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Abstract

The average-case complexity of a branch-and-bound algorithm forMin Dom-
inating Set problem in random graphs in the G(n, p) model is studied. We
identify phase transitions between subexponential and exponential average-case
complexities, depending on the growth of the probability p with respect to the
number n of nodes.

Keywords: Approximation scheme, Subset-Sums ratio, Knapsack problems,
Combinatorial optimization

1. Introduction

Given a graph G = (V,E) of order n, a dominating set S ⊆ V is a subset
of V such that any vi ∈ V is either included in S or connected to a vertex
of S by an edge of E. The Min Dominating Set problem consists of finding a
minimum-size dominating set in G. Min Dominating Set is a very well-known
NP-hard problem completely equivalent (from both complexity and polynomial
approximation points of view) to min set cover problem.

Dealing with the exact solution of Min Dominating Set, besides the ob-
vious O(2n) algorithm which considers the power set of V and chooses the
smallest one that also forms a dominating set, several moderately exponential
algorithms have been proposed mainly during the last fifteen years. To the best
of our knowledge, the fastest one is the O(1.4969n) algorithm due to [14].

The main purpose of this paper is the study of the average case complexity of
branch-and-bound algorithms for theMin Dominating Set problem in random
graphs in the G(n, p) model. This model represents graphs on n vertices where
each of the possible

(
n
2

)
edges appears independently with probability p. For an

extensive treatment of random graphs, we refer the reader to the monograph [4].
The branch-and-bound technique is one of the best known and most widely

used for exactly solving NP-hard problems. A branch-and-bound algorithm
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searches the solution space by recursively partitioning it. The progress of the
algorithm is usually presented by a decision tree (also called branch-and-bound-
tree) while the solution space (represented by number of nodes we need to
explore) can be reduced by the introduction of pruning rules that allow us to
completely ignore part of the solution space. An area where such algorithms
have significant success is the mixed integer linear programming solvers, where
all state-of-the-art algorithms use variable branching (see [3, 11]). One of the
reasons of this success is that, in practice, the branch-and-bound-tree can be
really small ([8]). More recently, in [5, 6, 10] the authors proved that there exist
branch-and-bound algorithms that, with good probability, require polynomial
time in order to return a solution of random instances of integer programming
with fixed number of constrains.

Even though mathematical tools for average case analysis of algorithms have
existed for decades [13] and have much advanced in sophistication [12], we do
not know of many results on the average case complexity of branch-and-bound
algorithms for graph-theoreticalNP-hard problems in random graphs. The only
works known to us are the ones of [2] where the authors study the complexity of
a “pruning the search-tree algorithm” for max independent set (the worst-
case complexity of this algorithm is O(1.1996n), [15]) under the G(n, p) model,
the one of [1], where the same algorithm is studied under the G(n,m) model and,
finally, the one in [7] where the average-case complexity of a branch-and-bound
algorithm for max independent set is studied under the G(n, p) model. Here
our goal is to study the complexity of a (rather intuitive and simple, with respect
to the bounds in the nodes of the branch-and-bound-tree), branch-and-bound-
algorithm for Min Dominating Set. Even if, the obtained complexity-bounds
are worse than the ones obtained for the problem by other more evolved methods
(inclusion-exclusion, dynamic programming, etc.), we think that it is interesting
to obtained some formal complexity results for the branch-and-bound method
(the most used one for the exact solution of NP-hard problems).

In what follows, in Section 2 we present the branch-and-bound algorithm we
considered while in Section 3 we analysed the complexity of this algorithm.

2. The branch-and-bound algorithm

Let G = (V,E) be a graph; set n = |V | and fix an order v1, v2, . . . , vn on V .
The type of branch-and-bound algorithms for Min Dominating Set studied
here works by building a branch-and-bound binary tree, nodes of which are
associated with a vector x⃗ ∈ {0, 1}n and a depth δ in the binary tree. The idea
is that the vector x⃗ gives us the set that we consider as dominating set of the
graph. In particular, xi = 1 means that vertex vi has been taken in the solution
under construction and xi = 0 means that vi has not been taken. For a tree-
node at level δ only vertices v1, v2, . . . , vδ have been fixed, i.e., only x1, x2, . . . , xδ

of x⃗ have been assigned definite values. Also, the values for xδ+1, . . . , xn are,
for the moment, equal to 1. We remark that the superset of a dominating set
is also a dominating set.
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For a node x at level δx with vector x⃗, we define its cost u(x) as the number
of vertices that currently must be included in the solution. Formally:

u(x) =

δx∑
i=1

xi

Cost u(x) can be seen as an optimistic prediction of the size of the optimal
solution in the sense that, in the best case, we do not need to include any
vertices form the set {vi | i > δx} in order to have a feasible solution that
respects the first δx choices (i.e., the set defined by the values xi, i ⩽ δx, is a
dominating set).

The idea of the algorithm is to start from a root that represents the trivial
dominating set including all the vertices (x⃗ = (1, 1, ..., 1)) at the depth 0 and
is initially un-visited. Then the algorithm repeats the following process. From
all un-visited vertices, we select a node that has the minimum u-value. Let x
be the selected node associated with a vector x⃗ ∈ {0, 1}n and a depth δ in the
binary tree. If δ < n then create both left and right children of x; ℓ and r. We
associate ℓ and r with the vectors ℓ⃗ and r⃗ respectively, where ℓ⃗i = r⃗i = xi for
all i ̸= δ + 1, ℓδ+1 = 1 and rδ+1 = 0. We set ℓ as un-visited. Also, if the set
defined by r⃗ is a dominating set, we set r as as un-visited, otherwise we set r
as non-interesting. If δ = n the algorithm terminates and return as minimum
dominating set the set defined by the vector x⃗.

At each new step of the algorithm a new node will be visited. Also notice
that a created node (x⃗, δ) that corresponds to a dominating set in G is either
the left or the right child of an already visited node. Also, any vertex that is
marked as non-interesting will be never visited by the algorithm.

Therefore, at each step of the algorithm, the nodes of the complete binary
tree that represents the branch-and-boundtree can be divided in five categories:

1. un-visited nodes which correspond to dominating sets that have not been
considered by the algorithm;

2. visited nodes which correspond to dominating sets that have been consid-
ered by the algorithm;

3. non-interesting nodes which correspond to sets that are not dominating
sets in G, i.e., some infeasible solutions;

4. nodes that have not been created.

Nodes that have not been created either correspond to vertex sets that are not
dominating sets or to vertex sets that are dominating sets but there parent
nodes have not yet been visited (and may never be visited if the algorithm finds
a minimum solution before it is needed).

As an example we consider the graph G in figure 1 which contains three
vertices A, B and C. Therefore, the branch-and-bound tree contains 3 levels.
The branch and bound algorithm starts by visiting the root {1, 1, 1}, 0. Now,
the un-visited nodes are {1, 1, 1}, 1 and {0, 1, 1}, 1 with respective cost 1 and 0.
Therefore, the node {0, 1, 1}, 1 is visited next. Then, since {0, 0, 1}, 2 does not
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Figure 1: Illustration of a possible execution of the algorithm on graph G. The graph G
appears on the upper left corner of the figure. In this case, the algorithm has visited 6 nodes
in the order presented. In blue we present the visited nodes that do not belong in the last
level. In yellow we have the un-visited nodes (i.e. feasible solutions). With red we have
the non-interested nodes and with white we have nodes that have not been created. Finally,
with grey, we have the first visited vertex of the last level which corresponds to the returned
solution.

correspond to dominating set it is marked as visited. Therefore, the two un-
visited nodes are {1, 1, 1}, 1 and {0, 1, 1}, 2, both with potential 1. The next
node to be visited is chosen randomly. Assume that the next visited node is
{1, 1, 1}, 1 and so on. Finally, the complete solution {0, 1, 0}, 3 is found. As its
depth is 3, this solution {B} is the minimum dominating set.

3. Analysis of the branch-and-bound algorithm

In what follows, we denote by T(n, p) the average complexity of branch-and-
bound in a binomial random graph G = (V,E) with parameters (n, p), that is,
the total number of created nodes. For a node x in depth δx related to the vector
x⃗, we will denote with Sx the set defined by the values xi, i ⩽ δx. Also, for any
set S ⊆ {1, . . . , i} and j ∈ {i+1, . . . , n} we will denote Sj the set S∪{j, . . . , n}.
Notice that if i+ 1 > n then {j, . . . , n} is empty and Sj = S.

Let x be the first node at the nth level, where n is the order of G, visited by
the algorithm. The fact that we visited x means that the set Sx is a dominating
set of G. Also, any node x′ that has not been visited yet must have u(x′) ⩾
u(x) = |Sx| as otherwise it would have been visited before. Finally, any other
un-visited node x′ has u(x′) ⩾ |Sx| therefore Sx must be a minimum dominating
set, and the algorithm terminates. It follows that, during the running of the
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algorithm, a node x is visited only if u(x) ⩽ |S∗|, where S∗ is a minimum
dominating set.

Thus, for a visited node x in depth i with Sx ⊆ {1, . . . , i} we have dominating
set Si+1

x , satisfying |Sx| ⩽ |S∗|. We can therefore say that the number of

nodes in the branch-and-boundtree is at most
∑|S∗|

k=1

(
n
k

)
and the average running

time T ⩽ E(
∑|S∗|

k=1

(
n
k

)
). Finally, notice that in order to bound T it suffices

to bound the value
(
n
k

)
Pr[γ ⩾ k] for 1 ⩽ k ⩽ n. To do so, we define the

function f(n) as follows: for each n > 0, let f(n) = k∗ ⩽ n where
(
n
k∗

)
Pr[γ ⩾

k∗] = max1⩽k⩽n

(
n
k

)
Pr[γ ⩾ k]. Thus, we need to upper-bound only M :=(

n
f(n)

)
Pr[γ ⩾ f(n)] for all n ⩾ 1.

3.1. Upper bounds

The following theorem provides upper bounds for the complexity of the
branch-and-bound algorithm presented in Section 2 for random graphs in the
G(n, p) model.

Theorem 1. The following two facts hold:

(a) If p is constant, then the branch-and-bound algorithm takes subexponential
time as n → ∞.

(b) If pn = c, where c ⩾ 20 is a constant, then the branch-and-bound algorithm
takes time at most (2− ε)n, where we can take ε = 0.01.

Proof. We first focus on the case where p is fixed. We show that in this case, M
is subexponential. We use the fact that γ(G) ⩽ α(G) for every graph G, where
γ(G) denotes the size of the minimum dominating set of G and α(G) denotes
the stability number of G (indeed, a maximal independent set is a dominating
set) and the union bound.

We recall that 1−x ⩽ e−x for all values of x ( this follows from the fact that
1−x is the tangent line of e−x at x = 0). We remark that α(G) > x for some x,
implies that one of the

(
n
x

)
subsets of vertices of size x induces an independent

set in G. Thus:

M ⩽

(
n

f(n)

)
Pr[α ⩾ f(n)] ⩽

(
n

f(n)

)(
n

f(n)

)
(1− p)(

f(n)
2 )

⩽

((
n

f(n)

))2

e
−pf(n)(f(n)−1)/2.

If f(n) = o(n), then
(

n
f(n)

)2
< (en/f(n))2f(n) is clearly subexponential. Thus,

we may assume f(n) = Θ(n). Quantity M clearly satisfies:

M ⩽

((
en

f(n)

)2

e
−p(f(n)−1)/2

)f(n)
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Since f(n) = Θ(n) and p is fixed, clearly, (en/f(n))2e−p(f(n)−1)/2 < 1 for n suf-
ficiently large. In fact, with a slightly more careful analysis, we can obtain
that M is subexponential in the regime pn → ∞. Indeed, we may suppose as
before that f(n) = Θ(n) and now it follows that (en/f(n))2 is bounded by a con-
stant and since p = ω(1) we have that e−p(f(n)−1)/2 → 0, as n → ∞. Therefore,
(en/f(n))2e−p(f(n)−1)/2 < 1 for n sufficiently large and the claim follows.

It remains to consider the case (b). In this case we have p = c/n, where
c ⩾ 20 is some constant; we will assume in the computations that follow that
p = 20/n since this would give an upper bound on the number of steps of the

algorithm. As before, we consider the quantity
(

n
f(n)

)2
e−pf(n)(f(n)−1)/2. We set

ε := f(n)
n , where 0 < ε ⩽ 1. We will show that for any value of ϵ, the running

time of the branch-and-bound algorithm takes time at most 1.99n.

Thus, from above, it suffices to show that that
((

n
εn

))2
e−pεn(εn−1)/2 ⩽ 1.99n.

We use the fact that
(
n
εn

)
⩽ 2H(ε)n, where H(ε) is the binary entropy function.

Now,(
n

εn

)2

e
−pεn(εn−1)/2 ⩽ (2nH(ε))2e−10ε2n+10ϵ ⩽ e10((ε−ε(1− ε)−(1−ε))2)ne−10ε2n

We remark that ε−ε(1 − ε)−(1−ε) is increasing on the interval (0, 1/2) and de-
creasing on (1/2, 1), with its maximum at ε = 1/2, since H(ε) is the logarithm of
this function. Moreover, this function is symmetric with respect to ε = 1/2,

and as e−10ε2n+10 decreases with ε, we can assume that the maximum for
((ε−ε(1−ε)−(1−ε))2)ne−10ε2n+10 is attained for some ε ⩽ 1/2 (for otherwise, we
could obtain a larger value by taking 1− ε instead of ε). Since ε−ε(1− ε)−(1−ε)

is increasing on the interval (0, 1/2), there is some constant ε0 < 1/2 such that,
for all ε ⩽ ε0 we have ε−ε(1 − ε)−(1−ε) <

√
1.99. It is easy to check that we

can take ε0 = 1/10. Thus, we may assume that ε > 1/10. Indeed, for otherwise
((ε−ε(1 − ε)−(1−ε))2)n < 1.99n and we are done. Therefore, to complete the
proof, it suffices to show that:[(

ε−ε(1− ε)−(1−ε)
)]2

e−10ε2 < 1.99

for all ε ∈ [1/10, 1/2], since this implies that e10((ε−ε(1 − ε)−(1−ε))2)ne−10ε2n ⩽
1.99n. Since the first of the two products is increasing and the second is de-
creasing with ε, we will dominate each separately. To this end, we refine the
intervals of ε. First consider the interval ε ∈ [1/10, 1/8]. To bound our product,
it is sufficient to substitute 1/8 in the first term and 1/10 in the second. By doing
this, we obtain that the product is less than 1.99. It is easily verified that we
can repeat this argument on the following intervals, thus finishing the theorem.
In each case, we obtain a bound of less than 1.99. The precise bounds are given
below, where g(ε) := [(ε−ε(1− ε)−(1−ε))]2e−10ε2 :

• ε ∈ [1/8, 1/7]; g(ε) < 1.943;

• ε ∈ [1/7, 0.15]; g(ε) < 1.9;
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• ε ∈ [0.15, 0.17]; g(ε) < 1.988;

• ε ∈ [0.17, 0.19]; g(ε) < 1.981;

• ε ∈ [0.19, 0.21]; g(ε) < 1.95;

• ε ∈ [0.21, 0.25]; g(ε) < 1.982;

• ε ∈ [0.25, 0.35]; g(ε) < 1.955;

• ε ∈ [0.35, 0.5]; g(ε) < 1.2.

The proof of the theorem is now completed.

3.2. Lower bounds

The following result shows that the upper bound on complexity of the algo-
rithm given by Item (b) of Theorem 1 cannot be drastically improved in order
that a subexponential bound is taken.

Theorem 2. Let p = c/n, where c is a positive fixed constant. Then, the
branch-and-bound algorithm takes at least (1/ε)εn time for G(n, p), where ε :=
min{0.01, 1/10c}

Proof. Note that for any k,
(
n
k

)
Pr[γ ⩾ k] is a lower bound on the complexity of

the algorithm. Thus, it is sufficient to show that:(
n

εn

)
Pr[γ ⩾ εn] = Ω

((
1

ε

)εn)
for n sufficiently large.

We will prove that Pr[γ < εn] is arbitrarily small. This is clearly sufficient.
Let A be the event that a fixed set S of size εn is a dominating set. Then,
Pr[γ < εn] ⩽

(
n
εn

)
Pr[A] < 2n Pr[A]. We use the fact that 1 − x ⩾ e−2x

for all x ∈ (0, 1/2); this can be seen, for example, by noticing that e−2x is a
convex function and that 1− x = e−2x has two solutions at x = 0 and at some
x ∈ (0.5, 1). Now, Pr[A] = (1− (1− p)εn)

n−εn ⩽ (1− e−2cε)n−εn. Thus:

Pr[γ ⩽ n− εn] ⩽
(
2
(
1− e−2cε

)(1−ε)
)n

Note that by definition of ε, 2cε < 1/5. Thus, (1 − e−2cε)1−ε ⩽ (1 −
e−1/5)0.99 ⩽ 1/2. It follows that:(

n

εn

)
Pr[γ > n− εn] = Ω

((
1

ε

)εn)
as required.
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4. Conclusion

We have studied in this paper the average-case complexity of a branch-and-
bound algorithm for Min Dominating Set in random graphs under the G(n, p)
model. It has been proved that this complexity is: (a) subexpontial when p is
constant; (b) exponential when p = c/n. For the latter case, it was proved that
the smaller the constant c, the closer to 2n is the average case complexity of the
algorithm.
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