Independent dominating sets
in
graphs of girth five

Ararat Harutyunyan∗ Paul Horn† Jacques Verstraete‡

June 13, 2013

Abstract

Let $\gamma(G)$ and $\gamma^c(G)$ denote the sizes of a smallest dominating set and smallest independent dominating set in a graph G, respectively. One of the first results in probabilistic combinatorics is that if G is an n-vertex graph of minimum degree at least d, then

$$\gamma(G) \leq \frac{n}{d}(\log d + 1)$$

In this paper, the main result is that if G is any n-vertex d-regular graph of girth at least five then

$$\gamma^c(G) \leq \frac{n}{d}(\log d + c)$$

for some constant c independent of d. This result is sharp in the sense that as $d \to \infty$, almost all d-regular n-vertex graphs G of girth at least five have

$$\gamma^c(G) \sim \frac{n}{d} \log d.$$

Furthermore, if G is a disjoint union of $\frac{n}{2d}$ complete bipartite graphs $K_{d,d}$, then $\gamma^c(G) = \frac{n}{2}$. We also prove that there are n-vertex graphs G of minimum degree d and whose maximum degree grows not much faster than $d \log d$ such that $\gamma^c(G) \sim \frac{n}{d}$ as $d \to \infty$. Therefore both the girth and regularity conditions are required for the main result.

1 Introduction

Using so-called semirandom methods, many recent results deal with lower bounds on the size of maximum independent sets in d-regular graphs of girth g. The optimal bounds were found by Shearer [15], who showed that the maximum size of an independent set in a d-regular

∗Department of Mathematics, Simon Fraser University. Email: aha43@sfu.ca
†Department of Mathematics, Harvard University. Email: phorn@math.harvard.edu
‡Department of Mathematics, University of California at San Diego, 9500 Gilman Drive, La Jolla, California 92093-0112, USA; Research supported by an Alfred P. Sloan Research Fellowship and an NSF Grant DMS 0800704. Email: jverstra@math.ucsd.edu
A triangle-free graph is asymptotically at least $n \log d$. Later, Johansson [12] used semirandom methods to show that d-regular triangle-free graphs actually have chromatic number $O(d \log d)$.

Gamarnik and Goldberg [10] also study the question of independent sets in d-regular graphs of large girth, in particular studying the performance of a randomized greedy algorithm, thus differing somewhat from the semirandom methods used in this work and by others.

Let $\gamma^\circ(G)$ denote the size of a smallest independent dominating set in a graph G. An early result using the probabilistic method is that every n-vertex graph of minimum degree at least d has a dominating set of size at most $n d (1 + \log d)$. This result is due independently to Arnautov [3], Lovász [7] and Payan [14]. In this paper, we prove the following:

Theorem 1. There is a constant $c > 0$ such that for every d-regular n-vertex graph G of girth at least five, $\gamma^\circ(G) \leq n d (\log d + c)$.

The proof of this theorem actually gives a maximal independent set of size roughly $n d (\log d + c)$, which coincides with Shearer's result for triangle-free graphs. However, in our result the girth five requirement is essential, since a graph G consisting of $n/2d$ disjoint copies of the complete bipartite graph $K_{d,d}$, when $2d$ divides n, has $\gamma^\circ(G) = n/2d$. Alon, Krivelevich, and Sudakov [1] extended the theorem of Johansson to graphs with sparse neighbourhoods. It seems likely that Theorem 1 can be extended to cases where the number of common vertices of any pair of vertices is much smaller than d.

It is known that as $d,n \to \infty$ with d growing much more slowly than n (say, $d^5 \ll n^4$), almost all vertices of a d-regular n-vertex graphs lie in no five cycles and every independent dominating set has size asymptotic to $n \log d$ – see Duckworth and Wormald [5] and Zito [19] for a precise study of independent dominating sets in random regular graphs. Theorem 1 is also sharp in the following sense:

Theorem 2. For all $m > 1$, there exists $d_0(m)$ such that if $d \geq d_0(m)$ then there exists a graph G of minimum degree d, maximum degree at most $\Delta = md$ and girth at least five such that $\gamma^\circ(G) > (1 - 4 \log \Delta/\Delta^{1/2} - 2m - 1)|V(G)|^{2\Delta^{1/2}}m^{-1}$.

For example, if $m \log d \to \infty$ as $d \to \infty$, this theorem guarantees graphs G of maximum degree md and minimum degree d such that $\gamma^\circ(G) \sim |V(G)|^{2\Delta^{1/2}}$ (again, as $d \to \infty$). It would be interesting for each $m \geq 1$ to determine the best possible upper bound on the smallest independent dominating set in an n-vertex graph G of girth five, minimum degree d and maximum degree md. The above theorem does not give any information for $1 < m \leq 5$, since the bound in this range is negative, and new ideas seem to be required to find an analog of Theorem 1 for graphs which are not d-regular.

We make the following conjecture:
Conjecture 1. For all $\epsilon > 0$, $m > 1$ there exists $d_0(\epsilon, m)$ such that if $d \geq d_0(\epsilon, m)$ and G is a graph of girth at least five, minimum degree d and maximum degree at most $\Delta = md$ then
\[
\gamma_0(G) \leq \frac{|V(G)|}{2\Delta^{1/m}}.
\]

1.1 Notation and Terminology

If G is a graph then for a set $S \subset V(G)$ let ∂S denote the set of vertices in $V(G) \setminus S$ which are adjacent to at least one vertex in S. As in the introduction, $\gamma_0(G)$ denotes the size of a smallest independent dominating set in G – this is a set $S \subseteq V(G)$ such that no edge of G joins two vertices of S and $S \cup \partial S = V(G)$.

1.2 Organization

The rest of the paper is organized as follows: in Section 2, we define a random process by which an independent dominating set of a d-regular graph of girth five is constructed. The analysis of the process is in Section 3, where we use probabilistic tools (Appendix) to control the degrees of vertices at each stage. The proof of Theorem 2 is in Section 4.

2 The Process

For an n_0-vertex d_0-regular graph G_0 of girth at least five, a natural way to build an independent dominating set in stages is to select vertices independently and randomly with an appropriate probability. Let S_t be the set of selected vertices at stage t. The set Z_t of selected vertices in the graph G_t which are not adjacent to any other selected vertices are added to the current independent set $Z_0 \cup Z_1 \cup \cdots \cup Z_{t-1}$, and then $Z_t \cup \partial Z_t$ is deleted from G_t to obtain the graph G_{t+1}. The idea is to show that in the remaining graph G_t at each stage t, the degrees of vertices are all roughly the same with positive probability, specifically, the degrees all decrease by a factor roughly e^{-1} at each stage with positive probability. To show that this is true requires concentration of degrees of the vertices at each stage. Unfortunately this is not sufficient, since the expected degrees begin to vary substantially if the above process is followed. To fix this problem, we equalize the degrees of the vertices at each stage by putting vertices randomly and independently into an auxiliary set W_t. Another technical consideration is that the random process stops when the degrees of the vertices become too small. We will stop the process at time $T = \lceil e(\log d_0 - c) \rceil$ where $c = 2^{100}$.

2.1 Statement of the process

We start with a d_0-regular n_0-vertex graph G_0 of girth at least five. Let $Y_0 = \emptyset$ and $X_0 = V(G_0)$. Having defined graphs G_i, independent sets Z_i, and partitions $V(G_i) = (X_i, Y_i)$ for
\[i < t, \text{ let } d_t = d_0 \prod_{i=1}^{t} \omega_i \text{ and } n_t = n_0 \prod_{i=1}^{t} \omega_i, \text{ where} \]
\[
\sigma_t^2 := 10^4 (1 + \log d_t)^5 \\
\omega_t := e^{-\frac{1}{t}} (1 - \frac{\sigma_{t-1}}{d_t-1}).
\]

At stage \(t \), we randomly and independently select vertices from \(X_{t-1} \) with probability \(\frac{1}{d_{t-1}} \) and let \(S_t \) be the set of selected vertices of \(X_{t-1} \). Let \(Z_t \subseteq S_t \) be the set of selected vertices which have no selected neighbours. Then place vertices \(v \in X_{t-1} \) in a set \(W_t \) independently with probability \(\omega_t(v) \) chosen so that
\[
\mathbb{P}(v \notin \partial Z_t \cup W_t) = \mathbb{P}(v \notin \partial Z_t)(1 - \omega_t(v)) = \omega_t.
\]
The choice of weights \(\omega_t(v) \) is made to equalize all the expected degrees of vertices in the graph at stage \(t \), so that they are all roughly \(d_t \). It will be seen that \(\mathbb{P}(v \notin \partial Z_t) \geq \omega_t \), so that \(\omega_t(v) \) is well-defined. Then define
\[
X_t := X_{t-1} \setminus (W_t \cup Z_t \cup \partial Z_t) \quad (4) \\
Y_t := (Y_{t-1} \cup W_t) \setminus \partial Z_t. \quad (5)
\]

We stop the process when \(\log d_{t+1} \leq 2^{100} \). Since \(d_t \leq e^{-\frac{t}{t}} d_0 \), this occurs at some time \(T \leq \lceil e (\log d_0 - c) \rceil \), where \(c = 2^{100} \). We make no attempt to find the smallest value of \(c \) for which our analysis still works.

2.2 Control of degrees and sets

For \(t \leq T \) and \(v \in V(G_{t-1}) \setminus Z_t \), let \(X_{v,t} \) and \(Y_{v,t} \) denote the number of neighbours of \(v \) in \(X_t \) and \(Y_t \) respectively. We shall show that with positive probability, for all \(t \leq T \) and all \(v \in V(G_{t-1}) \setminus Z_t \):
\[
|X_{v,t} - d_t| \leq \sigma_t \quad (6) \\
Y_{v,t} \leq 100 \sigma_t \quad (7)
\]

We will use martingales and the Lovász Local Lemma [8] to prove these statements. It will then be shown that for \(t \leq T \),
\[
|X_t| < n_t + \frac{100 \sigma_t n_t}{d_t} \quad (8) \\
|Y_t| < \frac{200 \sigma_t n_t}{d_t} \quad (9) \\
|Z_t| < \frac{n_t}{ed_t} + 200 \frac{\sigma_t n_t}{d_t^2}. \quad (10)
\]
2.3 Proof of Theorem 1

The proof of Theorem 1 follows from the fact that (8) – (10) hold for \(t \leq T \). Let \(Z \) be a maximal independent set in \(X_T \cup Y_T \). By (10),

\[
\sum_{t=0}^{T-1} |Z_t| < \frac{n_0 T}{c d_0} + 200 \sum_{t=0}^{T-1} \sigma_t n_t \frac{d_t}{d_t^2} \\
< \frac{n_0 \log d_0}{d_0} - \frac{n_0 c}{d_0} + 10^5 n_0 \sum_{t=0}^{T-1} e^{t/3e} \\
= \frac{n_0 \log d_0}{d_0} - \frac{n_0 c}{d_0} + 10^5 n_0 \left(e^{T/3e} - 1 \right) \\
< \frac{n_0 \log d_0}{d_0} - \frac{n_0 c}{d_0} + 10^5 n_0 \left(e^{1/3e} - 1 \right) < \frac{n_0 \log d_0}{d_0}.
\]

Using (8) and (9) and \(\sigma_T = 100 \left(d_T \right)^{1/2} (\log d_T)^{5/2} \) and \(d_T \leq 2e^c \), we have

\[
|Z| \leq |X_T| + |Y_T| \leq n_T + 300 n_T \frac{\sigma_T n_T}{d_T} \\
< \frac{n_0 e^{c/3}}{d_0} + \frac{n_0 c}{d_0} \cdot d_T^{1/2} (\log d_T)^{5/2} \\
< \frac{e^{c+1/3} n_0}{d_0} + \frac{e^c n_0}{d_0} = 3e^c n_0.
\]

Combining all the bounds we obtain an independent dominating set \(Z_0 \cup Z_1 \cup \cdots \cup Z_{T-1} \cup Z \) of size less than

\[
\frac{n_0 (\log d_0 + 3e^c)}{d_0}.
\]

This completes the proof of Theorem 1 provided we can show (6) – (10) hold for \(t \leq T \).

3 Analysis of degrees

In this section we prove that, for any given vertex \(v \), (6) and (7) hold with high probability at stage \(t \), assuming they hold for all vertices at stage \(t - 1 \).

Lemma 1. Let \(t \leq T \) and \(v \in V(G_{t-1}) \). Then

\[
\left(1 - \frac{\sigma_{t-1}}{d_{t-1}} \right) \cdot \left(\frac{1}{1 - \frac{1}{d_{t-1}}} \right) \leq e^{\frac{1}{2}} P(v \notin \partial Z_t | v \notin S_t) \leq 1 + \frac{\sigma_{t-1}}{d_{t-1}}.
\]

Proof. Write \(u \leftrightarrow w \) to mean that \(u \) and \(w \) are adjacent vertices in \(G_{t-1} \). For convenience put \(d = d_{t-1} \) and \(\sigma = \sigma_{t-1} \). First note that

\[
P(v \notin \partial Z_t | v \notin S_t) = \prod_{u \leftrightarrow v} \left(1 - \frac{1}{d} \prod_{w \leftrightarrow u \not= v} \left(1 - \frac{1}{d} \right) \right).
\]
By (6), the products have at least $d - \sigma - 1$ and at most $d + \sigma$ terms, respectively. Then
\[
\log \mathbb{P}(v \notin \partial Z_t | v \notin S_t) \leq (d - \sigma - 1) \cdot \log \left(1 - \frac{1 - \sigma - 1}{d} \cdot \left(1 - \frac{1}{d}\right)^{d+\sigma}\right)
\]
\[
\leq - \left(1 - \frac{\sigma - 1}{d}\right) \cdot \left(1 - \frac{1}{d}\right)^{d+\sigma}
\]
using the inequality $\log(1 - x) \leq -x$ for $x < 1$. Also since $\frac{1}{e} \geq (1 - \frac{1}{x})^{x-1}$ for $x > 1$,
\[
\log \mathbb{P}(v \notin \partial Z_t | v \notin S_t) \leq - \frac{1}{e} \cdot \left(1 - \frac{\sigma + 1}{d}\right) \cdot \left(1 - \frac{1}{d}\right)^{\sigma+1}
\]
\[
\leq - \frac{1}{e} \left(1 - \frac{\sigma + 1}{d}\right)^2
\]
\[
\leq - \frac{1}{e} + \log \left(1 + \frac{\sigma}{d}\right)
\]
for $t \leq T$. This proves the upper bound, and the lower bound is proved similarly. \(\square\)

From this note that,
\[
\mathbb{P}(v \notin \partial Z_t) = \mathbb{P}(v \notin Z_t | v \notin S_t) \mathbb{P}(v \notin S_t) + \mathbb{P}(v \notin Z_t | v \notin S_t) \mathbb{P}(v \notin S_t)
\]
\[
\geq \left(1 - \frac{\sigma_{t-1}}{d_{t-1}}\right)
\]
(11)

Therefore $\omega_t(v)$ is well defined by (3).

3.1 Expected degrees

Let $w(x)$ denote the indicator for the event that x was placed in W_t. We define
\[
\Sigma_{v,u} = (1 - w(u)) \prod_{x \in \Gamma^+(u)} \left(1 - \prod_{y \in \Gamma(x) \setminus \{u\}} (\chi(x) - \chi(x)\chi(y))\right),
\]
and define
\[
\alpha_{v,t} = \sum_{u \in \Gamma(v)} \Sigma_{v,u}.
\]

Lemma 1 allows us to estimate $\mathbb{E}(X_{v,t})$ and $\mathbb{E}(Y_{v,t})$:

Lemma 2. Let $t \leq T$ and $v \in V(G_{t-1})$. Then
\[
|\mathbb{E}(X_{v,t}) - d_t| < 0.9\sigma_t \quad (12)
\]
\[
\mathbb{E}(Y_{v,t}) < 90\sigma_t. \quad (13)
\]

Proof. By definition:
\[
\mathbb{E}(X_{v,t}) = \sum_{u \in \Gamma(v)} \mathbb{P}(Z_t \notin \partial Z_t \cup W_t) = \omega_t X_{v,t-1}.
\]
Using the assumption \(|X_{v,t-1} - d_{t-1}| < \sigma_t\), and Lemma 1, we easily obtain for \(t \leq T\):

\[|E(X_{v,t}) - d_t| = |\omega_t X_{v,t-1} - d_t| < e^{-e^{-1}}|X_{v,t-1} - d_{t-1}| < 0.9\sigma_t. \]

This is enough for (12). Next we turn to \(E(Y_{v,t})\). We write \(Y_{v,t} = W_{v,t} + U_{v,t}\) where \(W_{v,t}\) is the neighbours of \(v\) in \(W_t\), and \(U_{v,t}\) is the number of neighbours of \(v\) in \(Y_{t-1}\). \(W_{v,t}\) reflects the new neighbours of \(v\) in \(Y_t\), while the change in \(U_{v,t}\) reflects that some neighbours of \(v\) in \(Y_{t-1}\) are in \(\partial Z_t\). Since \(0 \leq \omega_t(u) \leq \frac{2\sigma_{t-1}}{d_{t-1}}\) for all \(u \in V(G_{t-1})\),

\[0 \leq E(W_{v,t}) \leq \frac{2\sigma_{t-1}X_{v,t-1}}{d_{t-1}} < 2\sigma_{t-1} + \frac{2\sigma_{t-1}^2}{d_{t-1}}. \]

Then summing over \(u \in Y_{t-1}\) with \(u \leftrightarrow v\), we get:

\[E(U_{v,t}) = \sum_{u \in Y_{t-1}} P(u \notin \partial Z_t) \leq e^{-\frac{1}{2}} \left(1 + \frac{\sigma_{t-1}}{d_{t-1}} \right) Y_{v,t-1}. \]

Finally, since \(Y_{v,t} = U_{v,t} + W_{v,t}\) and \(Y_{v,t-1} < 100\sigma_{t-1}\) by assumption:

\[E(Y_{v,t}) < e^{-\frac{1}{2}} \left(1 + \frac{\sigma_{t-1}}{d_{t-1}} \right) Y_{v,t-1} + 2\sigma_{t-1} + \frac{2\sigma_{t-1}^2}{d_{t-1}} \]
\[< 100 \left(1 + \frac{\sigma_{t-1}}{d_{t-1}} \right) e^{-\frac{1}{2}} \sigma_{t-1} + 2\sigma_{t-1} + \frac{2\sigma_{t-1}^2}{d_{t-1}} < 90\sigma_t \]

These inequalities are contingent on \(t \leq T\). This completes the proof.

\[\square \]

Remark. The identities for \(E(X_{v,t})\) and \(E(U_{v,t})\) in the proof of this lemma are crucial. If we did not create the set \(W_t\) to equalize expected degrees, then without further analysis we could have vertices \(v\) such that \(|E(X_{v,t}) - d_t| > 2e^{-\frac{1}{2}} \sigma_t\), which is problematic since \(2e^{-\frac{1}{2}} > 1\). Indeed, in such a case the error terms grow exponentially. This may lead to a situation where, for \(t\) large enough (but much smaller than \(e(\log d_0 - c)\) where our process ends), \(X_t\) contains much more than \((n_0 \log d_0) / d_0\) vertices of small constant degree. In such a case every maximal independent set in \(X_t\) might be much larger than the \((n_0 \log d_0) / d_0\) sized independent set whose existence is posited by Theorem 1.

3.2 Concentration of degrees

In this section, we show that \(X_{v,t}\) is highly concentrated at its expected value, and \(Y_{v,t} < 100\sigma_t\) with high probability:

Lemma 3. For \(t \leq T\) and all \(v \in V(G_{t-1}) \setminus Z_t\),
\[\begin{align*}
1. \quad & P(|X_{v,t} - d_t| > \sigma_t) < d_{t-1}^{-9} \\
2. \quad & P(Y_{v,t} > 100\sigma_t) < d_{t-1}^{-9}.
\end{align*} \]
Lemma 4. Throughout the proof, we let

\[\alpha \]

Proof. Fix \(x \) which has neighbourhood \(\Gamma(x) = \{ u_1, u_2, \ldots, u_k \} \) in \(X_{t-1} \). As in the last section, \(\Gamma^+(x) \) denote the set of vertices \(y \in \Gamma(x) \) at greater distance from \(v \) than \(x \). Again, \(\chi \) denote the indicator function and let \(\chi(x) := \chi(x \in S_t) \). The event \(x \in S_t \) means \(x \) is selected. Again, \(w(x) \) denote the indicator for the event that \(x \) was placed in \(W_t \). We say that \(u_i \) survives if \(u_i \) is not in \(W_t \) and for every \(x \in \Gamma^+(u_i) \), either \(x \) is not selected or \(x \) is selected and at least one \(y \in \Gamma(x) \setminus \{ u_i \} \) is also selected. In terms of characteristic functions, we may write the latter event in terms of \(x \) and \(y \) as \(\chi(x) - \chi(x)\chi(y) = 0 \). We let \(\Sigma_t \) be the indicator that \(u_i \) survives, so that

\[
\Sigma_i = (1 - w(u_i)) \cdot \prod_{x \in \Gamma^+(u_i)} \left(1 - \prod_{y \in \Gamma(x) \setminus \{ u_i \}} (\chi(x) - \chi(x)\chi(y)) \right).
\] (14)

The key to proving Lemma 3 is to show that \(\alpha_{v,t} = \sum_{i=1}^k \Sigma_i \) is the final state of a martingale \(\alpha \) whose difference sequence is very unlikely to be large at any time. Note that \(\alpha_{v,t} \) is not the same as \(X_{v,t} \), because it ignores whether or not the \(u_i \) are selected. Thus we will further show that \(|\alpha_{v,t} - X_{v,t}| \leq 10 \log d \) with high probability. Define

\[
C_i = \{ w(u_i), \chi(x), \chi(x) \cdot \chi(y) : x \in \Gamma^+(u_i), y \in \Gamma^+(x) \}
\]

and define the \(\sigma \)-field \(F_j = \sigma(C_1 \cup \cdots \cup C_j) \). Then the martingale \(\alpha \) is defined by

\[
\alpha_j = \sum_{i=1}^k \mathbb{E}(\Sigma_i | F_j)
\]

Then \(\alpha_{v,t} = \alpha_k = \sum_{i=1}^k \Sigma_i \). The central part of the proof of Lemma 3 is the following:

Lemma 4. Let \(r = (2 \log d)^2 \). If \(|\alpha_j - \alpha_{j-1}| > r \), then some vertex at distance at most three from \(v \) has more than \(\log d \) selected neighbours.

Proof. Throughout the proof, we let \(p = \frac{1}{d_{t-1}} = \mathbb{E}[\chi(x)] \) denote the probability that a vertex is selected.

Fix \(j \geq 1 \). We wish to bound

\[
\alpha_j - \alpha_{j-1} = \mathbb{E}(\Sigma_j | F_j) - \mathbb{E}(\Sigma_j | F_{j-1}) + \sum_{i \neq j} (\mathbb{E}(\Sigma_i | F_j) - \mathbb{E}(\Sigma_i | F_{j-1})).
\]

First, we refine the filter. Suppose \(\Gamma^+(u_j) = \{ x_1, x_2, \ldots, x_{\ell} \} \) and \(\Gamma^+(x_i) = \{ y_{i1}, y_{i2}, \ldots, y_{imi} \} \) for \(1 \leq i \leq \ell \). Order the random variables in \(C_j \) as follows: first \(w(u_j) \), and then \(\chi(x_1) \) and the variables \(\chi(x_1)\chi(y_{i1}), \chi(x_1)\chi(y_{i2}), \ldots, \chi(x_1)\chi(y_{imi}) \) followed by \(\chi(x_2) \) then \(\chi(x_2)\chi(y_{i2}), \chi(x_2)\chi(y_{i3}), \ldots, \chi(x_2)\chi(y_{imi}) \), and so on until \(\chi(x_{\ell}) \) and \(\chi(x_{\ell})\chi(y_{i2}), \ldots, \chi(x_{\ell})\chi(y_{imi}) \).

If \(s = |C_j| \), consider the \(\sigma \)-fields \(G_0, G_1, \ldots, G_s \) where \(G_m \) is the \(\sigma \)-field generated by \(F_{j-1} \) and the first \(m \) random variables in our ordering. Note that \(G_0 = F_{j-1} \) and \(F_j = G_s \). Then

\[
\sum_{i \neq j} \mathbb{E}(\Sigma_i | F_j) - \mathbb{E}(\Sigma_i | F_{j-1}) = \sum_{m=1}^s \sum_{i \neq j} \mathbb{E}(\Sigma_i | G_m) - \mathbb{E}(\Sigma_i | G_{m-1}).
\]
We wish to bound each \(\Delta_{ijm} := \mathbb{E}(\Sigma_i|G_m) - \mathbb{E}(\Sigma_i|G_{m-1}) \) where \(i \neq j \). Note that for \(m = 1 \), we have \(\Delta_{ijm} = 0 \). Now suppose \(m \geq 2 \). A vertex \(x \) is said to be exposed at time \(m \) if \(\mathbb{E}(\chi(x)|G_m) \in \{0, 1\} \).

Case 1. We consider first \(G_m = \sigma(G_{m-1}, \chi(x)) \) where \(x \in \Gamma^+(u_j) \). If \(\Gamma(x) \cap \Gamma^+(u_i) = \emptyset \), then \(\Delta_{ijm} = 0 \). Now suppose \(x^* \) is a neighbour of \(x \) in \(\Gamma^+(u_i) \); since \(G \) has no cycles of length four, \(x^* \) is unique. In that case, we have from (14) that

\[
|\Delta_{ijm}| \leq |\mathbb{E}(\chi(x^*) - \chi(x)\chi(x^*)|G_m) - \mathbb{E}(\chi(x^*) - \chi(x)\chi(x^*)|G_{m-1})|.
\]

If \(i < j \), then \(x^* \) is already exposed at time \(m-1 \), and so \(\Delta_{ijm} = 0 \) when \(i < j \) and \(\chi(x^*) = 0 \). If \(i < j \) and \(\chi(x^*) = 1 \), then

\[
|\Delta_{ijm}| \leq \begin{cases}
p & \text{if } \chi(x) = 0 \\
1 & \text{if } \chi(x) = 1.
\end{cases}
\]

If \(i > j \), then \(x^* \) is not yet exposed. In that case,

\[
|\Delta_{ijm}| \leq \begin{cases}
p^2 & \text{if } \chi(x) = 0 \\
p & \text{if } \chi(x) = 1
\end{cases}
\]

This completes Case 1.

Case 2. The second case is \(G_m = \sigma(G_{m-1}, \chi(x)\chi(y)) \) where \(x \in \Gamma^+(u_i) \) and \(y \in \Gamma^+(x) \). First, note that if \(\chi(x) = 0 \), then \(\Delta_{ijm} = 0 \), since if \(x \) is not selected, then \(\chi(x)\chi(y) \) reveals no information about \(y \). This is the key to the proof, and the reason why we use the particular filtration which we use. Suppose \(\chi(x) = 1 \). If \(i < j \), then \(\mathbb{E}(\Sigma_i|G_m) = \mathbb{E}(\Sigma_i|G_{m-1}) \). If \(i > j \) and \(\chi(x) = 1 \) we get,

\[
|\Delta_{ijm}| \leq \begin{cases}
p & \text{if } \chi(y) = 1 \\
p^2 & \text{if } \chi(y) = 0.
\end{cases}
\]

This completes Case 2.

Suppose, for a contradiction, that no vertex within distance three of \(v \) has more than \(M = \log d \) selected neighbours. Let us count how many times each of \(1, p \), and \(p^2 \) appear as our best possible bound in our bounds on \(\Delta_{ijm} \). Note that in all cases \(|\Delta_{ijm}| \leq 1 \).

We have that \(\Delta_{ijm} \leq p \) unless \(G_m = \sigma(G_{m-1}, \chi(x)) \) where \(\chi(x) = 1 \), and \(i < j \). Furthermore, \(\Delta_{ijm} = 0 \) unless the common neighbour of \(x \) and \(u_j \), \(x^* \), has \(\chi(x^*) = 1 \). Therefore \(|\Delta_{ijm}| > p \) at most \(M^2 \) times; there are at most \(M^2 \) selected neighbours of \(u_j \) such that \(\chi(x) = 1 \) and each of these has at most \(M \) selected neighbours adjacent to some \(u_i \) with \(i < j \).

The bound \(|\Delta_{ijm}| \leq p \) is our best bound if \(G_m = \sigma(G_{m-1}, \chi(x)) \) and either \(i < j \) with \(\chi(x) = 0 \), and the unique common neighbour \(x^* \) of \(x \) and \(u_i \) has \(\chi(x^*) = 1 \), or \(i > j \) and \(\chi(x) = 1 \). Since the degree of any vertex is less than \(2d \) and no vertex has more than \(M \) selected neighbours, neither bound is our best more than \(2dM \) times. The bound \(|\Delta_{ijm}| \leq p \) is also the best bound if \(G_m = \sigma(G_{m-1}, \chi(x)\chi(y)) \) where \(\chi(x)\chi(y) = 1 \) and \(i > j \). Note that
there are at most M^2 edges with $\chi(x)\chi(y) = 1$. Again, since the degree of v is at most $2d$, this bound is best possible no more than $2dM^2$ times. In all, p is the best bound for $|\Delta_{ijm}|$ no more than $4d^2 + 2dM^2$ times.

The bound $|\Delta_{ijm}| \leq p^2$ is the best bound if $G_m = \sigma(G_{m-1}, \chi(x))$ with $\chi(x) = 0$ and $i > j$. Using the fact that both v and u_j have maximum degree $2d$ this occurs at most $4d^2$ times. It also is the best bound if $j > i$ and $G_m = \sigma(G_{m-1}, \chi(x)\chi(y))$ with $\chi(x)\chi(y) = 0$ but $\chi(x) = 1$. Since at most M neighbours of u_j are selected and every vertex has degree at most $2d$ there are at most $2dM$ such edges, and each for at most $2d$ different $|\Delta_{ijm}|s$. In total, p^2 is the best bound for $|\Delta_{ijm}|$ no more than $4d^2 + 2dM^2$ times.

In all other cases, $\Delta_{ijm} = 0$.

In total:

$$|\alpha_j - \alpha_{j-1}| \leq 1 + \sum_{i \neq j} \sum_{t} |\Delta_{ijm}|$$

$$\leq 1 + M^2 + p(4dM + 2dM^2) + p^2(4d^2 + 4Md^2)$$

$$= 1 + M^2 + 4M + 2M^2 + 4 + 4M = 5 + 8M + 3M^2 \leq r.$$

Here, the initial one comes from the fact that $|E(\sum_{j} F_j) - E(\sum_{j} F_{j-1})| \leq 1$. This contradiction completes the proof.

Proof of Lemma 3. Let $(\alpha_{j})_{j=0}^\ell$ be the martingale described above, where $\ell = |\Gamma(v)|$. Since there are at most $(2d)^3$ vertices at distance at most three from v, we have with $r = (2\log d)^2$,

$$\mu := \sum_{j=0}^{\ell-1} \mathbb{P}(|\alpha_{j+1} - \alpha_j| > r) \leq |\Gamma(v)|(2d)^3 \cdot \left(\frac{2d}{r} \right) \left(\frac{1}{d} \right)^r \leq |\Gamma(v)|(2d)^3 \left(\frac{2e}{r} \right)^r < d^{-40}.$$

Here, $(2d)^3 \cdot \left(\frac{2d}{r} \right) \left(\frac{1}{d} \right)^r$ gives an upper bound on the probability that some vertex at distance at most 3 from v has at least r neighbors. So $(\alpha_{j})_{j=0}^\ell$ is r-Lipschitz with exceptional probability at most $\mu := d^{-40}$. Note also that, on the event that $v \in V(G_{t-1}) \setminus Z_t$, $|\alpha_k - X_{v,t}|$ is bounded by the number of vertices in $\Gamma(v)$ which are selected. Since

$$\mathbb{P}(|\Gamma(v) \cap S_t| > 10\log d) < d^{-10}$$

by the Chernoff bounds (noting that vertices are in S_t independently) we have that

$$\mathbb{P}(|\alpha_t - X_{v,t}| > 10\log d) < d^{-10}.$$

Finally we note that (for $t \leq T$)

$$|\mathbb{E}(\alpha_0) - \mathbb{E}(X_{v,t})| \leq 0.01\sigma_t.$$

10
Indeed,

\[|\mathbb{E}(\alpha_k) - \mathbb{E}(X_{v,t})| \leq \mathbb{E}(|\alpha_k - X_{v,t}|) \]
\[= \mathbb{E}(|\alpha_k - X_{v,t}| | v \not\in Z_t)\mathbb{P}(v \not\in Z_t) + \mathbb{E}(|\alpha_k - X_{v,t}| | v \in Z_t)\mathbb{P}(v \in Z_t) \]
\[\leq 0.01\sigma_t, \]

as \(\mathbb{P}(v \in Z_t) \leq \mathbb{P}(v \in S_t) = \frac{1}{d} \).

By Proposition 3 and Lemma 2:

\[\mathbb{P}(|X_{v,t} - d| > \sigma_t) \leq \mathbb{P}(|\alpha_k - \alpha_0| > 0.1\sigma_t) + \mathbb{P}(|\alpha_\ell - X_{v,t}| \geq 10 \log d) \]
\[\leq \mathbb{P}(|\alpha_k - \alpha_0| > 0.09\sigma_t) + d^{-10} \]
\[\leq \mathbb{P}(|\alpha_\ell - \alpha_0| > \lambda + 4d^2\mu^2 + d^{-10}) < 2 \exp(-\frac{\lambda^2}{4d^2}) + 5d^{-10} \tag{16} \]

where \(\lambda = 0.09\sigma_t - 4d^{-10} \), and \(\mu = d^{-40} \) is a bound on the exceptional probability as above, with \(2d \) serving an an absolute bound for \(|\alpha_k - \alpha_0| \). For \(t \leq T \), we easily have \(\lambda^2 > 10^3d(\log d)^5 \) whereas \(4d^2r < 64d(\log d)^4 \). Therefore the above probability is less than \(2d^{-100} + 5d^{-10} < d^{-9} \) for \(t \leq T \).

For \(Y_{v,t} \), we recall that \(Y_{v,t} = U_{v,t} + W_{v,t} \) where \(W_{v,t} \) is the number of neighbors of \(v \) in \(W_t \) and \(U_{v,t} \) is the number of neighbors of \(v \in Y_t - W_t \). In this case, \(W_{v,t} \) is bounded by the sum of independent indicators; \(W_{v,t} \leq \sum_{u + v} \chi(u) \) where \(\chi(u) \) is the indicator random variable of \(u \) being selected to be in the set \(W_{v,t} \). Then, as seen in the proof of Lemma 2,

\[\mathbb{E}(W_{v,t}) \leq \sum_{u + v} \mathbb{E}(\chi(u)) \leq 2\sigma_{t-1} + \frac{2\sigma^2_{t-1}}{d_{t-1}}. \]

The Chernoff bounds then imply that

\[\mathbb{P}(W_{v,t} > 3\sigma_{t-1} + \frac{2\sigma^2_{t-1}}{d_{t-1}}) \leq d_{t-1}^{-10}. \]

for \(t \leq T \).

Concentration for \(U_{v,t} \) is nearly precisely the same as concentration of \(X_{v,t} \) with one slight simplification: in the \(X_{v,t} \) case we were required to define random variables \(\Sigma_i \) which were agnostic to the selection of \(v \) and its neighbors. Such is not necessary here, only the realization that \(U_{v,t} = \sum_{u + v} \chi(u \not\in \partial Z_t) \), where the sum is taken over \(u \in Y_{t-1} \). For \(U_{v,t} \), we use the martingale \((\beta_j)^{j=0} \) defined by \(\beta_j = \mathbb{E}(U_{v,t} | F_j) \) for \(j = 1, 2, \ldots, \ell \) and \(\beta_0 = \mathbb{E}(U_{v,t}) \), and where the \(F_j \) are defined exactly as above (immediately prior to the proof of Lemma 4), only with the \(\{u_i\} \) denoting the neighbors of \(v \) in \(Y_{t-1} \). Identically as in the proof of Lemma 4, with the random variables \(\chi(u \not\in \partial Z_t) \) taking over the role of \(\sigma_i \), \((\beta_j)^{j=0} \) is \(r \)-Lipschitz with exceptional probability at most \(\mu \). Similar to the calculation in (16), using Proposition 3 and Lemma 2:

\[\mathbb{P}(|U_{v,t} - \mathbb{E}(U_{v,t})| > 9\sigma_t) = \mathbb{P}(|\beta_k - \beta_0| > 9\sigma_t) \leq d_t^{-10} \]

for \(t \leq T \). Combining the two bounds, we see that the probability that \(|Y_{v,t} - \mathbb{E}[Y_{v,t}]| > 10\sigma_t \) is at most \(d^{-9} \). \(\square \)
3.3 Lovász Local Lemma

Let $A_{v,t}$ and $B_{v,t}$ be the events that (6) and (7) do not hold at stage t. We have seen that both these event have probability less than d_{t-1}^{-9} at stage t if they hold at stage $t - 1$.

Lemma 5. Suppose $t \leq T$ and (6) - (10) hold at time $t - 1$. Then (6), (7) and (10) hold at time t with positive probability.

Proof. Note that $A_{v,t}$ is mutually independent of any set of events $\{A_{u,t}, B_{u,t} : u \in U\}$ if no vertex of U is at distance at most six from v, and similarly for any event $B_{v,t}$. Therefore a dependency graph of these events certainly has maximum degree less than $\Delta = 2^{10}d_{t-1}^6$. By the Lovász Local Lemma with $\delta = 2^{12}d_{t-1}^{-3}$, the probability that no $A_{v,t}$ or $B_{v,t}$ occurs is at least

$$\exp\left(-\frac{2}{d_{t-1}^9} \cdot |V(G_{t-1})|\right).$$

Using the assumption (8) and (9) at time $t - 1$, this product is easily at least $\exp(-n_t/d_t^8)$ if $t \leq T$. Now the event that (10) does not hold has probability easily less than $\exp(-n_t/d_t^8)$: By (8), $E[Z_t] \leq \frac{2n_t}{d_t^8} + 150\frac{2n_t}{d_t^4}$, and concentration follows by consider an ordering v_1, v_2, \ldots, v_m of the vertices of G_{t-1}, and the martingale $(\rho_i)_{i=0}^m$ where $\rho_i = E(|Z_t| \mid F_i)$ where F_i is the σ-field generated by exposing the first i vertices of G_{t-1}. By (6), no vertex of G_{t-1} has degree more than $d_{t-1} + \sigma_{t-1}$, and this is easily less than $2d_t$ for $t \leq T$. Then the required bound follows from Hoeffding’s Inequality (Appendix: Proposition 2) since $(\rho_i)_{i=0}^m$ is $2d_t$-Lipschitz. Therefore with positive probability (6), (7) and (10) all hold at time t. \qed

3.4 Bounds on $|X_t|$ and $|Y_t|$

Lemma 5 implies the existence of a choice for G_t (along with X_t, Y_t and Z_t satisfying (6), (7) and (10). It remains to show that such a choice also satisfies (8), (9).

We show that the random variables $|X_t|$ and $|Y_t|$ are deterministically bounded as follows by induction on t.

Lemma 6. For $t \leq T$

1. $|X_t| < n_t + \frac{100\sigma_t n_t}{d_t}$ \hspace{1cm} (17)
2. $|Y_t| < \frac{200\sigma_t n_t}{d_t}$ \hspace{1cm} (18)

Proof. Observe $|X_0| = n$ and $|Y_0| = 0$, so the inequalities in the lemma hold for $t = 0$. Suppose $t > 0$ and that the inequalities of the lemma hold at stage $t - 1$. For the first inequality, we count the number edges between X_{t-1} and X_t. Every $v \in X_{t-1} \setminus Z_t$ has $X_{v,t} \leq d_t + \sigma_t$ by (6). Similarly, every $v \in X_t$ has $X_{v,t-1} \geq d_{t-1} - \sigma_{t-1}$. Therefore

$$(d_{t-1} - \sigma_{t-1})|X_t| \leq (d_t + \sigma_t)|X_{t-1}|.$$
For $t \leq T$ we have
$$ \frac{d_t + \sigma_t}{d_{t-1} - \sigma_{t-1}} < e^{-\frac{1}{2}} \left(1 + \frac{2\sigma_t}{d_t} \right). $$

Using (8) applied to $|X_{t-1}|$, we obtain
$$ |X_t| \leq e^{-\frac{1}{2}} \left(1 + \frac{2\sigma_t}{d_t} \right) |X_{t-1}| < n_t + \frac{2e^{-1/\sigma_t}n_{t-1}}{d_t} + \frac{100e^{-1/\sigma_t}n_{t-1}d_t}{d_{t-1}} < n_t + \frac{100\sigma_t n_t}{d_t}. $$

By (7), we have $Y_{v,t} \leq 100\sigma_d$ for every $v \in X_t$ and so
$$ (d_t - \sigma_t)|Y_t| \leq e(X_t,Y_t) \leq 100\sigma_t|X_t|. $$

A calculation gives the required bound on Y_t when $t \leq T$. \hfill \square

4 Proof of Theorem 2

Let $N = \frac{1}{2}n$, and let F be a random k-regular graph on N vertices where $k = (m - 1)d$. For convenience, we assume N is even. For $m \leq 5$ the bound in the theorem is negative, so we assume $m > 5$. Let G be obtained from F by adding a set I of N independent new vertices, and place an independent random d-regular graph between I and F. We shall show that with positive probability,
$$ \gamma(G) \geq \left(1 - \frac{4\log \Delta}{\Delta^{1/2 - m/2}} \right) \frac{N}{\Delta^{m/2}}. $$

It is well-known (see Bollobás [4] for instance) that the number of cycles of length at most four in F is asymptotically Poisson. The same calculation shows that the number of cycles of length at most four in G is also asymptotically Poisson as $n \to \infty$ with mean less than $\frac{1}{2}\Delta^4$. Therefore for large enough N, the probability that G has girth at least five is certainly at least $2\exp(-\Delta^4)$. A computation also shows that the expected number of independent sets of size $\alpha = (2N \log k)/k$ in F is less than $\exp(-N(\log \log k)/k)$. For large enough N, the probability that every independent set has size at most α is easily at least $1 - \exp(-\Delta^4)$, so we conclude that with probability at least $\exp(-\Delta^4)$, every independent set in F has size at most α and G has girth at least five.

If J is a fixed set of vertices in F, let $\varphi(J)$ denote the number of vertices of I adjacent to no vertex in J. Then
$$ \mathbb{E}(\varphi(J)) > |I| \cdot \frac{(N - |J|)^d}{N^d} = N(1 - |J|/N)^d. $$

For $|J| \leq \alpha$, this is at least $\beta = N/\Delta^{2/(m-1)}$. Hoeffding’s inequality (Appendix: Proposition 2) applied to the 1-Lipschitz vertex exposure martingale, obtained by exposing one by one the vertices of I shows that:
$$ \mathbb{P}(\varphi(J) < (1 - \delta)\beta) < \exp\left(-\frac{1}{2n} \delta^2 \beta^2 \right). $$

13
We select the following value of δ, which is less than one if $m > 5$ and $d \geq d_0(m)$:

$$\delta = 4\Delta^{\frac{2}{m-1}}\frac{\log \Delta}{m-1}.$$

Using this choice of δ, the expected number of sets $J \subseteq F$ of size at most α such that $\varphi(J) < (1 - \delta)\beta$ is at most

$$\sum_{j \leq \alpha} \left(\begin{array}{c} N \\ j \end{array}\right) \cdot \exp\left(-\frac{1}{2N}\delta^2\beta^2\right) < \exp\left(2\alpha \log \Delta - \frac{1}{2N}\delta^2\beta^2\right) < \exp\left(-\frac{1}{8N}\delta^2\beta^2\right).$$

If N is large enough, we conclude that with probability at least $1 - \exp(-\Delta^4)$, every set J of at most α vertices in F has $\varphi(J) \geq (1 - \delta)\beta$. By the first part of the proof, we conclude that with positive probability, G has girth at least five and every independent set J in F has $\varphi(J) \geq (1 - \delta)\beta$, and therefore $\gamma_0(G) \geq (1 - \delta)\beta$, as required. This completes the proof.

Acknowledgments: We thank the referee for his detailed and comprehensive comments, which improved this paper.

5 Appendix : Concentration Inequalities

In this section, we present the inequalities which we will need from probability theory involving concentration of measure. All of these inequalities deal with upper bounds for expressions of the form $\mathbb{P}(\left|X - \mathbb{E}X\right| > \lambda)$ where X is a random variable and λ is a real number. The most basic inequality of this type for binomial distributions is the Chernoff Bound [2]:

Proposition 1. (Chernoff Bound) If a random variable X has binomial distribution with probability p and mean pn, then for any $\varepsilon \in [0, 1]$,

$$\mathbb{P}\left(\left|X - pn\right| > \varepsilon pn\right) \leq 2 \exp\left(-\frac{\varepsilon^2 pn}{2}\right).$$

Most of the inequalities we will need concern martingales. One of the most fundamental martingale inequalities is Hoeffding’s Inequality. Further refinements and generalizations of this inequality may be found in McDiarmid [9]:

Proposition 2. (Hoeffding’s Inequality) Let $(\xi_i)_{i=1}^n$ be a martingale with difference sequence $(y_i)_{i=1}^n$, where $-a_i \leq y_i \leq -a_i + c_i$, where a_i is a function on (Ω, F_{i-1}) and $c_i \in \mathbb{R}$. Then for $t \geq 0$ and $c := \sum c_i^2$,

$$\mathbb{P}(\xi_n > \mathbb{E}(\xi_n) + \lambda) \leq \exp\left(-\frac{2\lambda^2}{c}\right) \quad \text{and} \quad \mathbb{P}(\xi_n < \mathbb{E}(\xi_n) - \lambda) \leq \exp\left(-\frac{2\lambda^2}{c}\right).$$

We require the following martingale concentration inequality of Shamir and Spencer [16], which deals with concentration of a martingale which is c-Lipschitz with high probability. An overview of such inequalities is given in [11].
Proposition 3. Suppose \((\xi_i)_{i=1}^k\) is a martingale with \(\xi_0\) constant satisfying

\[
(i) \quad \sum_{i=0}^{k-1} \mathbb{P}(|\xi_{i+1} - \xi_i| > r) < \mu
\]

\[(ii) \quad \forall 0 \leq i < k : |\xi_{i+1} - \xi_i| \leq k.\]

Suppose \(k \mu^{1/2} \leq r\). Then

\[
\mathbb{P}(|\xi_k - \xi_0| > \lambda + k^2 \mu^{1/2}) < 2 \exp\left(\frac{-\lambda^2}{2kr^2}\right) + 2k \mu^{1/2}.
\]

A martingale satisfying the hypothesis of Proposition 3 is called \(r\)-Lipschitz with exceptional probability at most \(\mu\). A final tool from probability which we require is the Lovász Local Lemma [8]:

Proposition 4. (Lovász Local Lemma) Let \(A_1, A_2, \ldots, A_n\) be events in some probability space and suppose that for some set \(J_i \subset [n]\) of size at most \(\Delta\), \(A_i\) is mutually independent of \(\{A_j : j \notin J_i \cup \{i\}\}\). If \(\mathbb{P}(A_i) \leq \delta/4\Delta\) for all \(i\) for some \(\delta < 1\), then

\[
\mathbb{P}\left(\bigcap_{i=1}^n \overline{A_i}\right) \geq e^{-\delta n/4\Delta}.
\]
References

