NONCOMPENSATORY AND GENERALIZED NONCOMPENSATORY
PREFERENCE STRUCTURES

CAHIER N° 59
avril 1985

D. BOUYSSOU
J.C. VANSNICK
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Résumé</td>
<td>1</td>
</tr>
<tr>
<td>Abstract</td>
<td>1</td>
</tr>
<tr>
<td>1. Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2. Notations and preliminary definitions</td>
<td>1</td>
</tr>
<tr>
<td>3. Noncompensatory preference structures (NPS)</td>
<td>3</td>
</tr>
<tr>
<td>4. Generalized noncompensatory preference structures (GNPS)</td>
<td>10</td>
</tr>
<tr>
<td>5. GNPS and decision-aid</td>
<td>18</td>
</tr>
<tr>
<td>References</td>
<td>20</td>
</tr>
</tbody>
</table>
LES STRUCTURES DE PREFERENCE NON COMPENSATOIRES
ET LEUR GENERALISATION

RESUME

Ce cahier propose une étude théorique de la notion de structure de préférence non compensatoire. Après avoir rappelé quelques résultats connus sur ces structures, on montre comment elles permettent de formaliser et d'axiomatiser de façon rigoureuse la notion de concordance. On propose ensuite une généralisation importante de la notion de non compensation permettant de prendre en compte l'idée de discordance et, sous certaines hypothèses additionnelles, celle de veto. Les grandes lignes d'une méthode d'aide à la décision (TACTIC) utilisant de telles structures sont ensuite esquissées.

NONCOMPENSATORY AND GENERALIZED NONCOMPENSATORY PREFERENCE STRUCTURES

ABSTRACT

This paper provides a theoretical study of noncompensatory preference structures. Previous results about these structures are recalled, and it is shown how they can be used to formalize and axiomatize the notion of concordance. We then propose a generalization of noncompensation allowing for the possibility of discordance and veto effects. In conclusion we outline the principles of a decision-aid method (TACTIC) using these structures.
NONCOMPENSATORY AND GENERALIZED
NONCOMPENSATORY PREFERENCE STRUCTURES

Denis BOUYSSOU
Jean-Claude VANSNICK

Running head: Noncompensatory Preference Structures
This paper provides a theoretical study of noncompensatory preference structures. Previous results about these structures are recalled, and it is shown how they can be used to formalize and axiomatize the notion of concordance. We then propose a generalization of noncompensation allowing for the possibility of discordance and veto effects. In conclusion we outline the principles of a decision-aid method (TACTIC) using these structures.
1. **Introduction**

The aim of this paper is to provide a general study of noncompensatory preference structures. These structures have not been studied very much yet, the attention of most decision theorists being almost exclusively devoted to structures allowing some kind of utility representation. They nevertheless appear frequently in practice both as heuristic approaches to analyze multidimensional evaluations (e.g. disjunctive and lexicographic models, see Mac Crimmon (1973)) and as easy to implement methods to perform an aggregation of several attributes for decision-aid (ELECTRE methods, see Roy (1968) and (1971), Roy and Bertier (1972)).

The paper is organized as follows. We present our notations in section 2. In section 3 we recall some definitions and propositions about noncompensatory preference structures and introduce the notion of concordance preference structure. In section 4 we propose a generalization of these notions introducing the idea of discordance. Section 5 provides a brief description of how such preference structures can be used for decision-aid.

2. **Notations and Preliminary Definitions**

Throughout the paper we will note:

\[\mathbb{R}_0^+ \] the set of strictly positive real numbers,
\[\mathbb{N} = \{0, 1, 2, \ldots \}, \mathbb{N}_0 = \mathbb{N} \setminus \{0\}, \]
\[\Omega = \{1, 2, \ldots, n\} \text{ with } n \in \mathbb{N} \text{ and } n \geq 2, \]
\[\mathcal{P}(\Omega) \] the set of all subsets of \(\Omega \),
\[S \] the set of all pairs of disjoint subsets of \(\Omega \), \(S = \{(A, B) \mid A, B \in \mathcal{P}(\Omega) \text{ and } A \cap B = \emptyset\} \),
\(X_1, X_2, \ldots, X_n, n \) nonempty sets which can be interpreted as \(n \) sets of levels defining \(n \) attributes in a multi-attribute decision problem,
\[X = \prod_{i=1}^{n} X_i \] the cartesian product of these sets,
\((x_i, (y_j)_{j \neq i}) \) the element of \(X \) \((y_1, y_2, \ldots, y_{i-1}, x_i, y_{i+1}, \ldots, y_n) \),
\(\succ\) an asymmetric binary relation on \(X\) which can be interpreted as a (strict) preference relation.

\((X, \succ)\) will be called a Preference Structure (P.S.).

We will classically note \(\sim\) the binary relation on \(X\) defined by
\(x \sim y\) iff not \((x \succ y)\) and not \((y \succ x)\) and \(\succ\) the binary relation on \(X\) such that \(x \succ y\) iff not \((y \succ x)\).

Definition 2.1: For all \(i \in \Omega\) we define a binary relation \(\succ^i\) on \(X\) by
\[x_i \succ^i y_i \iff (x_i, (a_j)_{j \neq i}) \succ (y_i, (a_j)_{j \neq i}) \text{ for all } (a_j)_{j \neq i} \in X.\]
From \(\succ\) we define \(\sim\) and \(\succeq\) as above.

The asymmetry of \(\succ\) obviously implies the asymmetry of each \(\succ^i\). The definition of \(\succ^i\) does not imply any notion of preferential independence since we have \(x_i \succ^i y_i\) only if \((x_i, (a_j)_{j \neq i}) \succ (y_i, (a_j)_{j \neq i})\) for all vectors \((a_j)_{j \neq i}\).

Definition 2.2: An attribute \(X_i\) is essential iff \(x_i \succ^i y_i\) for some \(x_i, y_i \in X_i\).

We will assume hereafter that all attributes are essential which will prove restrictive for our purposes.

Definition 2.3: For each ordered pair \((x, y) \in X^2\) we will note
\[P(x, y) = \{i \in \Omega \mid x_i \succ^i y_i\}.\]
Thus \(P(x, y)\) denotes the set of attributes for which there is a partial preference for \(x\) on \(y\). The asymmetry of each \(\succ^i\) implies that
\[P(x, y) \cap P(y, x) = \emptyset \text{ for all } x, y \in X.\]

Definition 2.4: We will note \(\triangleright\) and \(\simeq\) the binary relations on \(\mathcal{P}(\Omega)\) defined respectively by
\[A \triangleright B \text{ iff } (P(x, y), P(y, x)) = (A, B) \text{ for some } x, y \in X \text{ such that } x \triangleright y \text{ and}\]
\[A \simeq B \iff A \cap B = \emptyset \text{ and not } (A \triangleright B) \text{ and not } (B \triangleright A).\]
It is clear that $A \triangleright B$ implies $(A, B) \in S$ and that the following lemma holds for all $A, B \in \mathcal{P}(\Omega)$.

Lemma 2.1: $A \cong B \iff A \cap B = \emptyset$ and $[\forall x, y \in X : (P(x, y), P(y, x)) = (A, B) \Rightarrow x \succ y]$.

Definition 2.5: We will note \gg the binary relation on $\mathcal{P}(\Omega)$ defined by:

$A \gg B$ iff $A \cap B = \emptyset$ and $[\forall x, y \in X : (P(x, y), P(y, x)) = (A, B) \Rightarrow x \succ y]$.

Contrary to \triangleright, \gg is asymmetric when all attributes are essential. According to definition 2.5, \gg can be interpreted as a "more important than" relation on $\mathcal{P}(\Omega)$.

Definition 2.6: A P.S. (X, \succ) has the properties:

- P_1 super additivity iff $[(A \cup C) \cap (B \cup D) = \emptyset, A \triangleright B$ and $C \triangleright D] \Rightarrow A \cup C \triangleright B \cup D$,
- P_2 decisivity iff $[(A, B) \in S$ and $(A, B) \neq (\emptyset, \emptyset)] \Rightarrow$ not $(A \cong B)$,
- P_3 attribute acyclicity iff \triangleright has no cycles,
1°) \([P(x, y), P(y, x)] = [P(z, w), P(w, z)]\) \(\Rightarrow (x \triangleright y \Rightarrow z \triangleright w)\).

2°) \([P(x, y) = \emptyset\) and \(P(y, x) = \emptyset]\) \(\Rightarrow x \triangleright y\).

The idea of noncompensation appears clearly in this definition since the global preference of \(x\) on \(y\) only depends on the subsets of \(\Omega\) on which there is a partial preference of \(x\) on \(y\) and of \(y\) on \(x\). This definition corresponds to a "regular noncompensatory preference structure"
b) P_1 and P_2 and $P_3 \iff (X, \succ)$ is lexicographic,
c) P_5 and \succ is a weak order $\implies (X, \succ)$ is lexicographic.

The notion of N.P.S. also provides a new insight into the idea of concordance which appears in a wide variety of multicriteria decision-aid methods such as ELECTRE. We formalize here this notion using an idea introduced by Vansnick (1984). For another approach to the idea of concordance we refer to Huber (1974) and (1979).

Definition 3.3: A P.S. (X, \succ) is a concordance P.S. of type ρ (CPS$_\rho$) with $\rho \geq 1$ a rational number iff

$\exists f_1, f_2, \ldots, f_n \in \mathbb{R}_0^+$ such that $\forall x, y \in X$

$x \succ y \iff \sum_{i \in P(x, y)} f_i \succ \rho \sum_{j \in P(y, x)} f_j.$

Figure 3.1 gives a graphical interpretation of this condition.

![Graphical interpretation of a CPS$_\rho$ (here $\rho = 1/tg \theta$)](image_url)

Figure 3.1: Graphical interpretation of a CPS$_\rho$ (here $\rho = 1/tg \theta$)
b) P_1 and P_2 and $P_3 \iff (X, \succ)$ is lexicographic,
c) P_5 and \succ is a weak order $\implies (X, \succ)$ is lexicographic.

The notion of N.P.S. also provides a new insight into the idea of concordance which appears in a wide variety of multicriteria decision-aid methods such as ELECTRE. We formalize here this notion using an idea introduced by Vansnick (1984). For another approach to the idea of concordance we refer to Huber (1974) and (1979).

Definition 3.3: A P.S. (X, \succ) is a concordance P.S. of type ρ (CPS$_\rho$) with $\rho \geq 1$ a rational number iff

$$\exists f_1, f_2, \ldots, f_n \in \mathbb{R}^*_0 \text{ such that } \forall x, y \in X$$

$$x \succ y \iff \sum_{i \in P(x, y)} f_i \succ \rho \sum_{j \in P(y, x)} f_j.$$

Insert Figure 1 about here
Figure 1: Graphical interpretation of a CPSρ (here ρ = 1/tg θ)
We have the following lemmas:

Lemma 3.2: \(\forall \rho \geq 1 \), a CPS\(\rho \) is a N.P.S. verifying \(P_4 \).

Proof: Obvious (left to the reader).

Lemma 3.3: A lexicographic N.P.S. is a CPS1.

Proof: Follows immediately from taking \(f_0(i) = 2^{(n+1-i)} \).

The following theorem gives necessary and sufficient conditions for the existence of a CPS\(\rho \). These conditions are very similar to those appearing in representation theorems of comparative probability (see Foot)

(1964), Domotor and Stelzer (1971), Fishburn (1969), Krantz et al. (1971) chap. 9, Roberts (1979) chap. 8). This is not surprising because the relation "more important than" between attributes has strong connections with a "more probable than" relation between events. In this theorem, \(\forall x, y \in X \), \(M(x, y) \) will denote the \(1 \times n \) matrix \((\alpha_1, \alpha_2, \ldots, \alpha_n) \) where \(\forall i \in \Omega \), \(\alpha_i = 1 \) iff \(x_i \succ y_i \) and \(\alpha_i = 0 \) otherwise.

Theorem 3.2: A P.S. \((X, \succ)\) is a CPS\(\rho \) iff:

\[
\forall m, k \in \mathbb{N}_0
\sum_{i=1}^{m} M(x(i), y(i)) + \rho \sum_{0<j<k}^{m} M(z(j), w(j)) \geq \rho \sum_{i=1}^{m} M(y(i), x(i)) + \sum_{i=1}^{m} M(x(i), y(i))
\]

(3.1)
\[F = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} \in [\mathbb{R}_0^+]^{n \times 1} \text{ such that, } \forall x, y \in X \]

\[x \succ y \Rightarrow M(x, y) \cdot F > \rho \ M(y, x) \cdot F \]

\[x \sim y \Rightarrow M(x, y) \cdot F \preceq \rho \ M(y, x) \cdot F \]

iff (3.1) and (3.2).

a) **Necessity**

The necessity of (3.1) is obvious. Let \(m, k \in \mathbb{N}_0 \), \(x^{(i)} > y^{(i)} \) \(\forall i \in \{1, \ldots, m\} \) and \(w^{(j)} \sim z^{(j)} \) \(\forall j \in \mathbb{N} \) such that \(0 < j < k \).

By assumption, there is a \(F \in [\mathbb{R}_0^+]^{n \times 1} \) such that

\[M(x^{(i)}, y^{(i)}), F > \rho \ M(y^{(i)}, x^{(i)}), F \ \forall i \in \{1, \ldots, m\} \]

\[\rho \ M(z^{(j)}, w^{(j)}), F \preceq M(w^{(j)}, z^{(j)}), F \ \forall j \in \mathbb{N} \text{ such that } 0 < j < k \]

After summation, we obtain:

\[[\sum_{i=1}^{m} M(x^{(i)}, y^{(i)}) + \rho \sum_{0<j<k} M(z^{(j)}, w^{(j)})] \cdot F > \]

\[[\rho \sum_{i=1}^{m} M(y^{(i)}, x^{(i)}) + \sum_{0<j<k} M(w^{(j)}, z^{(j)})] \cdot F \]

which implies (3.2).

b) ** Sufficiency**

Let us observe that it is sufficient to establish that (3.1) and (3.2) imply:

\[\exists F = \begin{pmatrix} f_1 \\ f_2 \\ \vdots \\ f_n \end{pmatrix} \in \mathbb{R}^{n \times 1} \text{ such that, } \forall x, y \in X : \]
\[
x \succ y \Rightarrow M(x, y).F \succ \rho M(y, x).F \quad \text{and} \\
\{x \sim y \Rightarrow M(x, y).F \leq \rho M(y, x).F
\]
\]

(3.3)

since (3.1) and (3.3) imply that \(f_i > 0 \ \forall \ i \in \Omega \). We will show that (3.1) and not (3.3) \(\Rightarrow \) not (3.2). Let \(Y^2 \) be a set containing one element from each equivalence class of the relation \(E \) defined on \(X^2 \) by:

\((x, y) \in E (z, w) \) iff \(P(x, y) = P(z, w) \) and \(P(y, x) = P(w, z) \).

\(n \) being finite, \(Y^2 \) contains a finite number of elements.

Let \(\{ (s^{(i)}, t^{(i)}) \ | \ i = 1, 2, \ldots, I \} \) be the set of elements in \(Y^2 \) such that \(s^{(i)} \succ t^{(i)} \).

Let \(\{ (u^{(j)}, v^{(j)}) \ | \ j = 1, 2, \ldots, J \} \) be the set of elements in \(Y^2 \) such that \(u^{(j)} \sim v^{(j)} \).

Given (3.1), not (3.3) is equivalent to:

\(\not\exists F \in \mathbb{R}^{n \times 1} \) such that:

\[
M(s^{(i)}, t^{(i)}).F \succ \rho M(t^{(i)}, s^{(i)}).F \ \forall \ i \in \{1, 2, \ldots, I\} \ \text{and} \\
M(u^{(j)}, v^{(j)}).F \leq \rho M(v^{(j)}, u^{(j)}).F \ \forall \ j \in \{1, 2, \ldots, J\}.
\]

Each attribute being essential, we have \(I = n \times 0 \). Therefore, according to Minkowski's transposition theorem (see Vansnick, 1984), there are...
As the elements of $M(s(i), t(i)), M(t(i), s(i)), M(v(j), u(j))$ and $M(u(j), v(j))$ are either 0 or 1 and ρ is a rational number, there exist $\lambda_1^*, \lambda_2^*, \ldots, \lambda_I^*, \mu_1^*, \mu_2^*, \ldots, \mu_J^* \in \mathbb{N}$ such that

$$
\sum_{i=1}^{I} \lambda_i^* M(s(i), t(i)) + \rho \sum_{j=1}^{J} \mu_j^* M(v(j), u(j)) = \\
\rho \sum_{i=1}^{I} \lambda_i^* M(t(i), s(i)) + \sum_{j=1}^{J} \mu_j^* M(u(j), v(j))
$$

(3.4)

with $\sum_{i=1}^{I} \lambda_i^* > 0$.

(3.4) implies that (3.2) does not hold. Indeed, if we let:

1) $m = \sum_{i=1}^{I} \lambda_i^* , k = \sum_{j=1}^{J} \mu_j^* + 1$

2) for $i = 1, 2, \ldots, I$ and $h = 1, 2, \ldots, m$

$$x(h) = \sum_{i=1}^{I} s(i) \quad \text{and} \quad y(h) = t(i)$$

if $\sum_{i=1}^{I} \lambda_i^* < h$ and $h \leq \sum_{1=1}^{I} \lambda_i^*$

3) for $j = 1, 2, \ldots, J$ and $h' \in \mathbb{N}$ such that $0 < h' < k$

$$w(h') = u(j) \quad \text{and} \quad z(h') = v(j)$$

if $\sum_{j=1}^{J} \mu_j^* < h'$ and $h' \leq \sum_{j=1}^{J} \mu_j^*$

where by convention $\mu_0^* = \lambda_0^* = 0$.

we have:

$k, m \in \mathbb{N}_0$

$x(h) \succ y(h) \quad \forall h \in \{1, 2, \ldots, m\}$

$w(h') \sim z(h') \quad \forall h' \in \mathbb{N} \text{ such that } 0 < h' < k$

and (3.4) can be written

$$\sum_{h=1}^{m} M(x(h), y(h)) + \rho \sum_{0 < h' < k} M(z(h'), w(h')) =$$
\[\rho \sum_{h=1}^m M(y(h), x(h)) + \sum_{0<h'<k} M(w(h'), z(h')) \]

which completes the proof. \(\Box \)

4. GENERALIZED NONCOMPENSATORY PREFERENCE STRUCTURES (GNPS)

It is often interesting, from a practical point of view, to weaken the absolute noncompensation of NPS in order to obtain more realistic comparisons (see Roy (1974), Huber (1979) and Vansnick (1984)). This is the purpose of the following definition:

Definition 4.1: A P.S. \((X, \succ) \) is a GNPS iff \(\forall x, y, z, w \in X : \\
1^o) \quad [(P(x, y), P(y, x)) = (P(z, w), P(w, z))] \Rightarrow [x \succ y \Rightarrow z \succ w]. \\
2^o) \quad [P(x, y) \neq \emptyset \text{ and } P(y, x) = \emptyset] \Rightarrow x \succ y.

This definition represents a natural generalisation of definition 3.1 allowing to have at the same time \((P(x, y), P(y, x)) = (P(z, w), P(w, z)) \), \(x \succ y \) and \(z \sim w \). The possibility of an absence of preference between \(z \) and \(w \) aims to encompass the notion of discordance between evaluations (see Roy (1968) and Roy and Bertier (1972)). In fact, when the difference between the evaluations of \(z \) and \(w \) becomes important on the attributes belonging to \(P(w, z) \) it is unrealistic to suppose \(z \succ w \).

Definition 4.1 obviously implies mutual preferential independence in a GNPS. We have:

Lemma 4.1: A P.S. \((X, \succ) \) is a GNPS iff
1^o) \(\succ \) is asymmetric.
2^o) \(\forall A \in \mathcal{F}(\mathbb{N}) \setminus \emptyset, A \succ \emptyset.

Proof: Follows immediately from essentiality and definition 4.1.
It is obvious from the definition that a NPS is also a GNPS. The following definition establishes an interesting link between NPS and GNPS.

Definition 4.2: Let \((X, \triangleright)\) be a GNPS. We define on \(X\) a binary relation \(\triangleleft\) by
\[x \triangleleft y \iff P(x, y) \triangleright P(y, x). \]

We have:

Lemma 4.2: If \((X, \triangleright)\) is a GNPS, then \(\forall x, y \in X:\)
1°) \(x \triangleright y \Rightarrow x \triangleleft y.\)
2°) \((X, \triangleleft)\) is a NPS.

Proof: Obvious ; left to the reader.

Thus, there is a natural way to extend a GNPS into a NPS. For instance let \(X = \{x_1, y_1\} \times \{x_2, y_2, z_2\}\). We can represent a P.S. by mean of the following matrix:

\[
\begin{array}{cccc}
(x_1, x_1) & (x_1, y_1) & (x_1, z_1) & (y_1, y_1) & (y_1, z_1) & (z_1, z_1) \\
(x_2, x_1) & (x_2, y_1) & (x_2, z_1) & (y_2, y_1) & (y_2, z_1) & (z_2, z_1) \\
(y_2, x_1) & (y_2, y_1) & (y_2, z_1) & (z_2, y_1) & (z_2, z_1) \\
(z_2, x_1) & (z_2, y_1) & (z_2, z_1) & (z_2, y_1) & (z_2, z_1) \\
\end{array}
\]
Any configuration in the darkened area of the matrix with at least one \(\triangleright \) would have led to the same associated NPS.

The following considerations allow to specify better the way the discordance effect can work in a GNPS.

Definition 4.3 : A GNPS is discordant iff
\[
\forall x, y \in X \text{ such that } x \not\succ y : \\
\exists j \in P(y, x), \exists (x_i^*)_{i \neq j}, (y_i^*)_{i \neq j} \in X X_i \text{ such that} \\
((x_i^*)_{i \neq j}, x_j) \succ ((y_i^*)_{i \neq j}, y_j) \implies x \succ y.
\]

In order to be able to interpret this definition, we will use the following:

Definition 4.4 : \(\forall j \in \Omega \), we define a binary relation \(V_j \) on \(X_j \) by
\[
x_j V_j y_j \text{ iff } \not\exists (x_i^*)_{i \neq j}, (y_i^*)_{i \neq j} \in X X_i \text{ such that} \\
(y_j, (y_i^*)_{i \neq j}) \succ (x_j, (x_i^*)_{i \neq j}).
\]

The following lemma establishes the link between these two definitions:

Lemma 4.3 : In a discordant GNPS,
\(x \not\succ y \) iff \(x \not\succ y \) and not \(y_j V_j x_j \) for all \(j \in P(y, x) \).

Proof : Follows immediately from definitions 4.3 and 4.4.

Therefore, in a discordant GNPS, the discordance effect is introduced whenever there is an attribute \(j \) in \(P(y, x) \) for which \(y_j V_j x_j \) which can be interpreted as "\(y_j \) is far better than \(x_j \)." It should be noticed that this definition implies that each attribute must be considered separately in order to decide for the discordance. Thus, there is no possibility of interaction between the attributes in \(P(y, x) \).

We have:
Lemma 4.4: \(\forall j \in \Omega, \ V_j \ \text{is asymmetric.} \)

Proof: \(x_j \not\succ y_j \) implies by definition not \(y_j \preceq V_j x_j \). Thus \(y_j \preceq V_j x_j \) implies:

- either \(y_j \not\succ x_j \) and \(x_j \preceq V_j y_j \) is impossible
- or \(y_j \sim x_j \). The definition of a GNPS and essentially of attribute \(k \) thus imply

\[
(y_k, y_j, (y_i^*)_{i=k,j}) \succ (x_k, x_j, (y_i^*)_{i=k,j})
\]

for some \((y_i^*)_{i=k,j} \in X \). \(i \neq k,j \).

Thus we cannot have \(x_j \preceq V_j y_j \). Q.E.D.

In the case where a weak order underlies each \(\succ_i \), some monotonicity conditions on \(\succ \), give rise to a semi-order structure for each \(V_j \).

Let us first recall (see for instance Vincke (1980)) that if \(\succ_i \) is a
Theorem 4.1: If a discordant GNPS is such that:

1°) \(\gamma \) is a semi-order \(\forall j \in \Omega \),

2°) \(x \gamma y \Rightarrow [\forall j \in \Omega, \forall w_j \in X_j \text{ such that } y_j T_j w_j, x \gamma ((y_i)_{i \neq j}, w_j)] \),

then each \(V_j \) is an interval order. Furthermore, if the GNPS also verifies

3°) \(x \gamma y \Rightarrow [\forall j \in \Omega, \forall z_j \in X_j \text{ such that } z_j T_j^A x_j, ((x_i)^*_{i \neq j}, z_j) \gamma (y_j)] \),

then \(V_j \) is a semi-order.

In order to prove theorem 4.1, we need the following:

Lemma 4.5: Under the assumptions (4.1) and (4.2), we have, \(\forall j \in \Omega \),

\(y_j V_j x_j \text{ iff } y_j T_j^A z_j \text{ for all } z_j \in S(x_j) \)

where \(S(x_j) = \{y_j \in X_j \text{ such that } \exists (x_i^*_{i \neq j}, (y_i^*_{i \neq j} \in X_i, x_i \text{ verifying } ((x_i^*_{i \neq j}, x_i) \gamma ((y_i^*_{i \neq j}, y_j)) \}

Proof of the lemma: Suppose that \(z_j T_j y_j \) for some \(z_j \in S(x_j) \). We have:

\(((x_i^*_{i \neq j}, x_j) \gamma ((z_i^*_{i \neq j}, z_j) \) for some

\((x_i^*_{i \neq j}, (z_i^*_{i \neq j} \in X_i \text{ for i} \neq j \).

(4.2) implies \(((x_i^*_{i \neq j}, x_j) \gamma ((z_i^*_{i \neq j}, y_j) \) which contradicts \(y_j V_j x_j \).

The other part of the implication is established as follows:

Suppose that not \(y_j V_j x_j \). Then:

\(((x_i^*_{i \neq j}, x_j) \gamma ((y_i^*_{i \neq j}, y_j) \) for some \((x_i^*_{i \neq j}, (y_i^*_{i \neq j} \in X_i \text{ and i} \neq j \text{ and thus } y_j \in S(x_j) \). As not \(y_j T_j^A y_j \), this completes the proof.

Q.E.D.
Proof of theorem 4.1:

1°) (4.1) and (4.2) \(\Rightarrow \) \(V_j \) \(\text{interval order} \). By lemma 4.4, \(V_j \) is asymmetric. Thus, all we have to prove is that, \(\forall x_j, y_j, z_j, w_j \in X_j \):

\[
\begin{align*}
\{ x_j, V_j, y_j \} & \Rightarrow \{ x_j, V_j, w_j \} \\
\text{and} \\
\{ z_j, V_j, w_j \} & \Rightarrow \{ z_j, V_j, y_j \}
\end{align*}
\]

By lemma 4.5, we have:

\[
\begin{align*}
x_j & \overset{T^A_j}{\rightarrow} y_j \text{ for all } y_j \in S(y_j) \\
z_j & \overset{T^A_j}{\rightarrow} w_j \text{ for all } w_j \in S(w_j)
\end{align*}
\]

Suppose now that not \((x_j, V_j, w_j) \) so that \(\tilde{w}_j \overset{T^A_j}{\rightarrow} x_j \) for some \(\tilde{w}_j \in S(w_j) \). As \(z_j \overset{T^A_j}{\rightarrow} \tilde{w}_j \) and \(x_j \overset{T^A_j}{\rightarrow} y_j \) for all \(y_j \in S(y_j) \), we have \(z_j \overset{T^A_j}{\rightarrow} y'_j \) for all \(y'_j \in S(y_j) \), \(T^A_j \) being a weak order. Thus \(z_j, V_j, y_j \).

2°) (4.1), (4.2) and (4.3) \(\Rightarrow \) \(V_j \) \(\text{semi-order} \). Given the first part of the theorem, all we have to prove is that \(\forall x_j, y_j, z_j \in X_j \):

\[
\begin{align*}
\{ x_j, V_j, y_j \} & \Rightarrow \forall w_j \in X_j \{ x_j, V_j, w_j \} \\
\text{and} \\
\{ y_j, V_j, z_j \} & \Rightarrow \forall w_j \in X_j \{ w_j, V_j, z_j \}
\end{align*}
\]

First suppose that \(w_j \overset{T^A_j}{\rightarrow} y_j \). As \(y_j \overset{T^A_j}{\rightarrow} z_j \), \(y_j \overset{T^A_j}{\rightarrow} z'_j \) for all \(z'_j \in S(z_j) \). Thus \(w_j \overset{T^A_j}{\rightarrow} z'_j \) for all \(z'_j \in S(z_j) \) and \(w_j, V_j, z_j \).

Suppose now that \(y_j \overset{T^A_j}{\rightarrow} w_j \). For any \(\tilde{w}_j \in S(w_j) \), we have \(\{ w_j, (w^*_i)_{i=x_j}\} \)

\[
\begin{align*}
(\tilde{w}_j, (w^*_i)_{i=x_j}) & \text{ for some } (w^*_i)_{i=x_j}, (w^*_i)_{i=x_j} \in X_i \text{ and by (4.3)} \\
(\tilde{w}_j, (w^*_i)_{i=x_j}) & \{ y_j, (w^*_i)_{i=x_j}\} \text{ which implies that } \tilde{w}_j \in S(y_j) \text{ for all } y_j \in S(w_j). \text{ We have } x_j, V_j, y_j ; \text{ therefore } x_j \overset{T^A_j}{\rightarrow} y'_j \text{ for all } y'_j \in S(y_j). \\
\text{As } S(w_j) \subset S(y_j), \text{ we have } x_j, V_j, w_j.
\end{align*}
\]

Q.E.D.
Theorem 4.1 is particularly useful because it generally allows (when there is a numerical representation of the relation V_j) to define for each x_j a "veto threshold".

The reader may be puzzled by the dissymmetry existing between (4.2)
It can be verified that this GIPS is discordant, that each γ is a
(4.4) therefore implies:

\[(y_j, (x^*_i)_{i\neq j}) \succ (z_j, (z^*_i)_{i\neq j})\]

which contradicts \(z \succ y_j\).

Non \((y_j \succ w_j) \Rightarrow (w^*_j, (w^*_i)_{i\neq j}) \succ (y_j, (y^*_i)_{i\neq j})\) for some

\((w^*_j, (w^*_i)_{i\neq j}) \in X \times X \)

and the application of (4.2) contradicts \(x_j \succ w_j\).

Q.E.D.

5. GNPS AND DECISION-AID

We mentioned in the introduction that the concept of noncompensation has been used in several multi-attribute decision-aid methods. Our purpose in this section is to outline how the theoretical considerations developed above can be helpful in order to design a new method using these concepts (the TACTIC method) and to implement it.

The idea of the TACTIC method is to "build" a global preference relation (see Bouyssou (1984) and Roy and Bouyssou (1984) on this notion of construction) given a set of actions evaluated on several attributes. Technically, the global preference relation takes the form of a discordant GNPS verifying the conditions (4.1), (4.2) and (4.4), which associated NPS is a CPSp. Following Vansnick (1984), we will call such P.S. "noncompensatory preference structures with veto". The method first seeks to determine, in agreement with the decision-maker, the semi-orders \(\succ\) and \(V_i\) for each attribute \(i\), with \(V_i \subset \succ\). This can be done simply by assessing a measurable value function on each attribute and determining two constant thresholds. The method then asks the decision-maker to compare several simple actions in order to obtain inter-criteria information. From this information, it determines simultaneously, following a number of reasonable principles, the "weights" \(f_i\) and the coefficient \(\rho\). Once this informa-
tion is obtained, the determination of \triangleright for the complete set of actions is performed easily. For more details on this topic, we refer to Vansnick (1984).
REFERENCES

Huber O. (1979) : An axiomatic system for multidimensional preferences

Roy B. (1968) : Classement et choix en présence de points de vue multiples (la méthode ELECTRE), RIRO, n° 8, pp. 57-75.

