Global Offensive Alliances in Graphs via Degree Sequences

Ararat Harutyunyan1,2

\textit{Department of Mathematics}
\textit{Simon Fraser University}
\textit{Vancouver, Canada}

Abstract

A global offensive alliance in a graph $G = (V, E)$ is a subset S of V such that for every vertex v not in S at least half of the vertices in the closed neighborhood of v are in S. We give an upper bound on the global offensive alliance number of a graph in terms of its degree sequence. We also study global offensive alliances of random graphs.

\textit{Keywords:} Global offensive alliances, degree sequence, upper bounds, random graph.

1 Introduction

The study of alliances in graphs was first introduced by Hedetniemi, Hedetniemi and Kristiansen [7]. They introduced the concepts of defensive and offensive alliances, global offensive and global defensive alliances and studied alliance numbers of a class of graphs such as cycles, wheels, grids and complete graphs. Haynes et al. [5] studied the global defensive alliance numbers of different classes of graphs. They gave lower bounds for general graphs, bipartite graphs and trees, and upper bounds for general graphs and trees. Rodriguez-Velazquez and Sigarreta [12] studied the defensive alliance number

1 Research supported by FQRNT (Le Fonds québécois de la recherche sur la nature et les technologies) doctoral scholarship.

2 Email: aha43@sfu.ca
and the global defensive alliance number of line graphs. A characterization of
trees with equal domination and global strong defensive alliance numbers was
given by Haynes, Hedetniemi and Henning [6].

Offensive alliances were first studied by Favaron et. al [3], where they de-
derived some bounds on the offensive alliance number. Rodriguez-Velazquez and
Sigarreta [9] gave bounds for offensive and global offensive alliance numbers
in terms of the algebraic connectivity, the spectral radius, and the Laplacian
spectral radius of a graph. They also gave bounds on the global offensive
alliance number of cubic graphs in [10] and the global offensive alliance
number for general graphs in [11]. Some bounds on the global offensive alliances
were given in [4]. Balakrishnan et al. [2] studied the complexity of global
alliances. They showed that the decision problems for global defensive and
global offensive alliances are both NP-complete for general graphs.

This paper further studies the global offensive alliance number of a graph.

Given a simple graph $G = (V, E)$ and a vertex $v \in V$, the open neighbor-
hood of v, $N(v)$, is defined as $N(v) = \{u : uv \in E\}$. The closed neighborhood
of v, denoted by $N[v]$, is $N[v] = N(v) \cup \{v\}$. Given a set $X \subset V$, the boundary of X, denoted by $\delta(X)$, is the set of vertices in $V - X$ that are adjacent
to at least one member of X. A set $X \subset V$ is called a dominating set if $\delta(X) = V - X$.

Definition 1.1 A set $S \subset V$ is an offensive alliance if for every $v \in \delta(S)$,
$|N[v] \cap S| \geq |N[v] - S|$. An offensive alliance S is called a global offensive alliance if S is also a dominating set.

Definition 1.2 A global offensive alliance S is called a global strong offensive alliance if for every $v \in \delta(S)$,

Definition 1.3 The global (strong) offensive alliance number of G is the car-
dinality of a minimum size global (strong) offensive alliance in G, and is de-
noted by $\gamma_o(G)(\gamma_\hat{o}(G))$. A minimum size global offensive alliance is called a $\gamma_o(G)$-set.

In this paper, we study the global (strong) offensive alliance numbers of
general graphs. We give an upper bound on the global (strong) offensive alliance number of general graphs. Additionally, we study the global (strong) offensive alliance number of random graphs.

The rest of the paper is organized as follows. In Section 2, we give an upper bound on the global (strong) offensive alliance number of a general graph in terms of its order and degree sequence. Using this bound, we obtain a second upper bound on the global (strong) offensive alliance number in terms of the
minimum degree of the graph. In Section 3, we study the global (strong) offensive alliance number of the random graph \(G(n, 1/2) \).

2 Global Offensive Alliances in Graphs

In this section we give an upper bound on \(\gamma_o(G) \) for any graph \(G \). Our result derives an upper bound on \(\gamma_o(G) \) in terms of the degree sequence of the graph \(G \). The method of the proof is probabilistic. All the required probabilistic tools can be found in [1]. Note that \(\exp(x) \) is the exponential function \(e^x \).

Theorem 2.1 Let \(G = (V, E) \) be a graph of order \(n \). Let \(\text{deg}(v) \) denote the degree of vertex \(v \). Then for all \(1/2 > \alpha > 0 \),

\[
\gamma_o(G) \leq \left(\frac{1}{2} + \alpha \right) n + \left(\frac{1}{2} - \alpha \right) \sum_{v \in V} \exp \left(-\frac{\alpha^2}{1 + 2\alpha} \cdot \text{deg}(v) \right)
\]

Proof. We put every vertex \(v \in V \) in a set \(S \) with probability \(p \), independently. The value of \(p \) will be determined later. The random set \(S \) is going to be part of the global offensive alliance. For every vertex \(v \in V \), let \(X_v \) denote the number of vertices in the neighborhood of \(v \) that are in \(S \). Let \(Y = \{ v \in V : v \not\in S \text{ and } X_v \leq \left\lfloor \frac{\text{deg}(v)}{2} \right\rfloor \} \). Clearly, \(S \cup Y \) is a global offensive alliance. Note that \(\mathbb{E}[|S|] = np \). Now, we estimate \(\mathbb{E}[|Y|] \).

It is not hard to see that \(X_v \) is a Binomial(\(\text{deg}(v), p \)) random variable. We use the Chernoff Bound (see, for example, Alon and Spencer [1]) to bound \(\mathbb{P}[X_v \leq \frac{\text{deg}(v)}{2}] \). The Chernoff Bound states that for any positive \(\epsilon < 1 \) and random variable \(X \) that has binomial distribution with probability \(p \) and mean \(np \),

\[
\mathbb{P}[|X - pn| > \epsilon pn] < 2e^{-\epsilon^2 pn/2}.
\]

Let \(\epsilon = 1 - \frac{1}{2p} \). Then, by the Chernoff Bound,

\[
\mathbb{P}[X_v \leq \frac{\text{deg}(v)}{2}] = \mathbb{P}[X_v \leq (1 - \epsilon)p(\text{deg}(v))] \\
< e^{-\epsilon^2 \text{deg}(v)p/2} \\
= e^{-(1-\frac{1}{2})^2 \text{deg}(v)p/2}.
\]

Chernoff’s bound holds whenever \(0 < \epsilon < 1 \), or equivalently when \(p > \frac{1}{2} \).

Now,

\[
\mathbb{P}[v \in Y] = \mathbb{P}[\{ v \not\in S \} \cap \{ X_v \leq \text{deg}(v)/2 \}]
\]
\[
\mathbb{P}[v \notin S] \mathbb{P}[X_v \leq \deg(v)/2] \\
\leq (1 - p) e^{-(1 - \frac{1}{2p})^2 \deg(v)p/2},
\]

by independence. By linearity of expectation, we get that
\[
\mathbb{E}[|Y|] \leq \sum_{v \in V} (1 - p) e^{-(1 - \frac{1}{2p})^2 \deg(v)p/2}.
\]

Now, we have that
\[
\mathbb{E}[|S \cup Y|] \leq np + \sum_{v \in V} (1 - p) e^{-(1 - \frac{1}{2p})^2 \deg(v)p/2}.
\]

Therefore, there exists a global offensive alliance in \(G\) of size at most
\[
np + \sum_{v \in V} (1 - p) e^{-(1 - \frac{1}{2p})^2 \deg(v)p/2}.
\]

Thus, we have that
\[
\gamma_o(G) \leq np + \sum_{v \in V} (1 - p) e^{-(1 - \frac{1}{2p})^2 \deg(v)p/2}.
\]

The only constraint we have on \(p\) is that \(p > \frac{1}{2}\). We set \(p = \frac{1}{2} + \alpha\) for any \(\alpha > 0\). This completes the proof.

\[
\square
\]

A similar result can be derived for the global strong offensive alliance number of a graph.

Theorem 2.2 Let \(G = (V, E)\) be a graph of order \(n\). Then for all \(1/2 > \alpha > 0\),
\[
\gamma_o(G) \leq \left(\frac{1}{2} + \alpha\right) n + \sum_{v \in V} \exp\left(-\frac{\alpha^2}{2\alpha} \cdot (\deg(v) + 1)\right).
\]

Due to space restrictions, the proof of Theorem 2.2 is omitted. The proof is in the same spirit as the proof of Theorem 2.1. Theorems 2.1 and 2.2 yield the following corollaries.

Corollary 2.3 Let \(G\) be a graph of minimum degree \(d \geq 2\). Then
\[
\gamma_o(G) \leq \left(\frac{1}{2} + \left(\frac{\log d}{d}\right)^{1/2} + \frac{1}{2\sqrt{d}} - \frac{\sqrt{\log d}}{d}\right) n.
\]
Corollary 2.4 Let G be a graph of minimum degree $d \geq 2$. Then

$$
\gamma_o(G) \leq \left(\frac{1}{2} + \left(\frac{\log d}{d+1}\right)^{1/2} + \frac{1}{\sqrt{d}}\right)n.
$$

Note that if the minimum degree d of a graph G tends to infinity, corollaries 2.3 and 2.4 imply that $\gamma_o(G)$ and $\gamma_o(G)$ approach to $n/2$. For large minimum degree d, our results improve the following sharp bounds found in [8].

Theorem 2.5 ([8]) For every connected graph G of order $n \geq 2$, $\gamma_o(G) \leq \frac{2n}{3}$. If the minimum degree of G is at least 2, $\gamma_o(G) \leq \frac{5n}{6}$.

3 Global Offensive Alliances in Random Graphs

The random graph $G(n, 1/2)$ is the graph on n vertices where each possible edge is present with probability 1/2, independently. It seems plausible that the random graph $G(n, 1/2)$ should have a global offensive alliance number of approximately $n/2$. In this section, we provide some evidence that this is the case. The main result of this section is the following theorem. The proof is long and is omitted.

Theorem 3.1 Let $c < 1/2$ be any fixed constant. Then

$$
\mathbb{P}[\gamma_o(G(n, 1/2)) \leq cn] = o(1).
$$

Since a global strong offensive alliance in a graph G is also a global offensive alliance in G, Theorem 3.1 immediately implies the following.

Theorem 3.2 Let $c < 1/2$ be any fixed constant. Then

$$
\mathbb{P}[\gamma_o(G(n, 1/2)) \leq cn] = o(1).
$$

On the other hand, using corollaries 2.3 and 2.4, one can obtain that for $c > 1/2$, the random graph has a global (strong) offensive alliance of size at most cn almost surely.

Theorem 3.3 Let $c > 1/2$ be any fixed constant. Then

$$
\mathbb{P}[\gamma_o(G(n, 1/2)) \leq cn] = 1 - o(1).
$$

Theorem 3.4 Let $c > 1/2$ be any fixed constant. Then

$$
\mathbb{P}[\gamma_o(G(n, 1/2)) \leq cn] = 1 - o(1).
$$
References

