Sparsity and homomorphisms of graphs and digraphs

Ararat Harutyunyan (Oxford)

joint work

Bojan Mohar (Simon Fraser), Mark Kayll (U. Montana) Liam Rafferty (U. Montana)

November 14, 2013
Chromatic number and sparse graphs

Theorem (Erdős 1959, Canad. J. Math.)
\[\forall g, k \exists \text{ graph } G \text{ s.t. } \text{girth}(G) \geq g \text{ and } \chi(G) \geq k. \]
Theorem (Erdős 1959, Canad. J. Math.)
\[\forall g, k \exists \text{ graph } G \text{ s.t. } \text{girth}(G) \geq g \text{ and } \chi(G) \geq k. \]

Remark: Bollobas and Sauer (1976 Canad. J. Math.) showed that \(G \) can be taken to be \textit{uniquely} \(k \)-colorable.
Definition
A homomorphism from graph G to H is a mapping $\phi : V(G) \rightarrow V(H)$ that preserves adjacencies.

Proposition
G is k-colorable if and only if $G \rightarrow K_k$.
Extending Erdős

- Erdős’ theorem implies that ⋄ sparse G s.t. $G \not\rightarrow K_k$ for any k

Instead of K_k, look at arbitrary graph H.

Clearly, ⋄ G (of arbitrary girth) s.t. $G \not\rightarrow H$.

Question: Does there exist graph G^* "diluted" from G s.t. $G^* \not\rightarrow H$?
Extending Erdős

- Erdős’ theorem implies that \exists sparse G s.t. $G \not\rightarrow K_k$ for any k
- Instead of K_k look at arbitrary graph H.
Extending Erdős

- Erdős’ theorem implies that \(\exists \) sparse \(G \) s.t. \(G \not\rightarrow K_k \) for any \(k \)
- Instead of \(K_k \) look at arbitrary graph \(H \).
- Clearly, \(\exists \ G \) (of arbitrary girth) s.t. \(G \not\leftrightarrow H \).
Extending Erdős

- Erdős’ theorem implies that \(\exists \) sparse \(G \) s.t. \(G \not\rightarrow K_k \) for any \(k \).
- Instead of \(K_k \) look at arbitrary graph \(H \).
- Clearly, \(\exists \ G \) (of arbitrary girth) s.t. \(G \not\leftrightarrow H \).
- **Question:** Does there exist graph \(G^{*} \) “diluted” from \(G \) s.t. \(G^{*} \not\leftrightarrow H \)?
“Diluting” G

Idea: G and H given. Suppose $G \not\rightarrow H$. Does there exist a sparse graph G^* s.t.

\[G^* \rightarrow G \]
\[G^* \not\rightarrow H \]
“Diluting” G

Idea: G and H given. Suppose $G \nrightarrow H$. Does there exist a sparse graph G^* s.t.

$$G^* \rightarrow G$$

$$G^* \nrightarrow H$$

Theorem (Zhu 1996 J. Graph Theory)

G and H graphs, and $G \nrightarrow H$. Then $\forall g \exists G^*$ with:

$$\text{girth}(G^*) \geq g$$

$G^* \rightarrow G$ and $G^* \nrightarrow H$.

Remark: Set $G = K_2$ and $H = K_2 - 1$ to recover Erdős’ theorem.
“Diluting” G

Idea: G and H given. Suppose $G \not
rightarrow H$. Does there exist a sparse graph G^* s.t.

$$G^* \rightarrow G$$

$$G^* \not
rightarrow H$$

Theorem (Zhu 1996 J. Graph Theory)

G and H graphs, and $G \not
rightarrow H$. Then $\forall g \exists G^*$ with:

$$\text{girth}(G^*) \geq g, \ G^* \rightarrow G \text{ and } G^* \not
rightarrow H.$$

Remark: Set $G = K_r$ and $H = K_{r-1}$ to recover Erdős’ theorem.
Digraphs

Digraphs here will have no loops and no multiple arcs but digons are allowed.
Digraphs

D and C digraphs. $\phi : V(D) \rightarrow V(C)$ is an acyclic homomorphism if

1. $\forall v \in V(C), \phi^{-1}(v)$ is acyclic;
2. for every arc $uv \in E(D)$, either $\phi(u) = \phi(v)$ or $\phi(u) \phi(v)$ is an arc in C.
Digraphs

D and C digraphs. \(\phi : V(D) \rightarrow V(C) \) is an acyclic homomorphism if

(i) \(\forall v \in V(C), \phi^{-1}(v) \) is acyclic;

(ii) for every arc \(uv \in E(D) \), either \(\phi(u) = \phi(v) \) or \(\phi(u) \phi(v) \) is an arc in \(C \).
Digraphs

D and C digraphs. $\phi : V(D) \rightarrow V(C)$ is an acyclic homomorphism if

(i) $\forall v \in V(C)$, $\phi^{-1}(v)$ is acyclic;

(ii) for every arc $uv \in E(D)$, either $\phi(u) = \phi(v)$ or $\phi(u)\phi(v)$ is an arc in C.
Digraphs

D and C digraphs. $\phi : V(D) \rightarrow V(C)$ is an acyclic homomorphism if

(i) $\forall v \in V(C)$, $\phi^{-1}(v)$ is acyclic;

(ii) for every arc $uv \in E(D)$, either $\phi(u) = \phi(v)$ or $\phi(u)\phi(v)$ is an arc in C.

We write $D \rightarrow_{ac} C$
Fact: Let G and H be graphs, D and C the bidirected digraphs of G and H, respectively. Then

$$G \rightarrow H \iff D \rightarrow_{ac} C.$$
Analog of Zhu’s theorem

Theorem (H, Kayll, Mohar, Rafferty, 2012 Canad. J. Math)

D and C digraphs, and $D \not\rightarrow_{ac} C$. Then $\forall g \exists D^*$ with:

girth$(D^*) \geq g$, $D^* \rightarrow_{ac} D$ and $D^* \not\rightarrow_{ac} C$.
Unique colorability: Cores

Definition

Let G and H be graphs (digraphs). G is uniquely H-colorable if every homomorphism (or acyclic homomorphism) from G to H is surjective and any two homomorphisms ϕ, ψ of G differ by some automorphism π of H (i.e., $\phi = \pi \circ \psi$).

Graph (digraph) H is a core if it is uniquely H-colorable.
Unique colorability: Cores

Definition
Let G and H be graphs (digraphs). G is uniquely H-colorable if every homomorphism (or acyclic homomorphism) from G to H is surjective and any two homomorphisms ϕ, ψ of G differ by some automorphism π of H (i.e., $\phi = \pi \circ \psi$).
Unique colorability: Cores

Definition
Let G and H be graphs (digraphs). G is uniquely H-colorable if every homomorphism (or acyclic homomorphism) from G to H is surjective and any two homomorphisms ϕ, ψ of G differ by some automorphism π of H (i.e., $\phi = \pi \circ \psi$).

Graph (digraph) H is a core if it is uniquely H-colorable.
Generalizing Bollobas-Sauer

Theorem (Bollobas-Sauer 1976, Canad. J. Math.)
\[\forall g, k \exists G \text{ of girth } g \text{ that is uniquely } k\text{-colorable.} \]
Generalizing Bollobas-Sauer

Theorem (Bollobas-Sauer 1976, Canad. J. Math.)
\[\forall g, k \exists G \text{ of girth } g \text{ that is uniquely } k\text{-colorable}. \]

Theorem (Zhu 1996, J. Graph Theory)
\[\forall g \text{ and every core } H, \exists \text{ graph } H^* \text{ of girth } g \text{ that is uniquely } H\text{-colorable}. \]
Generalizing Bollobas-Sauer

Theorem (Bollobas-Sauer 1976, Canad. J. Math.)
∀g, k ∃ G of girth g that is uniquely k-colorable.

Theorem (Zhu 1996, J. Graph Theory)
∀g and every core H, ∃ graph H* of girth g that is uniquely H-colorable.

Remark: Setting $H = K_k$ gives Bollobas-Sauer.
Theorem (H, Kayll, Mohar Rafferty 2012, Canad. J. Math.)

\[\forall g \text{ and every core } D, \exists \text{graph } D^* \text{ of girth } g \text{ that is uniquely } H\text{-colorable.} \]

Remark: Has applications on coloring of digraphs and digraph circular chromatic number.
Digraph analog

Theorem (H, Kayll, Mohar Rafferty 2012, Canad. J. Math.)
∀g and every core D, ∃ graph D* of girth g that is uniquely H-colorable.
Digraph analog

Theorem (H, Kayll, Mohar Rafferty 2012, Canad. J. Math.)

∀g and every core D, ∃ graph D* of girth g that is uniquely H-colorable.

Remark: Has applications on coloring of digraphs and digraph circular chromatic number.
The applications
The applications

Theorem
\[\forall g, k \exists \text{ digraph } D \text{ of girth } g \text{ that is uniquely } k\text{-colorable}. \]
The applications

Theorem
∀g, k ∃ digraph D of girth g that is uniquely k-colorable.

Theorem
Let 1 ≤ d ≤ k be relative prime integers. Then ∀g, ∃ digraph D of girth at least g and $\chi_c(D) = \frac{k}{d}$.
Thank You