (2009).

2.1. Basic data

In what follows A denotes a set of potential actions or projects, as in our case study. In our settings, each action, $a \in A$, is defined by a brief label, corresponding to an extensive description. In such a case, A can be defined as follows, $A = \{a_1, \ldots, a_i, \ldots, a_m\}$. Let g denote a given criterion, built for characterizing and comparing potential actions according to a considered point of view. The characterization of an action $a \in A$, denoted by $g(a)$, usually represents the performance of action a according to the considered criterion. Let $F = \{g_1, \ldots, g_j, \ldots, g_n\}$ denote a coherent family of criteria (Roy, 1985, 1996). The sets A and F contain our basic data. In what follows we shall use also F as the set of criteria subscripts.

2.2. Preference modeling through a pseudo-criterion model

Thresholds are built to take into account the imperfect character of the data from the computation of the performances $g_j(a)$, for all $a \in A$ and $g_j \in F$, as well as the arbitrariness that affects the definition of the criteria.

Definition 1 (Preference threshold). The preference threshold between two performances, denoted by p, is the smallest performance difference that when exceeded is judged significant of a strict preference in favor of the action having the best performance.

Definition 2 (Indifference threshold). The indifference threshold between two performances, denoted by q, is the largest performance difference that is judged compatible with an indifference situation between two actions having different performances.

The definition of the thresholds allows to define a non-classical model for taking into account the decision-makers preferences.

Definition 3 (Pseudo-criterion with constant thresholds). A criterion g_j is called a pseudo-criterion when two thresholds are associated with g_j: the indifference threshold, q_j, and the preference threshold, p_j, such that $p_j \geq q_j \geq 0$.

From the above definitions, the following binary relations can be derived, for each criterion and considering two actions a and a', where $g_j(a) \geq g_j(a')$, for a given criterion g_j to be maximized.

1. $|g_j(a) - g_j(a')| \leq q_j$ represents a non-significant advantage of one of the two actions over the other, meaning that a is indifferent to a' according to g_j, denoted $aIgJa'$.
2. $g_j(a) - g_j(a') > p_j$ represents a significant advantage of a over a', meaning that a is strictly preferred to a' according to g_j, denoted $aPgJa'$.
3. $q_j < g_j(a) - g_j(a') \leq p_j$ represents an ambiguity zone. The advantage of a over a' is a little large to conclude about an indifference between a and a', but this advantage is not enough to conclude about a strict preference in favor of a. This means that there is an hesitation between indifference and strict preference. In such a case, a is weakly preferred to a', denoted aQ_ja'.

The following notation about coalitions of criteria will be needed in the remaining of this paper. Let

- $C(aIa')$ denote the subset of criteria such that $aIja'$;
- $C(aQa')$ denote the subset of criteria such that $aQja'$;
- $C(aPa')$ denote the subset of criteria such that $aPja'$;
- $\bar{C}(a'Pa)$ denote the complements of $C(aPa')$.

2.3. Building an outranking relation

Three concepts are needed to the construction of an outranking relation, namely, concordance, non-discordance, and a degree of credibility. These three concepts will be reviewed in this subsection. The extension of the comprehensive concordance index to incorporate three types of interactions between criteria will be presented in this subsection too.

2.3.1. Concordance, discordance, and credibility

The following three paragraphs will deal with the three main concepts, needed for the construction of a fuzzy outranking relation Roy (1991).

Concordance index. For using ELECTRE III it is necessary to associate a set of intrinsic weights with the family of criteria. This set of weights, each one denoted by w_j, is such that $w_j > 0$, for $j = 1, \ldots, n$, and $\sum_{j=1}^{n} w_j = 1$ (assumption). The overall concordance with the assertion of “a outranks a'” is modeled through a *comprehensive concordance index*, denoted $c(a,a')$, and defined as follows:

$$c(a,a') = \sum_{j \in C(aPa')} w_j + \sum_{j \in C(aQa')} w_j + \sum_{j \in C(aIa')} w_j + \sum_{j \in C(a'Pa)} w_j \varphi_j,$$

where

$$\varphi_j = \frac{p_j - (g_j(a') - g_j(a))}{p_j - q_j} \in [0,1].$$

Let us recall that $c(a,a')$ (roughly meaning a degree of outranking of a over a') takes into account the weights of criteria which contribute to validate the assertion, “a is at least as good as a'” denoted by aSa'. Every criterion leading to aPa', aQa', and aIa' is taken into account with its overall weight. It is obvious that a criterion leading to $a'Pa$ must not be taken into account for validating such an assertion. On the contrary, a criterion leading to $a'Qa$ must not be completely discarded with respect to its contribution to the assertion aSa'. This weak preference situation represents a hesitation between $a'Ia$ and $a'Pa$. The criterion is thus taken into account by a fraction, φ_j, of its weight. This fraction can be interpreted as the proportion of voters (the weight corresponds to the voting power of the criterion) in favor of the assertion aSa'. This proportion
This index reflects the way the assertion should be as close as possible to 1 when the hesitation is more in favor of the indifference. It should be zero when we reach the strict preference situation in favor of a'.

There is a difference that should be pointed out when scales are continuous or when they are discrete (Roy et al., 2014) (for the sake of the simplicity consider the criterion g and the same two actions a and a'):

1. A continuous scale leads to the following formula:

$$\varphi = \frac{p - (g(a') - g(a))}{p - q}, \quad \text{with} \quad q < g(a') - g(a) \leq -p, \quad \text{for} \quad p \neq q. \quad (3)$$

This relation leads effectively to:

(a) $\varphi = 1$ iff $g(a') = g(a) + q$: the only situation that validates $a'Ia$ without hesitation.

(b) $\varphi = 0$ iff $g(a') = g(a) + p$: situation that, due to the continuous nature of the scale, only leads to the absence of the hesitation between $a'Ia$ and $a'Pa$; the latter imposes thus its power.

2. When in presence of a discrete scale the formula becomes as follows:

$$\varphi = \frac{(p + 1) - (g(a') - g(a))}{(p + 1) - q}, \quad \text{with} \quad q \leq g(a') - g(a) \leq p, \quad \text{for} \quad p \neq q. \quad (4)$$

It means that in this case we can keep the previous formula (3) by replacing p by $(p + 1)$. Let us observe that this formula is still valid when $p = q$, which corresponds to a situation of absence of weak preference. When $p = q + 1$, which corresponds to a unique situation of real hesitation ($g(a') = g(a) + p$), this formula leads to $\varphi = 1/2$ (which seems a very adequate value). Similarly, if $p = q + 2$, each one of the two hesitation situations leads to $\varphi = 2/3$ and $\varphi = 1/3$, respectively.

Discordance index. ELECTRE III gives the possibility to introduce a veto power to certain criteria by associating with each one of these criteria a veto threshold, denoted v_j, such that $v_j \geq p_j$. The discordance index is used to take into account such a veto power. The veto power of each criterion is modeled through a partial discordance index, denoted $d_j(a, a')$, $j = 1, \ldots, n$, and defined as follows:

$$d_j(a, a') = \begin{cases}
1 & \text{if} \quad g_j(a) - g_j(a') < -v_j, \\
\frac{g_j(a) - g_j(a') + p_j}{p_j - v_j} & \text{if} \quad -v_j \leq g_j(a) - g_j(a') < -p_j, \\
0 & \text{if} \quad g_j(a) - g_j(a') \geq -p_j.
\end{cases} \quad (5)$$

Credibility index. The credibility index is defined as follows:

$$\sigma(a, a') = c(a, a') \prod_{j=1}^{n} T_j(a, a'), \quad (6)$$

where

$$T_j(a, a') = \begin{cases}
\frac{1 - d_j(a, a')}{1 - c(a, a')} & \text{if} \quad d_j(a, a') > c(a, a'), \\
1 & \text{otherwise.} \end{cases} \quad (7)$$

This index reflects the way the assertion “a outranks a'” is more or less well justified or founded when taking into account all the criteria from F.
2.3.2. Interactions between criteria

This subsection provides the definitions of the three interaction types as they were defined in Figueira et al. (2009).

(a) Mutual-strengthening effect between criteria \(g_j \) and \(g_i \):

Definition 4. (Mutual-strengthening effect.) If criteria \(g_j \) and \(g_i \) both strongly, or even weakly, support the assertion \(aS a' \) (more precisely, \(g_j, g_i \in \overline{C}(a'Pa) \)), we consider that their contribution to the concordance index must be larger than the sum of \(w_j + w_i \), because these two weights represent the contribution of each of the two criteria to the concordance index when the other criterion does not support \(aS a' \).

We suppose that the effect of the combined presence of \(g_j, g_i \in \overline{C}(a'Pa) \) among the criteria supporting the assertion \(aS a' \) can be modeled by a mutual strengthening coefficient \(k_{ji} = w_j + w_i > 0 \), which intervenes algebraically in \(c(a,a') \).

(b) Mutual-weakening effect between criteria \(g_j \) and \(g_i \):

Definition 5. (Mutual-weakening effect.) If criteria \(g_j \) and \(g_i \) both strongly, or even weakly, support the assertion \(aS a' \) (more precisely, \(g_j, g_i \in \overline{C}(a'Pa) \)), we consider that their contribution to the concordance index must be smaller than the sum of \(w_j + w_i \), because these two weights represent the contribution of each of the two criteria to the concordance index when the other criterion does not support \(aS a' \).

We suppose that the effect of the combined presence of \(g_j, g_i \in \overline{C}(a'Pa) \) among the criteria supporting the assertion \(aS a' \) can be modeled using a mutual weakening coefficient \(k_{ji} = w_j + w_i < 0 \), which intervenes algebraically in \(c(a,a') \).

(c) Antagonism of criterion \(g_h \) over criterion \(g_j \):

Definition 6. (Antagonistic effect.) If criterion \(g_j \) strongly, or weakly, supports the assertion \(aS a' \) and criterion \(g_h \) strongly opposes this assertion, we consider that the contribution of the criterion \(g_j \) to the concordance index must be smaller than the weight \(w_j \) that was considered in cases in which \(g_h \) does not belong to \(\overline{C}(a'Pa) \).

We suppose that this effect can be modeled by introducing an antagonism coefficient \(k'_{jh} > 0 \), which intervenes negatively in \(c(a,a') \).

Remark 1. Let us notice that,

- Cases \(a \) and \(b \) are mutually exclusive, but cases \(a \) and \(c \) and cases \(b \) and \(c \) are not.
- For cases \(a \) and \(b \), \(k_{ji} = k_{ij} \).
- The presence of an antagonism coefficient \(k'_{jh} > 0 \) is compatible with both the absence of antagonism in the reverse direction (\(k'_{hj} = 0 \)) and the presence of a reverse antagonism (\(k'_{jh} > 0 \)).

An additional coherency condition is needed.
Condition 1 (Positive net balance).

\[w_j - \left(\sum_{(j,i): k_{ji}<0} |k_{ji}| + \sum_{k} k'_{jh} \right) > 0, \quad \text{for all } g_j \in F. \]

This condition is necessary to avoid reducing the weights to zero or negative values.

2.3.3. An extension of the concordance index

The extension we consider in this paper is the one proposed by Figueira et al. (2009). It takes into account the three interactions effects of the previous sections. Some additional notation is needed. Let

- \(L(a, a') \) denote the set of all pairs \(\{j, i\} \) such that \(j, i \in C(a'Pa) \);
- \(O(a, a') \) denote the set of all ordered pairs \((j, h) \) such that \(j \in C(a'Pa) \) and \(h \in C(a'Pa) \).

The new formula of the concordance index is as follows.

\[
c(a, a') = \frac{1}{K(a, a')} \left(\sum_{j \in C(a'Pa)} c_j(a, a')w_j + \sum_{\{j, i\} \in L(a, a')} Z(c_j(a, a'), c_i(a, a'))k_{ji} - \sum_{(j, h) \in O(a, a')} Z(c_j(a, a'), c_h(a', a))k'_{jh} \right) \tag{8}
\]

where

\[
K(a, a') = \sum_{j \in F} w_j + \sum_{\{j, i\} \in L(a, a')} Z(c_j(a, a'), c_i(a, a'))k_{ji} - \sum_{(j, h) \in O(a, a')} Z(c_j(a, a'), c_h(a', a))k'_{jh} \tag{9}
\]

(It should be remarked that in the third summation \(c_h(a', a) \) is always equal to 1.)

Remark 2. For the current application we defined the \(Z \)–function as follows: \(Z(x, y) = xy \). An explanation about this choice can be found in Figueira et al. (2009).

2.4. Exploiting the outranking relation

The exploitation procedure starts by deriving from the credibility degrees two complete pre-orders, \(P_\delta \) and \(P_\alpha \). A final partial pre-order \(P \) is built as the intersection of the two complete pre-orders. Pre-orders \(P_\delta \) and \(P_\alpha \) are obtained according to two variants of the same principle, both acting in an antagonistic way on the floating actions (Figueira et al., 2005b).

Definition 7 (Descending pre-order). The complete pre-order \(P_\delta \) is defined as a partition of the set \(A \) into \(r \) ordered classes, \(B_1, \ldots, B_\ell, \ldots, B_r \), where \(B_1 \) is the head-class in \(P_\delta \). Each class \(B_\ell \) is composed of tied actions according to \(P_\delta \). The actions in class \(B_\ell \) are preferred to those in class \(B_{\ell+1} \). For this reason, \(P_\delta \) called a descending or to-down complete pre-order.
Definition 8 (Ascending pre-order). The complete pre-order \mathcal{P}_α is defined as a partition of the set A into ordered classes, $B_1, ..., B_\ell, ..., B_s$, where B_s is the head-class in \mathcal{P}_α. Each class B_ℓ is composed of tied actions according to \mathcal{P}_α. The actions in class $B_{\ell+1}$ are preferred to those in class B_ℓ. For this reason, \mathcal{P}_α is called an ascending or bottom-up complete pre-order.

The overall algorithm, composed by the procedures (called distillations) for determining \mathcal{P}_δ, \mathcal{P}_α, and then \mathcal{P} can be succinctly outlined as follows.

1. Determine \mathcal{P}_δ, starting the first distillation by defining an initial set $D_0 := A$. It leads to the first distilled \tilde{B}_1. After getting \tilde{B}_1, at the distillation $\ell + 1$, set $D_0 := A \setminus \{\tilde{B}_1 \cup \cdots \cup \tilde{B}_r\}$. Continue until all the actions in A are processed.
2. Determine \mathcal{P}_α by using a similar algorithm. But, now remember that the actions in $B_{\ell+1}$ are preferred to those in class B_ℓ.
3. The partial pre-order \mathcal{P} will be computed as the intersection of \mathcal{P}_δ and \mathcal{P}_α.

In the intersection of Step 3 there is incomparability when \mathcal{P}_δ and \mathcal{P}_α provide contradictory results and there is comparability when the results provided by these two pre-orders are compatible.

3. Case study: The re-qualification of an abandoned quarry

The decision aiding problem under analysis in this study is related with the characterization and comparison of alternative options for the re-qualification of an abandoned quarry located in Northern Italy. In particular, this study concerns the analysis and the comparison of five alternatives in order to select the most sustainable one. Details about the application are provided in what follows.

3.1. A brief description of the context

The application performed in the present research is based on the results coming from a previous study where the alternative options have been identified and investigated (Brunetti, 2007; Bottero et al., 2014). The area under analysis refers to a quarry that has been abandoned since 1975 and covers a total surface of 65 000 m2, with a depth of approximately 25 m from the ground level. Due to its abandoned state the area is now characterized by uncontrolled vegetation growth and by water-filled pits. Furthermore, the area under analysis is part of the Provincial ecological system of environmentally valuable sites.

For the reclamation of the area five alternative projects have been considered, that can be described as follows: 1) basic reclamation, 2) realization of a forest, 3) development of a wetland, 4) implementation of the ecological network, and 5) construction of a recreational structure. It is worth mentioning that the projects represent real options, which are now under investigation from the Municipal Authority for the transformation of the area. The five alternative options that were proposed for the re-qualification of the abandoned quarry can be described in a more detailed forma as follows:

1. Basic reclamation: This alternative involves the filling of the quarry, the implementation of security measures on the quarry’ slope characterized by landslide risk, the laying of the topsoil, the natural evolution of the vegetation, and the accelerated growth of the autochthonous black locust wood.
2. *Valuable forest:* This alternative involves the filling of the quarry, the implementation of security measures on the quarry’ slope characterized by landslide risk, the laying of the topsoil, the cover with drainage material, and the establishment of an oak-hornbeam wood.

3. *Wetland:* This alternative involves the partial filling of the quarry, the implementation of security measures on the quarry’ slope characterized by landslide risk, the surface sealing, the creation of a lake, the planting of wetland vegetation, and the natural evolution of the surrounding wood and of the wetland.

4. *Ecological network:* This alternative consists of the partial filling of the quarry, the implementation of security measures on the quarry’ slope characterized by landslide risk, the surface sealing, the realization of lakes, pedestrian and equestrian pathways, and recreational areas, the predisposition of information and educational material, and the natural evolution of the existing wood.

5. *Multi-functional area:* This alternative involves the partial filling of the quarry, the implementation of security measures on the quarry’ slope characterized by landslide risk, and the construction of sports and residential structures that are completely self-sufficient in terms of energy and waste water disposal and that are harmoniously integrated with the landscape.

3.2. *Actors: Their concerns, values, and expectations*

One crucial point of a decision process consists of the identification and classification of the actors or stakeholder groups, which can be defined as those who can affect the realization of organizational goals or group of individuals affected by the realization of the organizational goals. It has been recognized that mapping the stakeholders allows the comprehension of fundamental issues, such as the level of interest of each stakeholder group to impress its expectations on the project decisions and the powerful of each group of affecting the project decisions. In the present analysis, the environmental planning and management involve different actors with conflicting objectives and interests. It would thus be necessary to consider the opinions of all the stakeholders for a sound decision aiding process.

Table 1 surveys the relevant stakeholders which can have a role in the process under investigation. The stakeholders are all the individuals or entities/institutions which are related to the use and/or the management of the area, including the Regional Authority, the Provincial Authority, the Regional Environmental Authority, the Forestry Corp, the Municipal Technical Office, the Mayor, the local practitioners, the inhabitants, and the private entrepreneurs. This structure comprises all the involved stakeholders. It has to be noticed that the final decision is a competence of the Municipal Authority (i.e., the major, hereafter designed by the decision-maker, with the acronym DM) for different reasons: to start with, the major is the owner of the land under examination; secondly, the authorization of any transformation project on the area has to be approved by him; thirdly, in the case of relevant transformation of the area, a change in the Municipal Plan is required and it has to be supported by him. In any case, after his approval, the planning process proceeds through several subsequent steps, such as the Environmental Impact Assessment Procedure (for which the Environmental Authorities are responsible), the Regional approval, and so on.
<table>
<thead>
<tr>
<th>Stakeholder</th>
<th>Level</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forestry Corp</td>
<td>National</td>
<td>The Forestry Corp is a National Police Force in charge for the defense of natural heritage and landscape. In case of deep transformation of the area under investigation, a delegate from the Forestry Corp will take place in the Environmental Impact Assessment procedure.</td>
</tr>
<tr>
<td>Regional Authority</td>
<td>Regional</td>
<td>The Regional Authority is in charge for the territorial and landscape planning and for the environmental management. In this case, if the project will require a modification of the Municipal Plan, the Regional Authority will have to approve the change. Furthermore, the Landscape Regional Plan identifies the area as valuable from a landscape point of view.</td>
</tr>
<tr>
<td>Regional Environmental Authority</td>
<td>Provincial</td>
<td>The Provincial Authority is responsible for the territorial and landscape planning and for the environmental management at the provincial level. The interests in the case under examination are related to the fact that the area is part of the Provincial Ecological Network that links many territorial areas of particular importance from a naturalistic point of view. Moreover, the Provincial Authority is in charge for controlling all the operations related to mining activities (opening of new activities, exercise, closure and environmental rehabilitation).</td>
</tr>
<tr>
<td>Municipal Technical Office</td>
<td>Local</td>
<td>The Municipal Technical Office is in charge for controlling all the construction activities. In this case, it will evaluate the transformation project in order to verify if it complies with the legislation.</td>
</tr>
<tr>
<td>Mayor</td>
<td>Local</td>
<td>The Mayor is the chief of the Municipality and has the responsibility of approving or rejecting the transformation project. The interests are related above all to ensure the quality of life of the local population and to grant the financial-economic stability of the Municipal Authority.</td>
</tr>
<tr>
<td>Local practitioners</td>
<td>Local</td>
<td>They represent the practitioners having a bureau in the zone under analysis and working in the field of architecture, urban planning and agronomy. They could be involved in the transformation project for the area.</td>
</tr>
<tr>
<td>Inhabitants</td>
<td>Local</td>
<td>The local population could be affected by the transformation project. Their interests are related to preserve the environmental system and to increase the level of services in the area.</td>
</tr>
<tr>
<td>Private entrepreneurs</td>
<td>Local</td>
<td>They represent the private bodies that might be interested in investing money in the transformation project that considers the construction of a multi-functional area.</td>
</tr>
</tbody>
</table>

Table 1: Survey of the most relevant actors/stackholder groups
3.3. Building a coherent family of criteria

This subsection is devoted to the construction of the family of criteria, the identification of projects and their performances, as well as the definition of the discriminating thresholds associated with criteria (see Section 2).

3.3.1. Criteria

Starting from the overall objective of the analysis, which is the identification of the most sustainable option for the reuse of the abandoned quarry, a coherent set of family criteria that reflect all the concerns relevant to the decision problem has been identified, paying attention to their exhaustiveness, cohesiveness, and non-redundancy (Roy and Bouyssou, 1993). The criteria considered in the present application were selected based on the relevant international literature (Bascetin, 2007; Rey-Valette et al., 2007; Golestanifar and Bazzazi, 2010; Soltanmohammadi et al., 2010) and on the requirements coming from the legislative framework in the context of Environmental Impact Assessment (first of all, the European Directive 11/97). In order to find the most suitable project for the reuse of the abandoned quarry, a family of six criteria has been built (Table 2). Both, quantitative and qualitative criteria, have been used for the analysis.

<table>
<thead>
<tr>
<th>Criteria</th>
<th>Unit</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment costs</td>
<td>Euros</td>
<td>This criterion models the construction costs [min].</td>
</tr>
<tr>
<td>New services for the population</td>
<td>Qualitative judgment</td>
<td>This criterion models the financial efficiency of the investment and the consequences that the operation could determine on the economic system in terms of local income [max].</td>
</tr>
<tr>
<td>New services for the population</td>
<td>Qualitative judgment</td>
<td>This criterion models the availability of new services for the population, such as green areas, recreational areas, sports structures, etc. [max].</td>
</tr>
<tr>
<td>Landscape ecology</td>
<td>ha</td>
<td>This criterion models the effects of the project on the landscape quality, on bio-diversity conservation and on the local ecological network, in terms of hectares of naturalized area [max].</td>
</tr>
<tr>
<td>Environmental effects</td>
<td>Qualitative judgment</td>
<td>This criterion models the effects that the project is likely to produce on the physical environment (hydrology, geo-technical conditions, etc.) [max].</td>
</tr>
<tr>
<td>Consistency with the local planning requirements</td>
<td>Yes/No</td>
<td>This criterion models the presence of constraints that could affect the transformation project and to the consistency with the planning instruments in force [max].</td>
</tr>
</tbody>
</table>

Table 2: Description of the considered criteria

3.3.2. Performances table

Table 3 presents the performances of the five actions \(a_1, a_2, a_3, a_4, a_5\) according to the six considered criteria. The criteria “profitability”, “new services for the population”, and “environmental
effects” are expressed on the following seven-level qualitative scale: very bad (1), bad (2), rather bad (3), average (4), rather good (5), good (6), very good (7).

<table>
<thead>
<tr>
<th></th>
<th>Investment costs (g_1)</th>
<th>Profitability (g_2)</th>
<th>Services (g_3)</th>
<th>Landscape (g_4)</th>
<th>Environment (g_5)</th>
<th>Consistency (g_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a_1</td>
<td>30 000</td>
<td>rather bad (3)</td>
<td>very bad (1)</td>
<td>2</td>
<td>average (4)</td>
<td>yes (1)</td>
</tr>
<tr>
<td>a_2</td>
<td>45 000</td>
<td>rather bad (3)</td>
<td>rather good (5)</td>
<td>5</td>
<td>rather good (5)</td>
<td>yes (1)</td>
</tr>
<tr>
<td>a_3</td>
<td>90 000</td>
<td>very bad (1)</td>
<td>good (6)</td>
<td>3.2</td>
<td>very good (7)</td>
<td>yes (1)</td>
</tr>
<tr>
<td>a_4</td>
<td>120 000</td>
<td>very bad (1)</td>
<td>very good (7)</td>
<td>3.5</td>
<td>good (6)</td>
<td>yes (1)</td>
</tr>
<tr>
<td>a_5</td>
<td>900 000</td>
<td>very good (7)</td>
<td>very good (7)</td>
<td>1</td>
<td>rather bad (3)</td>
<td>no (0)</td>
</tr>
<tr>
<td>q_j</td>
<td>15 000</td>
<td>1</td>
<td>1</td>
<td>0.5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>p_j</td>
<td>20 000</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 3: Performances table with discriminating threshold values

3.3.3. Thresholds
To take into account the imperfect character of data, ELECTRE methods make use of discriminating (indifference and preference) thresholds (see subsection 2.2). Table 3 thus presents also the discriminating thresholds (indifference, q, and preference, p) identified for the six criteria. In particular:

- For the qualitative criteria (“profitability”, “new services for the population”, and “environmental effects”) the indifference threshold and the preference threshold are both equal to 1 (this means that two performances which are put on two consecutive levels on the qualitative scale cannot be considered as significantly different);

- For the criterion “consistency with the local planning requirements”, there are no thresholds (both are equal to 0).

- For the quantitative criteria (“investment costs” and “landscape ecology”) the indifference threshold could not be 0 and the preference threshold had to be strictly higher than the indifference threshold. In particular, a difference bigger than 20 000 Euros means that the cheaper alternative is strictly preferred and a difference of 15 000 Euros is compatible with an indifference between the two alternatives.

The present analysis considers also the existence of interactions between some pairs the criteria. According to the methodological framework, three types of interaction have been considered in the application: mutual strengthening, mutual weakening, and antagonistic (see subsection 4.3). The new concordance index will thus correctly take into account such types of interactions, by imposing such conditions as boundary, monotonicity, and continuity.

3.4. Choosing an MCDA model
There is now a great variety of MCDA methods and this makes the task of choosing the appropriate method for a certain decision aiding situation not an easy one (Roy and Słowiński, 2013). The choice of the extension of ELECTRE III with interaction seemed to the analyst justified for the following reasons:
(i) Electre methods allow to deal with heterogeneous scales: for four criteria of the considered study the actions are characterized on ordinal scales, while for the other two criteria the scales are quantitative.

(ii) Electre methods are able to take purely ordinal scales into account, without the need of converting the original scales into abstract ones with an arbitrary imposed range, thus maintaining their original concrete verbal meaning.

(iii) Electre methods allow to take into account indifference and preference thresholds when modeling the imperfect knowledge of data.

(iv) The generalization of Electre methods allows to take into account the interaction between some pairs of criteria, which seems being present in our study.

The only other available methods for taking into account the interaction between criteria are those using the Choquet integral. Our choice of Electre was grounded on the following reasons:

(a) The Choquet integral approaches aggregate all the criteria in a unique and common scale, which does not allow to easily continue the reasoning in terms of the original and natural scales.

(b) The Choquet integral approaches are based on a compensatory principle, where a loss on a given criterion is always compensated by a gain on another one. This principle is not adequate for preference modeling in the considered case study.

(c) The Choquet integral approaches cannot take into account the imperfect knowledge by using discriminating thresholds.

4. Conditions for the application of Electre III with the participation of a focus group

The implementation of Electre III with interaction between criteria requires the specification of the role it is suitable the different criteria must play as well as the nature of the interactions which may exist between these criteria. For such a purpose, the analysts (hereafter, only called analyst). For such a purpose, the analyst considered appropriate to form a panel of experts working together, side-by-side, with the help of the well-known focus group technique. This technique is a rather qualitative research method, which allows to take into account the social preferences in a group decision aiding process. The key feature of a focus group consists of the creation of a flow of information on the structure, the beliefs, and the values of social groups within a specific problem (see, for instance, Morgan, 1988; Morgan and Krueger, 1993; Stewart and Shamdasani, 1990). When comparing this technique to the interview method, in which there is only an interaction between the interviewee and the interviewer, the focus group technique is rather based on a very strong interaction between all the participants who can revise and modify their judgments thanks to the promotion of the debate (this aspect can be seen in our case, later on). The training of a panel of experts allows to overcome some difficulties and biases which characterize the decision processes based on a single expert. In the present application, a close attention was devoted to the formation of a group of experts having a balanced background composition. For this reason, an expert in the field of economical evaluation, an environmental engineer, and an expert in landscape ecology were involved in the debate.
Our main job, a analyst, has been organized, in three major phases, according to the following structure. In a first phase (say, a learning phase), the analyst promoted an individual discussion with each expert for reflecting and thinking about the relative importance of criteria, and then, built a set of weights for each one of the three experts, separately. In a second phase, the main task of the analyst was devoted to promote a discussion about the sets of weights obtained in the previous phase, and then, help in building a consensual set of weights for the group. Finally, in the third phase, the analyst led the experts to discuss and work side-by-side about the nature of the interactions which may exist between criteria and about the way of taking into account such interactions. Each one of these three phases will make the object of one of the following three sub-sections. Let us underline that in what follows it is not a matter of veto thresholds. The analyst explained to the experts what a veto effect consisted in. The experts thought that, considering the nature of the case under study, there was no reason to assign a veto power to any of the six considered criteria.

4.1. Phase 1 (learning): construction of a set of individual weights

Indeed, this first phase is a learning phase, which is intended to make the notion of the relative importance of the different criteria understandable for the three experts. These experts worked separately, the object being to give the possibility to each one of the three experts to explain the way they wanted to differentiate the role every criterion must play, according to the opinion of each one of them. With such a purpose in mind, the analyst used the SRF (Simos-Roy-Figueira) method for helping and assisting the experts.

This stage started with a collective presentation of the way this method (Figueira and Roy, 2002) should be able to help the experts to express their judgments with respect to the relative importance of criteria.

1. The analyst gave to every expert a deck (pack, or set) containing six cards with the front of each card carrying the name (or a label) of every criterion that distinguish it from the other cards in the deck; the analyst also gave them a big enough number of blank cards; the purpose of such blank cards being explained to the experts by the analyst slightly later on in the interaction protocol.

2. The analyst asked every expert to regroup cards corresponding to criteria of the same weight in order to constitute, if necessary, packets of ties (the analyst said to them that these packets will be, most often, reduced to the a single card, what was definitely the case here for every one of the three experts and for all the six criteria).

3. Then, the analyst asked every expert to rank (or line up) the tied packets by an increasing order of their weights, by explaining them that the least important packet will be assigned to the rank 1, the second least important to the rank 2, and so on.

4. The analyst also called the attention of every expert to think about the fact that two successive tidying up packets of criteria in the ranking can have, according to their opinion, a more or less close importance; after the expert have been reflect about this more or less close importance, the analyst asked her/him to materialize it by inserting blank cards in between the successive packets of criteria; the analyst finally explained to each expert that, no blank card means that both packets will not have the same weights, but the difference in the weights would be minimal; only one blank card means a double minimal difference when compared to the absence of blank cards; two blank cards correspond to a triple minimal difference, and so on.
Table 4: Ranking of criteria and blank cards for the three experts (where, \(g_1\) = “investment costs”, \(g_2\) = “profitability”, \(g_3\) = “services”, \(g_4\) = “landscape”, \(g_5\) = “environmental”, and \(g_6\) = “consistency”; \(r_j\), represents the position of criterion \(j\), for \(j = 1, \ldots, 6\); \(n_j\), is the number of blank cards between positions \(j\) and \(j + 1\) in the ranking of criteria, for \(j = 1, \ldots, 5\); and, \(N\) is the overall number of blank cards for each expert).

Table 5 contains the information obtained from every expert when applying the procedure above. The analyst was not surprised to obtain different rankings since the three experts have a very different background and, as a result, their approach in the analysis of problem is also very different.

At this point, the analyst explained to the experts that in order to assign the numerical values to the weights, which must reflect the relative importance of criteria according to the preference information they provided (cf. Table 4), needs they answer an additional question. The analyst, therefore, asked, every expert, that she/he should tell how many times the last packet of criteria (that is to say, the most important) is more important than the first one (this ratio will be denoted by \(Z\)). Finally, the analyst specified to every expert that she/he have three possible alternatives to define this value: a single very definite value, a range, or three distinct values (a minimum, a maximum, and a central value).

The obtained answers, as well as the weights that result from such answers by applying SRF, are provided in Table 5.

Table 6: Normalized weights for the Expert in economical evaluation according to different values for the ratio \(Z\).
4.2. Phase 2: construction of a common set of weights

The analyst began by calling the attention of the experts to the convergence or agreement points. This is essentially related to the position (see Table 4) of criterion g_6 (services), as being the least important, and the position of criterion g_5 (effects), as being the most important one. Then, the analyst especially stressed the divergences. First, the analyst pointed out that the expert in economical evaluation inserted very few blank cards (only 2, while the other experts inserted 9 or 10). This led to a more narrowed set of weights with the value 7 she assigned to the ratio Z, instead of 14 and 15 (i.e., the values given by the two other experts). Then, the analyst called the attention of the experts to the very major divergence (cf. again Table 4). This disagreement is related to the relative position in the ranking of criteria g_1 (investment costs) and g_2 (profitability). The expert in economical evaluation assigned the two criteria, respectively, to ranks 4 and 5, while the two other experts reversed their respective ranks: the expert in environmental engineering puts them, respectively, in ranks 5 and 3, and the expert in landscape ecology gave them, respectively, ranks 3 and 2. Besides, if they take into account the place of blank cards, it clearly appears that these two experts wanted to assign a distinctly less important role to criterion g_2, than the role the expert on economical evaluation wanted to give to this same criterion (this is what Table 5 clearly shows).

These divergences led to some exchanges between the expert in economical evaluation and the two others. By means of several explanations, the three experts shared their opinions. These explanations led them to re-examine the role which they agreed to want to make play to certain criteria, especially concerning the ranking of the most distant criteria from their domains of expertise.

For instance, the economical evaluation expert succeeded in making understandable for the two other experts the fact that profitability (g_2) is much more important than investment costs (g_1). She explained that the investment costs in a new project is not very important; indeed, what is really important is the fact that this project can generate important incomes (therefore, a high profitability) in order to remunerate the costs of an intervention (that is, the investment costs). The experts in landscape ecology and in environmental engineering, therefore, saw again how they ranked the criteria and they decided to put profitability (g_2) with a higher importance than the investment costs (g_1) (while in the first phase of the interaction process the situation was the opposite). Finally, the debate converged to a new ranking:

$$g_6 < g_3 < g_1 < g_4 < g_2 < g_5,$$

where $<$ means “strictly less important than”. See also Table 7.

<table>
<thead>
<tr>
<th>Group of the three experts</th>
<th>r_1</th>
<th>n_1</th>
<th>r_2</th>
<th>n_2</th>
<th>r_3</th>
<th>n_3</th>
<th>r_4</th>
<th>n_4</th>
<th>r_5</th>
<th>n_5</th>
<th>r_6</th>
<th>n_6</th>
<th>N</th>
</tr>
</thead>
<tbody>
<tr>
<td>g_1</td>
<td>2</td>
<td>3</td>
<td>g_1</td>
<td>1</td>
<td>g_1</td>
<td>3</td>
<td>g_1</td>
<td>3</td>
<td>g_1</td>
<td>2</td>
<td>g_1</td>
<td>11</td>
<td></td>
</tr>
</tbody>
</table>

Table 7: Common ranking of criteria and blank cards for the group of experts.

Concerning the value of Z, an agreement was achieved around the value 16. It appeared interesting to the analyst to see also the impact which would have the ratios 14 and 15 (cf. Table 8) below. The participants found that the work done by the focus group was a very interesting job. The SRF methodology for the determination of weights was very well accepted and it has been considered useful for reflecting the respective role the experts played by the different criteria involved in this study. The discussion raised by the comparison of the three rankings of the cards, proposed in the first phase by the experts working separately, made it possible to realize that the interpretation
Table 8: Normalized weights for the group of three experts according to different values for the ratio Z.

<table>
<thead>
<tr>
<th>Group of the three experts</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>w_5</th>
<th>w_6</th>
</tr>
</thead>
<tbody>
<tr>
<td>$Z = 14$</td>
<td>14.9</td>
<td>25.7</td>
<td>7.6</td>
<td>18.5</td>
<td>31.1</td>
<td>2.2</td>
</tr>
<tr>
<td>$Z = 15$</td>
<td>14.8</td>
<td>25.8</td>
<td>7.6</td>
<td>18.5</td>
<td>31.1</td>
<td>2.1</td>
</tr>
<tr>
<td>$Z = 16$</td>
<td>14.8</td>
<td>25.9</td>
<td>7.5</td>
<td>18.5</td>
<td>31.3</td>
<td>2.0</td>
</tr>
</tbody>
</table>

of the meaning of the criteria was not the same for the three experts. Once this meaning was clarified and unified, the manipulation of the cards-criteria and the visualization of the way they were ranked led quite quickly to an agreement about the respective role the different criteria should play in the decision aiding process. Finally, the assignment of a value for the ratio Z gave rise to some debates, but the experts easily came to an agreement on the value $Z = 16$. As for the choice of the previous value, the agreement about the choice of the values since $Z = 14$ or $Z = 15$ was also easy to reach, leading to three sets of non significantly different weights (cf Table 8).

4.3. Phase 3: details of the implementation on how to take into account the interaction between criteria

The analyst organized this phase in three steps: the first one consisted of an explanation about what every type of interaction effect could take into account; the second was devoted to an inventory of the type of interactions to be taken into account; and the third dealt with the manner of taking the interactions into account.

4.3.1. First Step

The analyst explained to the experts the nature of the interactions between criteria that ELECTRE method allows to take into account. For such a purpose, the analyst made use of two examples, the first related to the project of building a new hotel, and the second concerning the purchase of a new digital camera, such as they were introduced in Figueira et al. (2009). On the one hand, the three experts had no difficulty to understand the effects of mutual strengthening and mutual weakening. On the other hand, additional explanations were necessary for rendering well understandable the antagonistic effect.

The experts raised the following question: “by analyzing the interactions, should we think about what is going on in the general case of a problem of land-use planning, or must we consider directly the particular case in which we are interested in here?” The analyst recommended the experts to begin by considering the general case, and then examine, if its conclusions remain valid for the particular case. In territory land-use planning problems, it is actually possible that certain interaction effects will depend on the particular case under analysis. The experts presented, as an example, an environmental noisy pollution case. The importance of this impact can strongly depend on the morph-geological characteristics of the territory where the impact will take place. If the impact is produced by a road crossing a village, this impact will be considered in a negative manner, when compared with a case were the road passes in a place where nobody lives in. In a more general way, it is therefore necessary to consider that the decision-aiding problems in an environmental domain must be approached by taking into account all the particular features of the site being analyzed.
4.3.2. Second Step

To prepare the experts for this systematic exam, the analyst wished to begin by making them reflect on three different cases of interaction between criteria (one of every type of effects), which the analyst judged (considering their knowledge on the concrete case) justified to keep for analysis. Indeed, it is important the reader can understand in which purpose the three cases were proposed to begin the discussion with the experts.

A possible strengthening effect between criteria g_1 (investment costs) and g_2 (profitability). “Should not we consider that from the very moment a project a brings more benefits than a project a', being project a less costly, the way these two criteria give their contribution to the credibility of the outranking aSa' must be more significant than the way we obtain by the simple algebraic addition of the two impacts related to each one of these criteria when only one validates the assertion ‘a is at least as good as $a’$’”? The analyst justified the *raison d’être* of such a strengthening effect by emphasizing that a project of high cost will normally have a high profitability too. The expert gave the following example: luxurious houses which are very expensive to construct (due to the high quality of materials, sophistication of the thermal and electrical installations, and so on) are normally sold at a very high price, but with a very high profitability too. This argument did not persuade the experts. It does not seem for them to be relevant and appropriate in the considered case, which is related to a project of public interest. In this type of projects, the very large expenses are accompanied, in general, by a rather low profitability (it is, for example, the case of the construction of a public park). It does not seem adequate to the experts, therefore, to be justified to take into account a form of synergy (or mutual-strengthening) between the two criteria, investment costs (g_1) and profitability (g_2).

A possible weakening effect between criteria g_4 (landscape ecology) and g_5 (environmental effects). “Should not we consider that from the very moment a project a is at least as good as a project a', on each one of the two criteria, the way these two criteria give their contribution to the credibility of the outranking aSa' must be less significant than the way we obtain by the simple algebraic addition of the two impacts related to each one of these criteria when only one validates the assertion ‘a is at least as good as $a’$’”? The experts recognized that this weakening effect was worth being kept. Indeed, it seems to them that it is very probable that if a project is characterized by a good performance in terms of landscape ecology it will also have a good performance in terms of environmental effects. Consequently, the joint impact of these two criteria must be less than the sum of the impacts which they have when they intervene separately.

Possible antagonism of criterion g_5 (environmental effects) **over criterion** g_2 (profitability). “Should not we consider that from the very moment a project a is at least as good as a project a', on criterion g_2 (profitability), but a' is significantly preferred to a on criterion g_5 (environmental effects), the way criterion g_2 gives its contribution to the credibility of the outranking aSa' must be less significant than the way we obtain when criterion g_5 does not validate the assertion ‘a is significantly preferred to $a’$’”? The experts have considered that this antagonism was worth being kept. According to them, if a project (for instance, a_1, see Table 3) has a so good profitability when compared to another project (for instance, a_3, see again Table 3), while the respective performances of these two projects on criterion g_5 (environmental effects) lead to make clear an opposition to the outranking of the second project by the first (a_1Sa_3), the contribution of criterion g_2 to the credibility of this outranking must really be less than the weight of this criterion, w_2. To justify this position, the experts make a reference to real-world cases as well as to the scientific literature.
about studies on environmental impacts. Indeed, these studies showed that when a project has less environmental benefits than another one (as a_3 with respect to a_1), the benefits which come from the profitability are partly hidden by the least good environmental performance. The reduction on the weights of the criterion profitability, in the computation of the credibility of the considered outranking (for instance, $a_1 Sa_3$), appeared to them as an adequate way of taking into account the effect of which it has just been a matter.

The examination of the twelve other cases of possible interaction led the experts to keep a case of mutual strengthening and a second case of antagonism, as illustrated in the following paragraphs.

Strengthening effect between criteria g_1 (investment costs) and g_5 (environmental effects). The experts justified this interaction effect as follows. A project which is characterized by weak environmental effects has all the chances to be also characterized by low intervention costs (investment costs). This leads to consider that a project where the investment costs are low, but that, however, has good environmental effects is worth being very well appreciated. This effect can be taken into account by assigning to criteria g_1 and g_5, when they contribute conjointly to validate an outranking, an overall weight greater than the algebraic addition of the weights w_1 and w_5, which they have when they intervene separately to validate this outranking.

Antagonism of criterion g_4 (ecology) **over criterion** g_2 (profitability). The arguments to keep this interaction effect are similar to the ones leading to keep the antagonism suggested by the analyst (antagonism of g_5 against or over g_2).

4.3.3. Third Step

Having identified the four cases of interaction, which was worth being kept, the analyst must now to get the experts to work together about the way of taking into account these four cases. For such a purpose, the analyst must have asked the experts to assign a numerical value to the interaction coefficients k_{ji} and k_{ij}' as they were defined in subsection 2.3.2. This was made through a dialogue between the analyst and the experts as we shortly present in what follows.

1. **You have considered that it was necessary to take into account a strengthening effect between criteria** g_1 (investment costs, weight $w_1 = 14.8$) and g_5 (environmental effects, weight $w_5 = 31.3$). This strengthening effect intervenes when both criteria g_1 and g_5 conjointly contribute to validate the assertion ‘a outranks $a’”. To take into account this strengthening effect, it is needed, under these conditions, to assign to the coalition of both criteria (investment costs, environmental effects) a weight greater than the sum $w_1 + w_5 = 14.8 + 31.3 = 46.1$. What is, under these conditions, the value which it is necessary, according to you, to assign to the weight of this coalition?” The experts felt difficulties to answer this question. They understood perfectly the sense of the question, but they did not know on which foundations to take support to provide a ciphered answer. They asked if the analyst could provide an interval (a minimum and a maximum) in which they should place the asked value. First of all, the analyst pointed out that, in the case of a strengthening effect considered extremely weak (in other words, negligible) a minimum value was 46.1. Then, in the case of a strengthening effect judged extremely strong, the analyst offered a suggestion (as an example) that the maximum could be the double, that is, the value 92.2. On these foundations, the experts came to an agreement, to assign a weight of 60 to the coalition of both criteria g_1 and g_5.

20
when they intervene conjointly. It follows that the value of the strengthening coefficient k_{15} is: $60 - 46.1 = 13.9$, rounded up to 14.

b) “You have considered that it was necessary to take into account a weakening effect between criteria g_4 (ecology, weight $w_4 = 18.5$) and g_5 (environmental effects, weight $w_5 = 31.3$). This weakening effect intervenes when both criteria g_4 and g_5 jointly contribute to validate the assertion ‘a outranks $a’$. To take into account this effect, it is needed, under these conditions, to assign to the coalition of both criteria (ecology and environmental effects) a weight lower than the sum $w_4 + w_5 = 18.5 + 31.3 = 49.8$. What is, under these conditions, the value which it is necessary, according to you, to assign to the weight of this coalition?” Again, the experts asked the analyst to propose them an interval in which they should place the asked value. First of all, the analyst pointed out that a weakening effect could lead at most to the weight the most important criterion weight must contribute by itself only to the credibility of the outranking (the other criterion bringing no additional information). It follows that an adequate minimum value is 31.3 (maximum weakening). In the case of a weakening effect, considered extremely weak (in other words, considered negligible), the weight of the coalition could stay, under these conditions, equal to $w_4 + w_5 = 49.8$. On these foundations, the experts came to an agreement to assign a weight slightly greater than 40 (40.8) to the coalition of both criteria, g_4 and g_5, when they intervene conjointly. It follows that the value of weakening coefficient k_{45} is $40.8 - 49.8 = -9$.

c) “You have considered that it was necessary to take into account an antagonism of criterion g_4 (ecology) over criterion g_2 (profitability, weight $w_2 = 25.9$). This antagonism intervenes when a project ‘a is at least as good as a project $a’$’ on criterion g_2, while $a’$ is significantly preferred to a on criterion g_4. To take into account this antagonism, it is needed, under these conditions, to assign to the criterion g_2 (profitability) a lower weight than $w_2 = 25.9$. What is, in these conditions, the value which it is necessary, according to you, to assign to the weight of this criterion?” The analyst still offered an interval here, and started again to pointing out that if the antagonism is extremely weak (in other words, negligible) an adequate maximum value is $w_2 = 25.9$. In the case of an antagonism judged extremely strong, the analyst suggested to suppose (as an example) that the minimum value could be the half of the weight w_2, that is to say, 13. The experts had a little more difficulties here than in both of the precedent cases (perhaps because they began being tired) to agree about a value. It is finally the value 20 which was kept. It follows that the value of the antagonism coefficient k'_{24} is $25.9 - 20 = 5.9$, rounded up to 6.

d) The experts have considered that the antagonism of criterion g_5 (environmental effects) over criterion g_2 (profitability) was of the same nature and also of the same importance as the antagonism of g_4 (ecology) over criterion g_2. It led to put $k'_{25} = 6$.

Table 9 sums up the results gathered in this third step.
Table 9: Interaction coefficients (this table contains all necessary unambiguously information for interactions: the absence of figures characterizes the absence of interactions; the presence of a figure repeated in a symmetrical manner with respect to the main diagonal characterizes a strengthening effect if the figure is positive and a weakening effect if the figure is negative; the presence of a figure appearing only above or under the main diagonal, in other words not repeated in a symmetrical manner, characterizes an antagonism).

<table>
<thead>
<tr>
<th></th>
<th>Investment (g_1)</th>
<th>Profitability (g_2)</th>
<th>Services (g_3)</th>
<th>Landscape (g_4)</th>
<th>Environment (g_5)</th>
<th>Consistency (g_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Investment (g_1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_{15} = 14$</td>
<td></td>
</tr>
<tr>
<td>Profitability (g_2)</td>
<td></td>
<td></td>
<td></td>
<td>$k_{24} = 6$</td>
<td>$k_{25} = 6$</td>
<td></td>
</tr>
<tr>
<td>Services (g_3)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landscape (g_4)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_{45} = -9$</td>
<td></td>
</tr>
<tr>
<td>Environment (g_5)</td>
<td>$k_{51} = 14$</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$k_{54} = -9$</td>
</tr>
<tr>
<td>Consistency (g_6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

The analyst checked if the positive net balance condition (now with the normalized weights and interaction coefficients) was fulfilled for the common set of weights. It is related with the criteria g_2, g_4 and g_5:

$$w_2 - k_{24}^\prime - k_{25}^\prime = 25.9 - 6 - 6 = 13.9 > 0$$
$$w_4 - k_{45} = 18.5 - 9 = 9.5 > 0$$
$$w_5 - k_{54} = 31.3 - 9 = 22.3 > 0$$

At the end of the meeting, the analyst discussed with the experts about the difficulties which they felt when assigning numerical values to the interaction coefficients. The analyst asked the experts the following question: “It would have been easier for you, rather than to answer by a numerical value, to make it in a qualitative terms by appreciating the level of interaction on a semantic scale, such as the following one: \(\text{negligible, weak, medium, strong, extremely strong}\)?”. Without hesitancy the experts answered in the affirmative. If they like to adopt this mode of questioning, it is naturally necessary to define rules intended to assign numerical values to each one of the levels of interaction characterized in a semantic way. The precedent considerations showed that the rules related to the extreme levels (negligible, extremely strong) depend on the type of the considered
interaction effect. Once these minimums and maxima were fixed, we can associate the medium level with the middle of the interval defined by the extreme values, the weak level with the quarter, and the strong level with the three quarters. The resulting values should act then as a basis for a debate with the experts to fix the final numerical value, which it is necessary to adopt.

Despite the difficulties found to assign numerical values to the interaction coefficients, the experts finally agreed to recognize that the way the interactions are taken into account in ELECTRE III were natural and easy to understand. They also understood the manner the numerical values, they had to assign to the interaction coefficients, were used to change the relative importance of the criteria affected by the interaction effects. This seems us to be very positive conclusions in favor of the method within the context of this concrete application. We do not think that similar conclusions would have been able to be obtained with methods based on the Choquet integral. The way interactions operate in these methods, through the definition of capacities, seems to us to be much more opaque and, as a result, more difficult to make understandable to the members of a focus group. Finally, let us point out that the antagonistic effect, that turned out to be very appropriate to the land-use planning application considered here, cannot be taken into account with Choquet integral based methods.

5. Sensitivity analysis and robustness concerns

The work with the focus group allows to define a consensual set of weights (cf. Table 8, for $Z = 16$) as well as a set of values for the interaction coefficients (cf. Table 9). The values of the parameters, which appear in these two tables, determine the role of the different criteria the members of the focus group want to make use for ranking the five projects under analysis. These values were decided following arbitrage and hesitations in order to remove ambiguities which must be taken into account to obtain robust conclusions (cf. Section 6). The biggest difficulties which were felt by the members of the focus group concerned the assignment of values to the interaction coefficients. This is why the analyst was interested in an extremely vast set of possible values for such coefficients in order to examine the impact that the choice of such a set of values could have on the ranking under analysis. This examination was conducted, in a first phase, with the common set of weights (cf. subsection 5.1, below). Then, the analyst tried to verify if the obtained results remained valid with some sets of weights “close” to the common set of weights (cf. subsection 5.2, below). Finally, the analyst performed the test with a set of rather different weights (cf. subsection 5.3, below).

The computational results and experiments presented in this section were performed with a new Q-BASIC implementation\(^1\) of ELECTRE III with interactions between criteria.

5.1. Results with the common set of weights: Analysis of the interaction effects

With the common set of weights and in the absence of any interaction between criteria, the application of ELECTRE III leads to the partial pre-order P^0 (see Figure 1a). When taking into account the interaction effects with their original values (cf. Table 9) the application of ELECTRE III leads to the partial pre-order P^1 (see Figure 1b), which only differs from P^0 for the fact that project a_4 is not any more ranked before project a_1, but it becomes incomparable to the latter.

\(^1\)For more details about this software please ask Prof. Salvatore Greco (salgreco@unict.it)
In a preliminary analysis, the analyst tried to know the partial pre-order to which the application of ELECTRE III leads when only one of the four interaction effects is taken into account. This was done by making the coefficient vary within a range as wide as possible, by taking into account its meaningfulness. Thus, four cases were successively studied.

Case 1: Varying k_{15} **within the range** $[0, 45]$ (values bigger than 45 are considered by the analyst completely unrealistic)

Case 2: Varying k_{45} **within the range** $[-15, 0]$ (the positive net balance condition allows to go until -18.5, but this value was judged by analyst not very realistic since it leads to exclude criterion g_4; this is why the analyst did not considered useful to include values strictly lower than -15).

Case 3: Varying k'_{24} **within the range** $[0, 20]$ (the net positive balance condition allows to go until 25.9, but with this value the antagonistic effect cancels absolutely the role of criterion g_2. The analyst has considered 6 as the minimum weight necessary to keep for criterion g_2 and consequently the limit was 20. This is why 5.9 is the minimum value of the weight, which the analyst considered useful to keep for further analysis).

Case 4: Varying k'_{25} **within the range** $[0, 20]$ (the justification is the same as in the previous Case 3).

In Cases 1, 3, and 4, that is to say, when only, either the mutual-strengthening effect or one of the two antagonistic effects is taken into account, the result is \mathcal{P}^0 (see 1a); this occurs for whatever the value of the interaction coefficient within the range under analysis. It highlights that, with the considered set of weights, none of the interaction effects taken separately has an impact in the resulting pre-order.

In Case 2, that is to say, when the mutual-weakening effect is taken into account separately, we find:
- \(P^0 \), if the value assigned to the interaction coefficient remains very weak: \(|k_{45}| \leq 1.333 \).

- \(P^1 \), for whatever the value of \(k_{45} \) within the range \([-15, -1.334] \) (this is the same as in the presence of all interaction effects, with the original values of the interaction coefficients, especially with \(k_{45} = -9 \)).

We shall see in subsection 5.2 the reasons that justify the presence of a critical threshold which leads to switch from \(P^0 \) to \(P^1 \).

The analyst then wished to see what would happen, on the left and on the right of the critical value \(-1.333\), when the three other interaction effects were active, according to the ranges defined in Cases 1, 3, and 4. The analyst verified that the final result is always \(P^0 \) if \(|k_{45}| \leq 1.333 \) and \(P^1 \) if \(|k_{45}| \geq 1.334 \).

5.2. Analysis with some sets of weights “close” to the common set of weights

As it has been highlighted in subsection 4.2, after explaining the meaning of each criterion, it was comparatively easy to reach a general consensus about the ranking of criteria by an increasing order of relative importance (cf. Table 7). The number of blank cards in each of the inter-criteria spaces previously defined could have led to numbers of blank cards slightly different from those showed in Table 7. That is why the analyst has chosen four other possible dispositions for the blank cards, strongly contrasting with each other, as shown in Table 10. This choice has been done in order to see if with the set of weights obtained from SRF for each of the new dispositions of blank cards the final results would have been different (see Table 11). Therefore, the analyst followed again the same procedure as the one introduced in subsection 5.1 by successively replacing the common set of weights by each one of the four new sets of weights presented in Table 11.

Table 10: Ranking criteria and different dispositions of the blank cards for the group of experts.

<table>
<thead>
<tr>
<th>Dispositions</th>
<th>(r_1)</th>
<th>(n_1)</th>
<th>(r_2)</th>
<th>(n_2)</th>
<th>(r_3)</th>
<th>(n_3)</th>
<th>(r_4)</th>
<th>(n_4)</th>
<th>(r_5)</th>
<th>(n_5)</th>
<th>(r_6)</th>
<th>(N)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>(g_6)</td>
<td>2</td>
<td>(g_3)</td>
<td>2</td>
<td>(g_1)</td>
<td>2</td>
<td>(g_4)</td>
<td>2</td>
<td>(g_2)</td>
<td>2</td>
<td>(g_5)</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>(g_6)</td>
<td>3</td>
<td>(g_3)</td>
<td>2</td>
<td>(g_1)</td>
<td>1</td>
<td>(g_4)</td>
<td>2</td>
<td>(g_2)</td>
<td>3</td>
<td>(g_5)</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>(g_6)</td>
<td>3</td>
<td>(g_1)</td>
<td>1</td>
<td>(g_3)</td>
<td>3</td>
<td>(g_4)</td>
<td>1</td>
<td>(g_2)</td>
<td>3</td>
<td>(g_5)</td>
<td>11</td>
</tr>
<tr>
<td>4</td>
<td>(g_6)</td>
<td>1</td>
<td>(g_3)</td>
<td>3</td>
<td>(g_1)</td>
<td>3</td>
<td>(g_4)</td>
<td>3</td>
<td>(g_2)</td>
<td>1</td>
<td>(g_5)</td>
<td>11</td>
</tr>
</tbody>
</table>

Table 11: Normalized weights for the group of experts with different dispositions of blank cards and \(Z = 16 \).

<table>
<thead>
<tr>
<th>Dispositions</th>
<th>(w_1)</th>
<th>(w_2)</th>
<th>(w_3)</th>
<th>(w_4)</th>
<th>(w_5)</th>
<th>(w_6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>13.7</td>
<td>25.5</td>
<td>7.8</td>
<td>19.6</td>
<td>31.4</td>
<td>2.0</td>
</tr>
<tr>
<td>2</td>
<td>14.8</td>
<td>24.0</td>
<td>9.3</td>
<td>18.5</td>
<td>31.4</td>
<td>2.0</td>
</tr>
<tr>
<td>3</td>
<td>13.0</td>
<td>24.0</td>
<td>9.3</td>
<td>20.3</td>
<td>31.4</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>13.0</td>
<td>27.7</td>
<td>5.6</td>
<td>20.3</td>
<td>31.4</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Table 10: Ranking criteria and different dispositions of the blank cards for the group of experts.

Table 11: Normalized weights for the group of experts with different dispositions of blank cards and \(Z = 16 \).

In the absence of any interaction, we find the pre-order \(P^0 \) for each of four considered sets of weights (as in the case of the common set of weights). When the initial values of the interaction coefficients are kept, especially \(k_{45} = -9 \), we find (as in the case of the common set of weights) the pre-order \(P^1 \) with the sets of weights from dispositions 1 and 2 (cf. Table 11). With the sets of weights...
weights from dispositions 3 and 4, the resulting pre-order is not any more \(\mathcal{P}^1\) but \(\mathcal{P}^0\), this shows that the mutual-weakening effect is of no impact with these two new sets of weights. The study of Cases 1, 2, 3, and 4 defined in subsection 5.1 will provide the explanation of this modification.

In Cases 1, 3, and 4, defined, in subsection 5.1, the obtained results with the four new sets of weights are identical to those obtained with the common set of weights. Moreover, in Case 2 (which takes into separate account the mutual-weakening effect) the critical value, which allows to switch from \(\mathcal{P}^0\) to \(\mathcal{P}^1\), is \(-1.333\) only when considering the set of weights of Disposition 2: in such a set of weights \(w_4\) has the same value (18.5) as in the common set of weights. With the sets of weights from Disposition 1, \(w_4\) becomes equal to 19.6 and the critical threshold gets the value \(-8.66\); this value characterizes a smaller weakening effect than the one that was characterized by \(-9\). That is why with this new set of weights we still obtain pre-order \(\mathcal{P}^1\) when we take into account all the interaction effects with the initial values of the interaction coefficients, especially \(k_{45} = -9\). On the contrary, with both sets of weights from Dispositions 3 and 4, \(w_4\) becomes equal to 20.3 and we observe that the critical threshold is at \(-13.33\); a value which characterizes a stronger weakening effect than that characterized by \(-9\). This is why with these two sets of weights we find pre-order \(\mathcal{P}^0\) (and not \(\mathcal{P}^1\)) when all interaction effects intervene with the initial values of the interaction coefficients, especially \(k_{45} = -9\).

The previous considerations highlight the coherence of the obtained results. In particular, they make appear the following phenomenon: The higher \(w_4\): the bigger must be \(|k_{45}|\) so that the mutual-weakening effect leads to rank no more project \(a_4\) in a better position than project \(a_1\), but shows instead incomparability between these two projects. Such a phenomenon requires an explanation.

This explanation comes from the fact that the mutual-weakening effect affects the way projects \(a_4\) and \(a_1\) compare to each other (since \(a_4\) is strictly preferred to \(a_1\) according to both criteria \(g_4\) and \(g_5\)). We noticed that in the absence of a mutual-weakening effect (\(k_{45} = 0\)) \(a_4\) is ranked in a better position than \(a_1\). It is not surprising that this ranking disappears to give place to an incomparability when the mutual-weakening effect becomes strong enough to reduce in a significant manner the power criteria \(g_4\) and \(g_5\) have to validate the outranking of \(a_1\) by \(a_4\). This explains the presence of a critical threshold with a value of \(k_{45}\). We must expect that this critical threshold becomes closer to 0 as \(w_4\) decreases, since the credibility of the outranking of project \(a_1\) by \(a_4\) increases when \(w_4\) increases. It is really what we have observed and what it was a matter of an explanation.

5.3. Analysis with the set of weights of expert \(E_1\)

The analyst wished to confront the previous results with those that would have been obtained if the set of weights finally kept had been that one of the expert in economic evaluation, \(E_1\). Indeed, it was the expert \(E_1\) (as we saw in subsection 4.2) who contributed to dissipate the poor interpretation of the respective role which it was necessary to attribute to criteria \(g_1\) and \(g_5\). Nevertheless, in consensus resulting from her intervention, it was assigned to criterion \(g_4\) (landscape ecology) a bigger relative importance than that assigned to criteria \(g_3\) (new services) and \(g_1\) (investment costs), while initially, for the expert \(E_1\), it was the opposite situation. Moreover, this expert put very few blank cards between the criteria ranks and assigned the value 7 to the \(Z\)-ratio. The resulting set of weights from \(E_1\) (cf. Table 6) is much more narrowed and rather different from those considered before (e.g., \(w_4 = 13\) while previously was \(w_4 \geq 18.5\)).

The analyst, therefore, performed with this new set of weights the same type of computations as those performed with the sets of weights taken in consideration in the two previous subsections.
The obtained results are identical, with two very little exceptions. It is worthwhile to present these two exceptions here, even if they will not affect the general conclusions presented in Section 6. It is, finally, also an agreement aspect, which deserves an explanation.

a) On the mutual-strengthening effect
With all the sets of weights studied in subsections 5.1 and 5.2, the result is always \(P^0 \) for all the values of \(k_{15} \) within the range \([0, 45]\). The mutual-weakening effect thus does not have an impact. With the sets of weights of expert \(E_1 \), the result becomes \(P^1 \) as soon as \(k_{15} \) exceeds 7.99. In other words, from the value 8 and beyond, the result is not any more \(P^0 \) but \(P^1 \), which means that it is not any more justified to have \(a_4 \) better ranked than \(a_1 \) since these two projects become incomparable. The reason is the following. First of all, let us point out that the mutual-strengthening effect has no direct impact on the way projects \(a_4 \) and \(a_1 \) must be compared, since \(a_4 \) is strictly preferred to \(a_1 \) according to criterion \(g_5 \) while it is the opposite with respect to criterion \(g_1 \). There is, therefore, an indirect effect, making an influence on the way \(a_4 \) compares itself with other projects, that explains the fact that \(a_4 \) does not rank in a better position than \(a_1 \), when the value of \(k_{15} \) exceeds a critical threshold.

For an explanation of this result, let us firstly highlight that in the ranking provided by the descending distillation, \(a_4 \) is always placed in a strictly better position than \(a_1 \), while in the ranking provided by the ascending distillation, it depends on the considered case, either projects \(a_1 \) and \(a_4 \) are in the same position, or \(a_1 \) is in a better position than \(a_4 \). It is this second situation which leads to the incomparability between \(a_1 \) and \(a_4 \). We saw that this incomparability appeared only with the set of weights of expert \(E_1 \) (in which \(w_4 \) is weaker than in the common set of weights) and with a strong enough mutual-strengthening effect: \(k_{15} \geq 0.8 \). This is due to the fact that, in the latter case, \(a_4 \) is significantly outranked by two other projects, \(a_2 \) and \(a_3 \), while \(a_1 \) is only outranked by one, \(a_2 \). In all the other cases, projects \(a_1 \) and \(a_4 \) are outranked by another single project: \(a_2 \) for \(a_1 \) and according to the considered case, \(a_2 \) or \(a_3 \) for \(a_4 \).

b) On the mutual-weakening effect
With the considered sets of weights, the mutual-weakening effect has no impact: Either when this effect intervenes separately or when other interaction effects are considered jointly, the result is still \(P^0 \) and never \(P^1 \), contrary to the fact that we had observed in subsection 5.2. This change has nothing of surprising. With the sets of weights previously considered, the critical value of \(|k_{15}|\) which when exceeded leads to \(P^1 \), it was all the more weak than the weight of criterion \(g_4 \) was itself weak. With \(w_4 = 18.5 \) this critical value was at 1.333. In the set of weights considered here, we have \(w_4 = 13 \). This explains the fact we observe no critical value at all.

c) On the antagonistic effect
In all the studied cases (including those in subsection 5.3) this effect has no impact. We will explain why this effect has no impact, especially in the case of expert E1, but the argument is the same for all the cases. To do so it is necessary to identify all the ordered pairs \((a, a')\) where at least one of the two antagonistic effects could have an impact. It is thus the case if and only if “\(a\) outranks \(a''\)” on criterion \(g_2 \) and “\(a'\) is strictly preferred to \(a''\)” either on criterion \(g_4 \) or on criterion \(g_5 \). The analysis of Table 3 leads to the following ordered pairs:

- Antagonism due to criterion \(g_4 \): \((a_1, a_2), (a_1, a_3), (a_1, a_4), (a_5, a_2), (a_5, a_3), (a_5, a_4)\).
- Antagonism due to criterion \(g_5 \): \((a_1, a_3), (a_1, a_4), (a_2, a_3), (a_5, a_2), (a_5, a_3), (a_5, a_4)\).
For each of these ordered pairs, the credibility of the outranking of \(a' \) by \(a \) takes into account the weight of criterion \(g_2 \). Indeed, the effect of an antagonism contributes to diminish this weight. When in \(P^0 \), as well as in \(P^1 \), \(a' \) is ranked in a better position than \(a \), this reduction of the weight of \(g_2 \) (and consequently of the antagonistic effects) cannot produce an impact. We still have to explain why the antagonistic effect has no impact when considering the other three ordered pairs, i.e., \((a_1, a_4), (a_5, a_4), \) and \((a_2, a_3)\).

1. **Ordered pair** \((a_1, a_4)\): The incomparability between these two projects with the set of weights of the expert \(E_1 \) does not come from a direct comparison of \(a_1 \) against \(a_4 \) (the outranking credibility is too weak); it comes instead from indirect effects which take into consideration the way \(a_4 \) compares itself with other projects. There is, therefore, no reason why the reduction of the credibility degree of the outranking of \(a_4 \) by \(a_1 \), following from an antagonistic effect, can lead to a ranking with \(a_1 \) in a worst position than \(a_4 \) (the only effect which could have an antagonism due to criterion \(g_4 \)).

2. **Ordered pair** \((a_5, a_4)\): In this case an indirect effect influences the way \(a_4 \) compares itself with other projects and explains the fact that \(a_4 \) is incomparable to \(a_5 \), for whatever the considered set of weights. There is, therefore, no reason why the reduction of the credibility degree of the outranking of \(a_4 \) by \(a_5 \), following from one any of the two antagonistic effects, can lead to a ranking with \(a_5 \) in a worst position than \(a_4 \).

3. **Ordered pair** \((a_2, a_3)\): Here it is necessary to explain why the antagonistic effect which comes only from \(g_5 \) remains compatible with a ranking where \(a_2 \) is in a better position than \(a_3 \), even with a maximum antagonistic coefficient \(k'_{25} = 20 \). The value of the credibility degree of the outranking of \(a_3 \) by \(a_2 \) is equal to:

 - (for the common set of weight): 0.687 in the absence of antagonism and 0.609 with a maximum antagonistic effect.
 - (for the set of weights of expert \(E_1 \)): 0.745 in the absence of antagonism and 0.681 with maximum antagonistic effect.

These reductions of the credibility degree of the outranking \(a_3 \) by \(a_2 \) were not sufficient to change the way \(a_2 \) and \(a_3 \) are ranked.

6. **Conclusions**

The results presented in Section 5 lead to the following conclusions:

(a) In the real case considered in this article the analysis of the results allow us to formulate the following robust conclusions (this term having the sense defined in Roy 2010a,b):

1. **Electre III** with interactions between criteria leads to rank \(a_2 \) in a better position than \(a_3 \), and these two projects in better positions than the remaining three others; this is valid for whatever the considered sets of weights and interaction coefficients. In the same conditions \(a_5 \) is ranked in a better position than \(a_1 \), and \(a_4 \) is incomparable to \(a_5 \).

2. Project \(a_4 \) is in general ranked in a better position than \(a_1 \) by **Electre III** with interaction between criteria, except when the values for the interaction coefficients \(k_{15} \) (mutual-strengthening effect) and/or \(k_{45} \) (mutual-weakening effect) exceed a certain critical threshold; in these conditions \(a_4 \) becomes incomparable to \(a_1 \).
These conclusions were obtained following an interactive approach requiring the intervention and interaction with the members of a focus group, that worked together to assign the values of the first sets of weights and interaction coefficients to be introduced in ELECTRE III with interactions for producing the first result. The approach followed to assign such values was easily understood and accepted by the members of the focus group. Uncertainties and ill-determinations which resulted from this approach could be taken into consideration by the method (in particular by using sensitivity analysis) so as to obtain the above introduced conclusions.

The results of the previous sections have been introduced to the members of the focus. Their reactions were the following. The first important observation that they made concerned the obtained results. In particular, all the participants confirmed that the two best performing alternatives are coherent with their expectations. A second observation concerned the result of the sensitivity analysis with particular reference to the interaction coefficients. All the participants agreed on the importance of taking into account such interaction effects for environmental decision making processes but suggested that further research should be carried out in order to develop a user friendly protocol for the elicitation of the coefficients.

The study of this real case allowed us to test the ELECTRE III method with interactions between criteria to support a public decision related with territorial planning processes. The way the whole work has been developed and conducted, the nature of the obtained results, as well as the way the results were accepted constitutes, in our opinion, a validation of this method for helping to make better decisions in this type of contexts.

References

