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Abstract

In this paper, we study colorings of k-partite sparse digraphs. The chromatic number of a graph

G is the smallest integer k such that the vertices of G can be colored with k colors with the property

that each color class is an independent set. The dichromatic number of a digraph D is the minimum

k such that the vertices of D can be colored with k colors with each color class inducing an acyclic

subdigraph. This coloring invariant shares many similarities with the graph chromatic number and

can be thought of as its analogous digraph generalisation.

Our main result in this short note shows that there exist sparse k-partite digraphs which have

dichromatic number k. This, in particular, not only implies that there exist graphs with equal

chromatic and dichromatic number, but that they can be taken to be somewhat sparse.
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1 Introduction

In this paper, we consider digraphs that are oriented graphs, i.e., they contain neither loops, parallel

arcs nor directed cycles of length two. A subset S of vertices of a digraph D is called acyclic if the

induced subdigraph on S contains no directed cycle. The dichromatic number ~χ(D) of D is the

smallest integer k such that V (D) can be partitioned into k sets V1, ..., Vk where each Vi is acyclic.

Note that, equivalently, the dichromatic number is the smallest integer k, such that the vertices of

D can be colored with k colors so that there is no monochromatic directed cycle. It is easy to see

that, for any undirected graph G and its bidirected digraph D obtained from G by replacing each

edge by two oppositely oriented arcs, we have χ(G) = ~χ(D). The dichromatic number was first

introduced by Neumann-Lara [10]. In recent years, there has been considerable attention devoted

to this topic, and many results have demonstrated that this digraph invariant generalizes many

results on the graph chromatic number (see, for example [1, 2, 3, 4, 6, 7, 8]). Some evidence of

the surprising relationship between chromatic number of graphs and the dichromatic number of

digraphs include the generalisation of Gallai’s classical theorem on list coloring to digraphs in [3],

the extension of the important result of Erdős that sparse graphs can have large chromatic number

to digraphs in [4], the derivation of an analog of a classical result due to Bollobas in [7], etc.

For an undirected graph G, the dichromatic number of G, denoted by ~χ(G), is the maximum

dichromatic number over all its orientations.

In 1970s, Erdős and Neumann-Lara conjectured the following:

Conjecture 1.1. [5] For every integer k, there exists an integer fk such that if G is any graph

satisfying χ(G) ≥ fk, then ~χ(G) ≥ k.

It is clear that f1 and f2 exist (f2 = 3). It is unknown if f3 exists.

A graph G is k-partite if V (G) can be partitioned into k independent sets, i.e., χ(G) ≤ k.

For two positive integer n and k, let Kn∗k denote the complete k-partite graph with n vertices

in each vertex class. The main result of this paper is to show that the conjecture of Erdős and

Neumann-Lara holds for very sparse subgraphs of Kn∗k in the following strong form.

Theorem 1.2. Let k ≥ 2. There is an integer n0 such that for any n ≥ n0 the following holds:

let Gn∗k be any k-partite graph with vertex classes V1, ..., Vk with |Vi| = n for all i ∈ [k] satisfying

the property that for all distinct pairs i, j and all sets V ′i ⊂ Vi and V ′j ⊂ Vj with |V ′i | ≥ n/k2 and
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|V ′j | ≥ n/k2, the number of edges between V ′i and V ′j is at least 100n log k/k2. Then ~χ(Gn∗k) = k.

Remark 1.3. We note that a random subgraph of Kn∗k where the probability of an edge between

any two vertices in different partite sets is at least f(n)/n, where f(n) is a function increasing

arbitrarily slowly, satisfies the condition of Theorem 1.2, and thus, its implication.

2 Proof of Theorem 1.2

In this section, we prove Theorem 1.2. First, let us recall the following result from Manber and

Tompa [9].

Let S be the set of all graphs with n vertices and m edges and let A(m,n) denote the maximum

number of acyclic orientations that a graph in S can have.

Theorem 2.1. [9] A(m,n) ≤
∏

v∈V (1 + deg(v)) ≤
(
2m
n + 1

)n
.

Lemma 2.2. Let i and j be distinct, and let Gij = Gn∗k[Vi ∪ Vj ] be the bipartite graph induced

on vertex-set Vi and Vj. There is an orientation of the edges of Gij such that the resulting digraph

D satisfies the property that for every V ′i ⊂ Vi and V ′j ⊂ Vj verifying |V ′i |, |V ′j | ≥ n/k2, the digraph

D′ = D[V ′i ∪ V ′j ] has a directed cycle.

Proof. We employ the probabilistic method. Let D be the digraph obtained from Gij by taking a

uniformly random orientation of its edges.

Let V ′i ⊂ Vi and V ′j ⊂ Vj be two fixed sets with |V ′i | = |V ′j | = n
k2 · Let D′ = (V ′i ∪ V ′j , E)

be the digraph induced on V ′i and V ′j . Let m be the number of edges of D′ and recall that

m ≥ 100n log k/k2.

Now, using Theorem 2.1, we obtain that

P[∃V ′i , V ′j : D[V ′i ∪ V ′j ] is acyclic] ≤
(

n

n/k2

)2

(
2m

2n/k2 + 1
)2n/k2

2m

≤ (ek2)2n/k
2

(
100n log k/k2

n/k2 + 1
)2n/k2

2100n log k/k2

≤ (ek2)2n/k
2 (100 log k + 1)

2n/k2

k100n/k2

≤
(
ek2(100 log k + 1)

k50

)2n/k2

< 1.
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This completes the proof.

Now we will complete the proof of Theorem 1.2.

Proof of Theorem 1.2. Let D be the digraph obtained by taking an orientation of Gn∗k such that

for every pair i, j the conclusion of Lemma 2.2 holds for Gij . We will show that [~χ(D) = k].

Assume D is colored with any number of colors. We can say that if there exist two partitions Vi

and Vj and subsets of vertices V ′i ⊂ Vi and V ′j ⊂ Vj of the same color, with |V ′i |, |V ′j | ≥ n/k2, then

there is a monochromatic directed cycle. Indeed, this follows from the aforementioned lemma.

Note that ~χ(D) ≤ χ(Gn∗k) ≤ k.

To prove that ~χ(D) = k, we assume, for a contradiction, that it is possible to color D with k−1

colors. As D is validly colored with k− 1 colors it means that there cannot be two sets of the same

color in different partitions verifying |V ′i |, |V ′j | ≥ n
k2 ·

If there are k − 1 colors, then there is at least one color (hereupon called the dominant color)

so that there are at least k·n
k−1 vertices colored with that color. Let (c1, c2, ..., ck) be the number of

vertices that are assigned the dominant color in (V1, V2, ..., Vk), respectively.

As mentioned above there cannot be ci and cj such that both are at least n
k2 · In the best

case, only one of them can be more than n
k2 · Without loss of generality assume that ck ≥ n

k2 · The

following inequality holds.

kn

k − 1
≤

k∑
i=1

ci· (1)

Moreover,
k∑

i=1

ci =

k−1∑
i=1

ci + ck ≤ (k − 1) · n
k2

+ ck

By Equation 1, we have the following.

(k − 1) · n
k2

+ ck ≥
kn

k − 1

(k − 1) · n
k2
≥ kn

k − 1
− ck

As ck ≤ n, we have
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(k − 1) · n
k2
≥ k · n
k − 1

− n =
n

k − 1

But the above inequality is invalid for any n and k. Thus, there necessarily exist at least two

partite sets with more than n
k2 vertices of the dominant color, which means with probability 1−o(1)

there will exist a monochromatic cycle.

Thus, ~χ(D) = k.

Corollary 2.3. For every k, there is a simple graph G such that χ(G) = ~χ(G) = k.
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