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Abstract10

We revisit a classical crossword filling puzzle which already appeared in Garey&Jonhson’s book.11

We are given a grid with n vertical and horizontal slots and a dictionary with m words and are12

asked to place words from the dictionary in the slots so that shared cells are consistent. We attempt13

to pinpoint the source of intractability of this problem by carefully taking into account the structure14

of the grid graph, which contains a vertex for each slot and an edge if two slots intersect. Our15

main approach is to consider the case where this graph has a tree-like structure. Unfortunately, if16

we impose the common rule that words cannot be reused, we discover that the problem remains17

NP-hard under very severe structural restrictions, namely, if the grid graph is a union of stars18

and the alphabet has size 2, or the grid graph is a matching (so the crossword is a collection of19

disjoint crosses) and the alphabet has size 3. The problem does become slightly more tractable if20

word reuse is allowed, as we obtain an mtw algorithm in this case, where tw is the treewidth of the21

grid graph. However, even in this case, we show that our algorithm cannot be improved to obtain22

fixed-parameter tractability. More strongly, we show that under the ETH the problem cannot be23

solved in mo(k), where k is the number of horizontal slots of the instance (which trivially bounds tw).24

Motivated by these mostly negative results, we also consider the much more restricted case25

where the problem is parameterized by the number of slots n. Here, we show that the problem does26

become FPT (if the alphabet has constant size), but the parameter dependence is exponential in27

n2. We show that this dependence is also justified: the existence of an algorithm with running time28

2o(n2), even for binary alphabet, would contradict the randomized ETH. Finally, we consider an29

optimization version of the problem, where we seek to place as many words on the grid as possible.30

Here it is easy to obtain a 1
2 -approximation, even on weighted instances, simply by considering only31

horizontal or only vertical slots. We show that this trivial algorithm is also likely to be optimal,32

as obtaining a better approximation ratio in polynomial time would contradict the Unique Games33

Conjecture. The latter two results apply whether word reuse is allowed or not.34
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1 Introduction40

Crossword puzzles are one-player games whose goal is to fill a (traditionally two-dimensional)41

grid with words. Since their first appearance more than 100 years ago, crossword puzzles have42

rapidly become popular. Nowadays, they can be found in many newspapers and magazines43

around the world like the New York Times in the USA, or Le Figaro in France. Besides44

their obvious recreational interest, crossword puzzles are valued tools in education [2] and45

medicine [13]. They are also helpful for developing and testing computational techniques;46
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23:2 Filling Crosswords is Very Hard

Figure 1 Place valid words in this grid. In a possible instance, letters S, U, I, V, R, E, and T
have weight 7, 5, 4, 2, 6, 1, and 3, respectively. Any other letter has null weight. Try to obtain at
least 330 points.

see for example [15]. In fact, both the design and the completion of a puzzle are challenging.47

In this article, we are interested in the task of solving a specific type of crossword puzzle.48

There are different kinds of crossword puzzles. In the most famous ones, some clues are49

given together with the place where the answers should be located. A solution contains50

words that must be consistent with the given clues, and the intersecting pairs of words are51

constrained to agree on the letter they share. Fill-in crossword puzzles do not go with clues.52

Given a list of words and a grid in which some slots are identified, the objective is to fill all53

the slots with the given words. The list of words is typically succinct and provided explicitly.54

In a variant of fill-in crossword puzzle currently proposed in a French TV magazine [11],55

one has to find up to 14 words and place them in a grid (the grid is the same for every56

instance, see Figure 1 for an illustration). The words are not explicitly listed but they must57

be valid (for instance, belong to the French language). In an instance of the game, some58

specified letters have a positive weight; the other letters have weight zero. The objective is59

to find a solution whose weight – defined as the total sum of the letters written in the grid –60

is at least a given threshold.61

The present work deals with a theoretical study of this fill-in crossword puzzle (the62

grid is not limited to the one of Figure 1). We are mainly interested in two problems:63

Can the grid be entirely completed? How can the weight of a solution be maximized?64

Thereafter, these problems are called Crossword Puzzle Decision and Crossword65

Puzzle Optimization (CP-Dec and CP-Opt in short), respectively.66

CP-Dec is not new; see GP14 in [5]. The proof of NP-completeness is credited to a67

personal communication with Lewis and Papadimitriou. Thereafter, an alternative NP-68

completeness proof appeared in [4]. Other articles on crossword puzzles exist and they are69

mostly empirically validated techniques coming from Artificial Intelligence and Machine70

Learning; see for example [6, 12, 10, 1, 15, 14] an references therein.71

Our Results Our goal in this paper is to pinpoint the relevant structural parameters that72

make filling crossword puzzles intractable. We begin by examining the structure of the given73

grid. It is natural to think that, if the structure of the grid is tree-like, then the problem74

should become easier, as the vast majority of problems are tractable on graphs of small75

treewidth. We only partially confirm this intuition: by taking into account the structure of a76

graph that encodes the intersections between slots (the grid-graph) we show in Section 377

that CP-Opt can be solved in polynomial time on instances of constant treewidth. However,78

our algorithm is not fixed-parameter tractable and, as we show, this cannot be avoided, even79

if one considers the much more restricted case where the problem is parameterized by the80

number of horizontal slots, which trivially bounds the grid-graph’s treewidth (Theorem 4).81

More devastatingly, we show that if we also impose the natural rule that words cannot82

be reused, the problem already becomes NP-hard when the grid graph is a matching for83
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alphabets of size 3 (Theorem 6), or a union of stars for a binary alphabet (Theorem 5). Hence,84

a tree-like structure does not seem to be of much help in rendering crosswords tractable.85

We then go on to consider CP-Opt parameterized by the total number of slots n. This86

is arguably a very natural parameterization of the problem, as in real-life crosswords, the87

size of the grid can be expected to be significantly smaller than the size of the dictionary.88

We show that in this case the problem does become fixed-parameter tractable (Corollary 9),89

but the running time of our algorithm is exponential in n2. Our main result is to show that90

this disappointing dependence is likely to be best possible: even for a binary alphabet, an91

algorithm solving CP-Dec in 2o(n2) would contradict the randomized ETH (Theorem 12).92

Note that all our positive results up to this point work for the more general CP-Opt, while93

our hardness results apply to CP-Dec.94

Finally, in Section 5 we consider the approximability of CP-Opt. Here, it is easy to95

obtain a 1
2 -approximation by only considering horizontal or vertical slots. We are only able96

to slightly improve upon this, giving a polynomial-time algorithm with ratio 1
2 + O( 1

n ). Our97

main result in this direction is to show that this is essentially best possible: obtaining an98

algorithm with ratio 1
2 + ϵ would falsify the Unique Games Conjecture (Theorem 15).99

Due to space limitations, some proofs have been moved to the appendix.100

2 Problem Statement and Preliminaries101

We are given a dictionary D = {d1, . . . dm} whose words are constructed on an alphabet102

L = {l1, . . . lℓ}, and a two-dimensional grid consisting of horizontal and vertical slots. A slot103

is composed of consecutive cells. Horizontal slots do not intersect each other; the same goes104

for vertical slots. However horizontal slots can intersect vertical slots. A cell is shared if it105

lies at the intersection of two slots. Unless specifically stated, n, m and ℓ denote the total106

number of slots, the size of D, and the size of L, respectively. Finally, let us mention that we107

consider only instances where the alphabet is of constant size, i.e., ℓ = O(1).108

In a feasible solution, each slot S receives either a word of D of length |S|, or nothing (we109

sometimes say that a slot receiving nothing gets an empty word). Each cell gets at most one110

letter, and the words assigned to two intersecting slots must agree on the letter placed in the111

shared cell. All filled horizontal slots get words written from left to right (across) while all112

vertical slots get words written from top to bottom (down).113

There is a weight function w : L → N. The weight of a solution is the total sum of the114

weights of the letters placed in the grid (the letters of the shared cells are counted once).115

The two main problems studied in this article are the following. Given a grid, a dictionary116

D on alphabet L, and a weight function w : L → N, the objective of Crossword Puzzle117

Optimization (CP-Opt in short) is to find a feasible solution of maximum weight. Given118

a grid and a dictionary D on alphabet L, the question posed by Crossword Puzzle119

Decision (CP-Dec in short) is whether the grid can be completely filled or not?120

Two cases will be considered: whether each word is used at most once, or if each word121

can be assigned multiple times. In this article, we will sometimes suppose that some cells are122

pre-filled with some elements of L. In this case, a solution is feasible if it is consistent with123

the pre-filled cells. Below we propose a first result when all the shared cells are pre-filled.124

▶ Proposition 1. CP-Dec and CP-Opt can be solved in polynomial time if all the shared125

cells in the grid are pre-filled, whether word reuse is allowed or not.126

One can associate a bipartite graph, hereafter called the grid graph, with each grid: each127

slot is a vertex and two vertices share an edge if the corresponding slots overlap. The grid128

(and then, the grid graph) is not necessarily connected.129
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23:4 Filling Crosswords is Very Hard

Let us also note that so far we have been a bit vague about the encoding of the problem.130

Concretely, we could use a simple representation which lists for each slot the coordinates of131

its first cell, its size, and whether the slot is horizontal or vertical; and then supplies a list of132

all words in the dictionary and an encoding of the weight function. Such a representation133

would allow us to perform all the basic operations needed by our algorithms in polynomial134

time, such as deciding if it is possible to place a word d in a slot S, and which letter would135

then be placed in any particular cell of S. However, one drawback of this encoding is that its136

size may not be polynomially bounded in n + m, as some words may be exponentially long.137

We can work around this difficulty by using a more succinct representation: we are given138

the same information as above regarding the n slots; for each word we are given its total139

weight; and for each slot S and word d, we are told whether d fits exactly in S, and if yes,140

which letters are placed in the cells of S which are shared with other slots. Since the number141

of shared cells is O(n2) this representation is polynomial in n + m and it is not hard to see142

that we are still able to perform any reasonable basic operation in polynomial time and that143

we can transform an instance given in the simple representation to this more succinct form.144

Hence, in the remainder, we will always assume that the size of the input is polynomially145

bounded in n + m.146

We will rely on the Exponential Time Hypothesis (ETH) of Impagliazzo, Paturi, and147

Zane [8], which states the following:148

▶ Conjecture 2. Exponential Time Hypothesis: there exists an ϵ > 0, such that 3-SAT on149

instances with n variables and m clauses cannot be solved in 2ϵ(n+m).150

Note that it is common to use the slightly weaker formulation which states the ETH as151

the assumption that 3-SAT cannot be solved in time 2o(n+m). This is known to imply that152

k-Independent Set cannot be solved in time no(k)[3]. We use this fact in Theorem 4. In153

Section 4 we will rely on the randomized version of the ETH, which has the same statement154

as Conjecture 2 but for randomized algorithms with expected running time 2ϵ(n+m).155

3 When the Grid Graph is Tree-like156

In this section we are considering instances of CP-Dec and CP-Opt where the grid graph157

is similar to a tree. First, we give an algorithm for both problems in cases where the grid158

graph has bounded treewidth and we are allowed to reuse words and we show that this159

algorithm is essentially optimal. Then, we show that CP-Dec and CP-Opt are much harder160

to deal with, in the case we are not allowed to reuse words, by proving that the problems161

are NP-hard even for instances where the grid graph is just a matching. For the instances162

such that CP-Dec is NP-hard, we know that CP-Opt is NP-hard. That happens because163

we can assume that all the letters have weight equal to 1 so a solution for CP-Dec is an164

optimal solution for CP-Opt.165

3.1 Word Reuse166

We propose a dynamic programming algorithm for CP-Opt and hence also for CP-Dec.167

Note that it can be extended to the case where some cells of the instance are pre-filled.168

▶ Theorem 3. If we allow to reuse words, then CP-Opt can be solved in (m+1)tw(n+m)O(1)
169

on inputs where tw is the treewidth of the grid graph.170

It seems that the algorithm we propose for CP-Dec is essentially optimal, even if we171

consider a much more restricted case.172
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▶ Theorem 4. CP-Dec with word reuse is W[1]-hard parameterized by the number of173

horizontal slots of the grid, even for alphabets with two letters. Furthermore, under the ETH,174

no algorithm can solve this problem in time mo(k), where k is the number of horizontal slots.175

Proof. We perform a reduction from k-Independent Set, where we are given a graph176

G = (V, E) with |V | vertices and |E| edges and are looking for an independent set of size k.177

This problem is well-known to be W[1]-hard and not solvable in |V |o(k) time under the ETH178

[3]. We assume without loss of generality that |E| ≠ k. Furthermore, we can safely assume179

that G has no isolated vertices.180

We first describe the grid of our construction which fits within an area of 2k − 1 lines181

and 2|E| − 1 columns. We construct:182

1. k horizontal slots, each of length 2|E| − 1 (so each of these slots is as long horizontally as183

the whole grid). We place these slots in the unique way so that no two of these slots are184

in consecutive lines. We number these horizontal slots 1, . . . , k from top to bottom.185

2. |E| vertical slots, each of length 2k − 1 (so each of these slots is long enough to cover the186

grid top to bottom). We place these slots in the unique way so that no two of them are187

in consecutive columns. We number them 1, . . . , |E| from left to right.188

Before we describe the dictionary, let us give some intuition about the grid. The main189

idea is that in the k horizontal slots we will place k words that signify which vertices we190

selected from the original graph. Each vertical slot represents an edge of E, and we will be191

able to place a word in it if and only if we have not placed words representing two of its192

endpoints in the horizontal slots.193

Our alphabet has two letters, say 0, 1. In the remainder, we assume that the edges of the194

original graph are numbered, that is, E = {e1, . . . , e|E|}. The dictionary is as follows:195

1. For each vertex v we construct a word of length 2|E| − 1. For each i ∈ {1, . . . , |E|}, if196

the edge ei is incident on v, then the letter at position 2i − 1 of the word representing v197

is 1. All other letters of the word representing v are 0. Observe that this means that if ei198

is incident on v and we place the word representing v on a horizontal slot, the letter i199

will appear on the i-th vertical slot. Furthermore, the word representing v has a number200

of 1s equal to the degree of v.201

2. We construct k + 1 words of length 2k − 1. One of them is simply 02k−1. The remaining202

are 02j−2102k−2j , for j ∈ {1, . . . , k}, that is, the words formed by placing a 1 in an203

odd-numbered position and 0s everywhere else. Observe that if we place one of these k204

words on a vertical slot, a 1 will be placed on exactly one horizontal slot.205

This completes the construction. We now observe that the k horizontal slots correspond206

to a vertex cover of the grid-graph. Therefore, if the reduction preserves the answer, the207

hardness results for k-Independent Set transfer to our problem, since we preserve the208

value of the parameter.209

We claim that if there exists an independent set of size k in G, then it is possible to fill210

the grid. Indeed, take such a set S and for each v ∈ S we place the word representing v in a211

horizontal slot. Consider the i-th vertical slot. We will place in this slot one of the k + 1212

words of length 2k − 1. We claim that the vertical slot at this moment contains the letter 1213

at most once, and if 1 appears it must be at an odd position (since these are the positions214

shared with the horizontal slots). If this is true, clearly there is a word we can place. To see215

that the claim is true, recall that since S is an independent set of k distinct vertices, there216

exists at most one vertex in S incident on ei.217

CVIT 2016
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For the converse direction, recall that |E| ≠ k. This implies that if there is a way to fill218

out the whole grid, then words representing vertices must go into horizontal slots and words219

of length 2k − 1 must go into vertical slots. By looking at the words that have been placed220

in the horizontal slots we obtain a collection of k (not necessarily distinct) vertices of G.221

We will prove that these vertices must actually be an independent set of size exactly k. To222

see this, consider the i-th vertical slot. If our collection of vertices contained two vertices223

incident on ei, it would have been impossible to fill out the i-th vertical slot, since we would224

need a word with two 1s. Observe that the same argument rules out the possibility that225

our collection contains the same vertex v twice, as the column corresponding to any edge ei226

incident on v would have been impossible to fill. ◀227

3.2 No Word Reuse228

If a word cannot be reused, then CP-Dec looks more challenging. Indeed, in the following229

theorem we prove that if reusing words is not allowed, then the problem becomes NP-hard230

even if the grid graph is acyclic and the alphabet size is 2. (Note that if the alphabet size is231

1, the problem is trivial, independent of the structure of the graph).232

▶ Theorem 5. CP-Dec is NP-hard, even for instances where all of the following restrictions233

apply: (i) the grid graph is a union of stars (ii) the alphabet contains only two letters (iii)234

words cannot be reused.235

Proof. We show a reduction from 3-Partition. Recall that in 3-Partition we are given a236

collection of 3n distinct positive integers x1, . . . , x3n and are asked if it is possible to partition237

these integers into n sets of three integers (triples), such that all triples have the same sum.238

This problem has long been known to be strongly NP-hard [5] and NP-hardness when the239

integers are distinct was shown by Hulett et al. [7]. We can assume that
∑3n

i=1 xi = nB and240

that if a partition exists each triple has sum B. Furthermore, we can assume without loss241

of generality that xi > 6n for all i ∈ {1, . . . , 3n} (otherwise, we can simply add 6n to all242

numbers and adjust B accordingly without changing the answer).243

Given an instance of 3-Partition as above, we construct a crossword instance as follows.244

First, the alphabet only contains two letters, say the letters ∗ and !. To construct our245

dictionary we do the following:246

1. For each i ∈ {1, . . . , 3n}, we add to the dictionary one word of length xi that begins with247

! and n − 1 words of length xi that begin with ∗. The remaining letters of these words248

are chosen in an arbitrary way so that all words remain distinct.249

2. For each i, j, k ∈ {1, . . . , 3n} with i < j < k we check if xi + xj + xk = B. If this is the250

case, we add to the dictionary the word ∗2i−2!∗2j−2i−1!∗2k−2j−1!∗6n−2k. In other words,251

we constructed a word that has ∗ everywhere except in positions 2i − 1, 2j − 1, and 2k − 1.252

The length of this word is 6n − 1. Let f be the number of words added to the dictionary253

in this step. We have f ≤ (3n
3 ) = O(n3).254

We now also need to specify our grid. We first construct f horizontal slots, each of length255

6n − 1. Among these f slots, we select n, which we call the “interesting” horizontal slots.256

For each interesting horizontal slot, we construct 3n vertical slots, such that the i-th of these257

slots has length xi and its first cell is the cell in position 2i − 1 of the interesting horizontal258

slot. This completes the construction, which can clearly be carried out in polynomial time.259

Observe that the first two promised restrictions are satisfied as we have an alphabet with260

two letters and each vertical slot intersects at most one horizontal slot (so the grid graph is261

a union of stars).262
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We claim that if there exists a partition of the original instance, then we can place all263

the words of the dictionary on the grid. Indeed, for each i, j, k ∈ {1, . . . , 3n} such that264

{xi, xj , xk} is one of the triples of the partition, we have constructed a word of length 6n − 1265

corresponding to the triple (i, j, k), because xi + xj + xk = B. We place each of these n266

words on an interesting horizontal slot and we place the remaining words of length 6n − 1 on267

the non-interesting horizontal slots. Now, for every i ∈ {1, . . . , 3n} we have constructed n268

words, one starting with ! and n − 1 starting with ∗. We observe that among the interesting269

horizontal slots, there is one that contains the letter ! at position 2i−1 (the one corresponding270

to the triple containing xi in the partition) and n−1 containing the letter ∗ at position 2i−1.271

By construction, the vertical slots that begin in these positions have length xi. Therefore,272

we can place all n words corresponding to xi on these vertical slots. Proceeding in this way273

we fill the whole grid, fulfilling the third condition.274

For the converse direction, suppose that there is a way to fill the whole grid. Then, vertical275

slots must contain words that were constructed in the second step and represent integers xi,276

while horizontal slots must contain words constructed in the first step (this is a consequence277

of the fact that xi > 6n for all i ∈ {1, . . . , 3n}). We consider the n interesting horizontal278

slots. Each such slot contains a word that represents a triple (i, j, k) with xi + xj + xk = B.279

We therefore collect these n triples and attempt to construct a partition from them. To do280

this, we must prove that each xi must belong to exactly one of these triples. However, recall281

that we have exactly n words of length xi (since all integers of our instance are distinct)282

and exactly n vertical slots of this length. We conclude that exactly one vertical slot must283

have ! as its first letter, therefore xi appears in exactly one triple and we have a proper284

partition. ◀285

Actually, the problem remains NP-hard even in the case where the grid graph is a286

matching and the alphabet contains three letters. This is proved for grid graphs composed287

of T s, where a T is a horizontal slot solely intersected by the first cell of a vertical slot.288

▶ Theorem 6. CP-Dec is NP-hard, even for instances where all of the following restrictions289

apply: (i) each word can be used only once (ii) the grid is consisted only by T s and (iii) the290

alphabet contains only three letters.291

▶ Remark 7. Theorem 4 can be adjusted to work also for the case where word reuse is not292

allowed. We simply need to add a suffix of length log m to all words of length 2k − 1 and293

add rows to the grid accordingly.294

Finally, based on the observation that, by filling the slots of a vertex cover of the grid295

graph all the shared cells are pre-filled, and by Proposition 1, we get the following corollary.296

▶ Corollary 8. Given a vertex cover of size vc of the grid graph we can solve CP-Dec and297

CP-Opt in mvc. Furthermore, as vertex cover we can take the set of horizontal slots.298

Therefore, the bound given in Remark 7 for the parameter vertex cover is tight.299

4 Parameterized by Total Number of Slots300

In this section we consider a much more restrictive parameterization of the problem: we301

consider instances where the parameter is n, the total number of slots. Recall that in302

Theorem 4 (and Remark 7) we already considered the complexity of the problem parameterized303

by the number of horizontal slots of the instance. We showed that this case of the problem304

cannot be solved in mo(k) and that an algorithm with running time roughly mk is possible305

whether word reuse is allowed or not.306

CVIT 2016



23:8 Filling Crosswords is Very Hard

Since parameterizing by the number of horizontal slots is not sufficient to render the307

problem FPT, we therefore consider our parameter to be the total number of slots. This is,308

finally, sufficient to obtain a simple FPT algorithm.309

▶ Corollary 9. There is an algorithm that solves CP-Dec and CP-Opt in time O∗(ℓn2/4),310

where n is the total number of slots and ℓ the size of the alphabet, whether word reuse is311

allowed or not.312

Even though the running time guaranteed by Corollary 9 is FPT for parameter n, we313

cannot help but observe that the dependence on n is rather disappointing, as our algorithm is314

exponential in the square of n. It is therefore a natural question whether an FPT algorithm315

for this problem can achieve complexity 2o(n2), assuming the alphabet size is bounded. The316

main result of this section is to establish that this is likely to be impossible.317

Overview Our hardness proof consists of two steps. In the first step we reduce 3-SAT to318

a version of the same problem where variables and clauses are partitioned into O(
√

n + m)319

groups, which we call Sparse 3-SAT. The key property of this intermediate problem is that320

interactions between groups of variables and groups of clauses are extremely limited. In321

particular, for each group of variables Vi and each group of clauses Cj , at most one variable322

of Vi appears in a clause of Cj . We obtain this rather severe restriction via a randomized323

reduction that runs in expected polynomial time. The second step is to reduce Sparse324

3-SAT to CP-Dec. Here, every horizontal slot will represent a group of variables and every325

vertical slot a group of clauses, giving O(
√

n + m) slots in total. Hence, an algorithm for326

CP-Dec whose dependence on the total number of slots is subquadratic in the exponent will327

imply a sub-exponential time (randomized) algorithm for 3-SAT. The limited interactions328

between groups of clauses and variables will be key in allowing us to execute this reduction329

using a binary alphabet.330

Let us now define our intermediate problem.331

▶ Definition 10. In Sparse 3-SAT we are given an integer n which is a perfect square and332

a 3-SAT formula ϕ with at most n variables and at most n clauses, such that each variable333

appears in at most 3 clauses. Furthermore, we are given a partition of the set of variables V334

and the set of clauses C into
√

n sets V1, . . . , V√
n and C1, . . . , C√

n of size at most
√

n each,335

such that for all i, j ∈ [
√

n] the number of variables of Vi which appear in at least one clause336

of Cj is at most one.337

Now, we are going to prove the hardness of Sparse 3-SAT, which is the first step of our338

reduction.339

▶ Lemma 11. Suppose the randomized ETH is true. Then, there exists an ϵ > 0 such that340

Sparse 3-SAT cannot be solved in time 2ϵn.341

We are now ready to prove the main theorem of this section.342

▶ Theorem 12. Suppose the randomized ETH is true. Then, there exists an ϵ > 0 such that343

CP-Dec on instances with a binary alphabet cannot be solved in time 2ϵn2 · mO(1). This344

holds also for instances where all slots have distinct sizes (so words cannot be reused).345

Proof. Suppose for the sake of contradiction that for any fixed ϵ > 0, CP-Dec on instances346

with a binary alphabet can be solved in time 2ϵn2 · mO(1). We will then contradict Lemma 11.347

In particular, we will show that for any ϵ′ we can solve Sparse 3-SAT in time 2ϵ′N , where348

N is the upper bound on the number of variables and clauses. Fix some ϵ′ > 0 and suppose349
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that ϕ is an instance of Sparse 3-SAT with at most N variables and at most N clauses,350

where N is a perfect square. Recall that the variables are given partitioned into
√

N sets,351

V1, . . . , V√
N and the clauses partitioned into

√
N sets C1, . . . , C√

N . In the remainder, when352

we write V (Cj) we will denote the set of variables that appear in a clause of Cj . Recall353

that the partition satisfies the property that for all i, j ∈ [
√

N ] we have |Vi ∩ V (Cj)| ≤ 1.354

Suppose that the variables of ϕ are ordered x1, x2, . . . , xN .355

We construct a grid as follows: for each group Vi we construct a horizontal slot and for356

each group Cj we construct a vertical slot, in a way that all slots have distinct lengths. More357

precisely, the i-th horizontal slot, for i ∈ [
√

N ] is placed on row 2i − 1, starts in the first358

column and has length 2
√

N + 2i. The j-th vertical slot is placed in column 2j − 1, starts359

in the first row and has length 5
√

N + 2j. (As usual, we number the rows and columns360

top-to-bottom and left-to-right). Observe that all horizontal slots intersect all vertical slots,361

in particular, the cell in row 2i − 1 and column 2j − 1 is shared between the i-th horizontal362

and j-th vertical slot, for i, j ∈ [
√

N ]. We define L to contain two letters {0, 1}.363

What remains is to describe the dictionary.364

For each i ∈ [
√

N ] and for each assignment function σ : Vi → {0, 1} we construct a word365

wσ of length 2
√

N + 2i. The word wσ has the letter 0 in all positions, except positions366

2j − 1, for j ∈ [
√

N ]. For each such j, we consider σ restricted to Vi ∩ V (Cj). By the367

properties of Sparse 3-SAT, we have |Vi ∩ V (Cj)| ≤ 1. If Vi ∩ V (Cj) = ∅ then we place368

letter 0 in position 2j − 1; otherwise we set in position 2j − 1 the letter that corresponds369

to the value assigned by σ to the unique variable of Vi ∩ V (Cj).370

For each j ∈ [
√

N ] and for each satisfying assignment function σ : V (Cj) → {0, 1}, that371

is, every assignment function that satisfies all clauses of Cj , we construct a word w′
σ of372

length 5
√

N + 2j. The word w′
σ has the letter 0 in all positions, except positions 2i − 1,373

for i ∈ [
√

N ]. For each such i, we consider σ restricted to Vi ∩ V (Cj). If Vi ∩ V (Cj) = ∅374

then we place letter 0 in position 2i − 1; otherwise we set in position 2i − 1 the letter375

that corresponds to the value assigned by σ to the unique variable of Vi ∩ V (Cj).376

The construction is now complete. We claim that if ϕ was satisfiable, then it is possible377

to fill out the grid we have constructed. Indeed, fix a satisfying assignment σ to the variables378

of ϕ. For each i ∈ [
√

N ] let σi be the restriction of σ to Vi. We place in the i-th horizontal379

slot the word wσi . Similarly, for each j ∈ [
√

N ] we let σ′
j be the restriction of σ to V (Cj) and380

place w′
σ′

j
in the j-th vertical slot. Now if we examine the cell shared by the i-th horizontal381

and j-th vertical slot, we can see that it contains a letter that represents σ restricted to (the382

unique variable of) Vi ∩ V (Cj) or 0 if Vi ∩ V (Cj) = ∅, and both the horizontal and vertical383

word place the same letter in that cell.384

For the converse direction, if the grid is filled, we can extract an assignment σ for the385

variables of ϕ as follows: for each x ∈ Vi we find a Cj such that x appears in some clause of386

Cj (we can assume that every variable appears in some clause). We then look at the cell387

shared between the i-th horizontal and the j-th vertical slot. The letter we have placed388

in that cell gives an assignment for the variable contained Vi ∩ V (Cj), that is x. Having389

extracted an assignment to all the variables, we claim it must satisfy ϕ. If not, there is a390

group Cj that contains an unsatisfied clause. Nevertheless, in the j-th vertical slot we have391

placed a word that corresponds to a satisfying assignment for the clauses of Cj , call it σj .392

Then σj must disagree with σ in a variable x that appears in Cj . Suppose this variable is393

part of Vi. Then, this would contradict the fact that we extracted an assignment for x from394

the word placed in the i-th horizontal slot.395
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Observe that the new instance has n = 2
√

N slots. If there exists an algorithm that396

solves CP-Dec in time 2ϵn2
mO(1) for any ϵ > 0, we set ϵ = ϵ′/8 (so ϵ only depends on ϵ′)397

and execute this algorithm on the constructed instance. We observe that m ≤ 2
√

N · 7
√

N ,398

and that 2ϵn2 ≤ 2ϵ′N/2. Assuming that N is sufficiently large, using the supposed algorithm399

for CP-Dec we obtain an algorithm for Sparse 3-SAT with complexity at most 2ϵ′N . Since400

we can do this for arbitrary ϵ′, this contradicts the randomized ETH. ◀401

5 Approximability of CP-Opt402

This section begins with a
( 1

2 + O( 1
n )

)
-approximation algorithm which works when words403

can, or cannot, be reused. After that, we prove that under the unique games conjecture, an404

approximation algorithm with a significantly better ratio is unlikely.405

▶ Theorem 13. CP-Opt is ( 1
2 + 1

2(εn+1) )-approximable in polynomial time, for all ε ∈ (0, 1].406

The previous approximation algorithm only achieves an approximation ratio of 1
2 + O( 1

n ),407

which tends to 1
2 as n increases. At first glance this is quite disappointing, as someone can408

observe that a ratio of 1
2 is achievable simply by placing words only on the horizontal or the409

vertical slots of the instance. Nevertheless, we are going to show that this performance is410

justified, as improving upon this trivial approximation ratio would falsify the Unique Games411

Conjecture (UGC).412

Before we proceed, let us recall some relevant definitions regarding Unique Games. The413

Unique Label Cover problem is defined as follows: we are given a graph G = (V, E), with414

some arbitrary total ordering ≺ of V , an integer R, and for each (u, v) ∈ E with u ≺ v a415

1-to-1 constraint π(u,v) which can be seen as a permutation on [R]. The vertices of G are416

considered as variables of a constraint satisfaction problem, which take values in [R]. Each417

constraint π(u,v) defines for each value of u a unique value that must be given to v in order418

to satisfy the constraint. The goal is to find an assignment to the variables that satisfies419

as many constraints as possible. The Unique Games Conjecture states that for all ϵ > 0,420

there exists R, such that distinguishing instances of Unique Label Cover for which it is421

possible to satisfy a (1 − ϵ)-fraction of the constraints from instances where no assignment422

satisfies more than an ϵ-fraction of the constraints is NP-hard. In this section we will need a423

slightly different version of this conjecture, which was defined by Khot and Regev as the424

Strong Unique Games Conjecture. Despite the name, Khot and Regev showed that this425

version is implied by the standard UGC. The precise formulation is the following:426

▶ Theorem 14. [Theorem 3.2 of [9]] If the Unique Games Conjecture is true, then for all427

ϵ > 0 it is NP-hard to distinguish between the following two cases of instances of Unique428

Label Cover G = (V, E):429

(Yes case): There exists a set V ′ ⊆ V with |V ′| ≥ (1 − ϵ)|V | and an assignment for V ′
430

such that all constraints with both endpoints in V ′ are satisfied.431

(No case): For any assignment to V , for any set V ′ ⊆ V with |V ′| ≥ ϵ|V |, there exists a432

constraint with both endpoints in V ′ that is violated by the assignment.433

Using the version of the UGC given in Theorem 14 we are ready to present our hardness434

of approximation argument for the crossword puzzle.435

▶ Theorem 15. Suppose that the Unique Games Conjecture is true. Then, for all ϵ with436

1
4 > ϵ > 0, there exists an alphabet Σϵ such that it is NP-hard to distinguish between the437

following two cases of instances of the crossword problem on alphabet Σϵ:438
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(Yes case): There exists a valid solution that fills a (1 − ϵ)-fraction of all cells.439

(No case): No valid solution can fill more than a ( 1
2 + ϵ)-fraction of all cells.440

Moreover, the above still holds if all slots have distinct lengths (and hence reusing words441

is trivially impossible).442

Proof. Fix an ϵ > 0. We will later define an appropriately chosen value ϵ′ ∈ (0, ϵ) whose443

value only depends on ϵ. We present a reduction from a Unique Label Cover instance,444

as described in Theorem 14. In particular, suppose we have an instance G = (V, E), with445

|V | = n, alphabet [R], such that (under UGC) it is NP-hard to distinguish if there exists a446

set V ′ of size (1 − ϵ′)n that satisfies all its induced constraints, or if all sets V ′ of size ϵ′n447

induce at least one violated constraint for any assignment. Throughout this proof we assume448

that n is sufficiently large (otherwise the initial instance is easy). In particular, let n > 20
ϵ .449

We construct an instance of the crossword puzzle that fits in an N × N square, where450

N = 4n + n2. We number the rows 1, . . . , N from top to bottom and the columns 1, . . . , N451

from left to right. The instance contains n horizontal and n vertical slots. For i ∈ [n], the452

i-th horizontal slot is placed in row 2i, starting at column 1, and has length 2n + n2 + i.453

For j ∈ [n], the j-th vertical slot is placed in column 2j, starts at row 1 and has length454

3n + n2 + j. Observe that all horizontal slots intersect all vertical slots and in particular, for455

all i, j ∈ [n] the cell in row 2i, column 2j belongs to the i-th horizontal slot and the j-th456

vertical slot. Furthermore, each slot has a distinct length, as the longest horizontal slot has457

length 3n + n2 while the shortest vertical slot has length 3n + n2 + 1.458

We define the alphabet as Σϵ = [R] ∪ {∗}. Before we define our dictionary, let us give459

some intuition. Let V = {v1, . . . , vn}. The idea is that a variable vi ∈ V of the original460

instance will be represented by both the i-th horizontal slot and the i-th vertical slot. In461

particular, we will define, for each α ∈ [R] a pair of words that we can place in these slots to462

represent the fact that vi is assigned value α. We will then ensure that if we place words463

on both the i-th horizontal slot and the j-th horizontal slot, where (vi, vj) ∈ E, then the464

assignment that can be extracted by reading these words will satisfy the constraint π(vi,vj).465

The extra letter ∗ represents an indifferent assignment (which we need if (vi, vj) ̸∈ E).466

Armed with this intuition, let us define our dictionary.467

For each i ∈ [n], for each α ∈ [R] we define a word d(i,α) of length 2n + n2 + i. The word468

d(i,α) has the character ∗ everywhere except at position 2i and at positions 2j for j ∈ [n]469

and (vi, vj) ∈ E. In these positions the word d(i,α) has the character α.470

For each j ∈ [n], for each α ∈ [R] we define a word d′
(j,α) of length 3n + n2 + j. The word471

d′
(j,α) has the character ∗ everywhere except at position 2j and at positions 2i for i ∈ [n]472

and (vi, vj) ∈ E. In position 2j we have the character α. In position 2i with (vi, vj) ∈ E,473

we place the character β ∈ [R] such that the constraint π(vi,vj) is satisfied by assigning474

β to vi and α to vj . (Note that β always exists and is unique, as the constraints are475

permutations on [R], that is, for each value α of vj there exists a unique value β of vi476

that satisfies the constraint).477

This completes the construction. Suppose now that V = {v1, . . . , vn} and that we started478

from the Yes case of Unique Label Cover, that is, there exists a set V ′ ⊆ V such that479

|V ′| ≥ (1 − ϵ′)n and all constraints induced by V ′ can be simultaneously satisfied. Fix an480

assignment σ : V ′ → [R] that satisfies all constraints induced by V ′. For each i ∈ [n] such481

that vi ∈ V ′ we place in the i-th horizontal slot (that is, in row 2i) the word d(i,σ(vi)). For482

each j ∈ [n] such that vj ∈ V ′ we place in the j-th vertical slot the word d′
(j,σ(vj)). We leave483

all other slots empty. We claim that this solution is valid, that is, no shared cell is given484
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different values from its horizontal and vertical slot. To see this, examine the cell in row 2i485

and column 2j. If both of the slots that contain it are filled, then vi, vj ∈ V ′. If (vi, vj) ̸∈ E486

and i ̸= j, then the cell contains ∗ from both words. If i = j, then the cell contains σ(vi)487

from both words. If i ̸= j and (vi, vj) ∈ E, then the cell contains σ(vi). This is consistent488

with the vertical word, as the constraint π(vi,vj) is assumed to be satisfied by σ. We now489

observe that this solution covers at least 2(1 − ϵ′)n3 cells, as we have placed 2(1 − ϵ′)n words,490

each of length at least n2 + 2n, that do not pairwise intersect beyond their first 2n characters.491

Suppose now we started our construction from a No instance of Unique Label Cover.492

We claim that the optimal solution in the new instance cannot cover significantly more than493

half the cells. In particular, suppose a solution covers at least (1 + ϵ′)n3 + 10n2 cells. We494

claim that the solution must have placed at least (1 + ϵ′)n words. Indeed, if we place at most495

(1 + ϵ′)n words, as the longest word has length n2 + 4n, the maximum number of cells we496

can cover is (1 + ϵ′)n(n2 + 4n) ≤ (1 + ϵ′)n3 + 4(1 + ϵ′)n2 < (1 + ϵ′)n3 + 10n2. Let x be the497

number of indices i ∈ [n] such that the supposed solution has placed a word in both the i-th498

horizontal slot and the i-th vertical slot. We claim that x ≥ ϵ′n. Indeed, if x < ϵ′n, then499

the total number of words we might have placed is at most (n − x) + 2x < (1 + ϵ′)n, which500

contradicts our previous observation that we placed at least (1 + ϵ′)n words. Let V ′ ⊆ V501

be defined as the set of vi ∈ V such that the solution places words in the i-th horizontal502

and vertical slot. Then |V ′| ≥ ϵ′n. We claim that it is possible to satisfy all the constraints503

induced by V ′ in the original instance, obtaining a contradiction. Indeed, we can extract an504

assignment for each vi ∈ V ′ by assigning to vi value α if the i-th horizontal slot contains the505

word d(i,α). Note that the i-th horizontal slot must contain such a word, as these words are506

the only ones that have an appropriate length. Observe that in this case the i-th vertical507

slot must also contain d′
(i,α). Now, for vi, vj ∈ V ′, with (vi, vj) ∈ E we see that π(vi,vj) is508

satisfied by our assignment, otherwise we would have a conflict in the cell in position (2i, 2j).509

Therefore, in the No case, it must be impossible to fill more than (1 + ϵ′)n3 + 10n2 cells.510

The only thing that remains is to define ϵ′. Let C be the total number of cells in the511

instance. Recall that we proved that in the Yes case we cover at least 2(1 − ϵ′)n3 cells512

and in the No case at most (1 + ϵ′)n3 + 10n2 cells. So we need to define ϵ′ such that513

2(1 − ϵ′)n3 ≥ (1 − ϵ)C and (1 + ϵ′)n3 + 10n2 ≤ ( 1
2 + ϵ)C. To avoid tedious calculations, we514

observe that 2n3 ≤ C ≤ 2n3+8n2. Therefore, it suffices to have 2(1−ϵ′)n3 ≥ 2(1−ϵ)(n3+4n2)515

and (1 + ϵ′)n3 + 10n2 ≤ (1 + 2ϵ)n3. The first inequality is equivalent to (ϵ − ϵ′)n ≥ 4(1 − ϵ)516

and the second inequality is equivalent to (2ϵ − ϵ′)n ≥ 10. Since we have assumed that517

n ≥ 20/ϵ, it is sufficient to set ϵ′ = ϵ/2. ◀518

6 Conclusion519

We studied the parameterized complexity of some crossword puzzles under several different520

parameters and we gave some positive results followed by proofs which show that our521

algorithms are essentially optimal. Based on our results the most natural questions that arise522

are: What is the complexity of CP-Dec when the grid graph is a matching and the alphabet523

has size 2? Can Theorem 12 be strengthened by starting from ETH instead of randomized524

ETH? Can we beat the 1/2 approximation ratio of CP-Opt if we restrict our instances? Can525

Theorem 14 be strengthened by dropping the UGC? Furthermore, it would be interesting to526

investigate if there exist non trivial instances of the problem that can be solved in polynomial527

time. Finally, we could consider a variation of the crossword puzzle problems where each528

word can be used a given a number of times. This would be an intermediate case between529

word reuse and no word reuse.530
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A Omitted proofs571

A.1 Proof of Proposition 1572

Proof of Proposition 1. If word reuse is allowed, then for each combination of letters placed573

in these cells, we greedily fill out the rest of each slot with the maximum value word that574

can still be placed there. This is guaranteed to produce the optimal solution. On the other575

hand, if word reuse is not allowed, we construct a bipartite graph, with elements of D on one576

side and the slots on the other, and place an edge between a word and a slot if the word can577

still be placed in the slot. If we give each edge weight equal to the value of its incident word578
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reduced by the weight of the letters imposed by the shared cells of the slot, then an optimal579

solution corresponds to a maximum weight matching. ◀580

A.2 Proof of Theorem 6581

In order to prove that we need to define a restricted version of Exactly-1 3-SAT.582

▶ Definition 16 (Restricted Exactly 1 (3,2)-SAT). Assume that ϕ is a CNF formula583

where each clause has either three or two literals and each variable appears at most three584

times. We want to determine whether there exists a satisfying assignment so that each clause585

has exactly one true literal.586

▶ Lemma 17. The Restricted Exactly-1 (3,2)-SAT is NP-complete.587

Proof. We show a reduction from Exactly-1 3-SAT which is known to be NP-complete588

[5] (lo4, one-in-three 3sat).589

Let I = (ϕ, X) be an instance of Exactly-1 3-SAT with |X| = n variables and m clauses.590

If there exists a variable x with k > 3 appearances, we replace each appearance with a fresh591

variable xi, i ∈ [k] and add to the formula the clauses (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) . . . (¬xk ∨ x1).592

We repeat this for all variables that appear more than three times. Let I ′ = (ϕ′, X ′) be this593

new instance.594

We claim that I = (ϕ, X) is a yes instance of Exactly-1 3-SAT iff I ′ = (ϕ′, X ′) is a yes595

instance of Restricted Exactly-1 (3,2)-SAT.596

Let S : X → {T, F} be a satisfying assignment for ϕ such that each clause of ϕ has597

exactly one true literal. It is not hard to see that S′ : X ′ → {T, F} such that S′(x) = S(x) if598

x ∈ X and S′(xi) = S(x) if xi replaces one appearance of x ∈ X, is a satisfying assignment599

for ϕ′ such that each clause of ϕ′ has exactly one true literal.600

Conversely, let S′ : X ′ → {T, F} be a satisfying assignment for ϕ′ such that each clause601

of ϕ′ has exactly one true literal. Let xi, i ∈ [k], be the variables replacing x. Because we602

have clauses (¬x1 ∨ x2) ∧ (¬x2 ∨ x3) . . . (¬xk ∨ x1) we know that all the xi, i ∈ [k], must603

have the same value in order to guarantee that all of these clauses have exactly one true604

literal. Furthermore, is not hard to see that S : X → {T, F} where S(x) = S′(x) if x ∈ X ′
605

and S(x) = S′(x1) if x1 replaces one appearance of x, then S is a satisfying assignment for ϕ606

such that each clause of ϕ has exactly one true literal. ◀607

Now, let us give a construction that we are going to use.608

Construction.609

Let ϕ be an instance of Restricted Exactly 1 (3,2)-SAT with variables X = {x1, . . . , xn}610

and clauses C = {c1, . . . , cm}. We will construct an instance of the crossword problem with611

alphabet L = {s1, s2, s3} where each letter has weight 1. The dictionary D is as follows.612

Let nlj ∈ {2, 3} be the number of literals in cj . For each variable xi, let ai ≤ 3 be the613

number of its appearances in ϕ. Then, we create 3ai words, di,k,T , di,k,F and di,k, for each614

k ∈ [ai] as follows.615

di,k,T and di,k,F have length m + n + 3i + k,616

the last letter of di,k,T is sk,617

the last letter of di,k,F is sk′ where k′ := k + 1 when k < ai, otherwise k′ := 1,618

if the k-th appearance of xi is positive then, di,k,T starts with s1 and di,k,F starts with619

s2,620

if the k-th appearance of xi is negative then, di,k,T starts with s2 and di,k,F starts with621

s1,622
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the word di,k has length m + i + 1 and starts with sk, and623

all the other letters of these words can be chosen arbitrarily.624

Observe that the above process gives three words for each literal in ϕ.625

For each clause cj , j ∈ [m], we construct nlj distinct words dt
j , t ∈ [nlj ] of length 1 + j626

such that one of them starts with the letter s2, the other nlj − 1 words start with s1, and627

the unspecified letters can be chosen arbitrarily. Observe that we have enough positions in628

order to create nlj − 1 distinct words starting with s1, which indicates that we can create629

nlj pairwise distinct words for each cj .630

In order to finish our construction we have to specify the grid. For each clause cj and631

each literal l in cj we construct two pairs of slots as follows. Let l be the k-th appearance of632

variable xi, k ∈ [ai]. The first pair of slots (type 1) consists of one horizontal slot hSloti,k
j,1 of633

length m + n + 3i + k, and one vertical slot vSloti,k
j,1 of length m + i + 1 such that, the last634

cell of the horizontal slot and the first cell of the vertical slot is the shared cell. The second635

pair of slots (type 2) consists of one horizontal slot hSloti,k
j,2 of length m + n + 3i + k, and636

one vertical slot vSloti,k
j,2 of length j + 1, that share their first cells. Here let us mention that637

the grid we constructed is consisted only by T s.638

Before we continue with the proof let us observe that in the instance of crossword puzzle639

we created the number of slots in the grid is equal to the number of words in the dictionary.640

Furthermore, we can specify in which slots each word can be assigned by considering the size641

of the words and slots. For any i ∈ [n] and k ∈ [ai] the word di,k can be assigned only to the642

vertical slots of the type 1 pairs of slots. For any j ∈ [m] and t ∈ [nlj ] the word dt
j can be643

assigned only to the vertical slots of the type 2 pairs of slots. The rest of the words can be644

assigned to horizontal slots of any type.645

Let us first prove the following property where j(i, k) denotes the index of the clause646

where the k-th occurrence of xi appears.647

▶ Property 1. For any given i ∈ [n], slots hSloti,k
j(i,k),1 and vSloti,k

j(i,k),1 for k ∈ [ai] are648

all filled iff we have assigned either all the words of {di,k,T : k ∈ [ai]}, or all the words of649

{di,k,F : k ∈ [ai]}, to the slots hSloti,k
j(i,k),1, k ∈ [ai].650

Proof. In one direction, if we have assigned to slots hSloti,k
j(i,k),1, k ∈ [ai], all the words of651

{di,k,T : k ∈ [ai]} or all the words of {di,k,F : k ∈ [ai]}, then all the letters s1, . . . , sai appear652

exactly once in the end of these ai slots. Because the words of {di,k: k ∈ [ai]} start exactly653

with this set of letters, there is a unique way to assign them properly to the slots vSloti,k
j(i,k),1,654

k ∈ [ai].655

Conversely, assume that all the type 1 pairs of slots of xi are filled. Because the only words656

that have the same length as slots vSloti,k
j(i,k),1, k ∈ [ai], are the words of {di,k : k ∈ [ai]},657

we know that in the end of slots hSloti,k
j(i,k),1, k ∈ [ai], each letter of {s1, . . . , sai

} appears658

exactly once. It is not hard to see that no combination of words except {di,k,T : k ∈ [ai]} or659

{di,k,F : k ∈ [ai]}, gives the same letters in the shared positions. ◀660

Proof of Theorem 6. We show a reduction from Restricted Exactly 1 (3,2)-SAT. We661

claim that ϕ is a yes instance of Restricted Exactly 1 (3,2)-SAT iff we can fill all the662

slots of the grid.663

Suppose f : X → {T, F} is a truth assignment so that each clause of ϕ has exactly one664

true literal that satisfies ϕ.665

We are going to show a way to fill all the slots of the grid. Each variable xi appears in ai666

literals; let l(i, k), k ∈ [ai], be these literals and j(i, k) ∈ [m], k ∈ [ai], be the indices of the667

clauses cj(i,k) that contain the corresponding literals.668
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For each variable xi, fill the 3ai slots hSloti,k
j(i,k),1, hSloti,k

j(i,k),2 and vSloti,k
j(i,k),1 for all669

k ∈ [ai] as follows. If f(xi) = T , then:670

assign di,k,T to hSloti,k
j(i,k),1 for all k ∈ [ai] and671

assign di,k,F to hSloti,k
j(i,k),2 for all k ∈ [ai].672

Otherwise (f(xi) = F ):673

assign di,k,F to hSloti,k
j(i,k),1 for all k ∈ [ai] and674

assign di,k,T to hSloti,k
j(i,k),2 for all k ∈ [ai].675

Finally, in both cases, we assign the words of {di,k : k ∈ [ai]} to the slots vSloti,k
j(i,k),1 for676

k ∈ [ai] in any way they fit.677

In order to fill the grid completely, for each j ∈ [m], we assign to the nlj slots, vSloti,k
j,2,678

the words dk′

j for k′ ∈ [nlj ] in any way they fit.679

It is not hard to see that we have assigned words to slots of the same length. It remains680

to prove that the words we have assigned have the same letters in the shared positions.681

First observe that for a variable xi and the slots hSloti,k
j(i,k),1, k ∈ [ai], we have put either682

{di,k,T : k ∈ [ai]} or {di,k,F : k ∈ [ai]}. Therefore, we know by Property 1 that we can use683

the words of {di,k : k ∈ [ai]} in the slots vSloti,k
j(i,k),1, k ∈ [ai].684

In the nlj slots, vSloti,k
j,2, related to clause cj , we have put the words dk′

j , k′ ∈ [nlj ]. One685

of these words starts with s2 and the nlj − 1 others start with s1. We will show that the686

same holds for the words we have assigned in the nlj slots hSloti,k
j,2.687

Observe that each literal l ∈ cj can be described by a unique triplet (j, i, k) where j ∈ [m]688

is the index of the clause, i ∈ [n] is the index of the variable xi on which l is built, and689

k ∈ [ai] is the number of times that xi has appeared in ϕ until now. We claim that if the690

literal l described by (j, i, k) satisfies cj , then the word assigned to hSloti,k
j,2 starts with s2,691

otherwise it starts with s1.692

If l satisfies cj , then either l = xi and f(xi) = T or l = ¬xi and f(xi) = F . If l = xi693

(resp., l = ¬xi), then we have assigned di,k,F (resp., di,k,T ) to hSloti,k
j,2 which starts with s2694

because f(xi) = T (resp., f(xi) = F ). If l does not satisfy cj , then we used di,k,T (resp.,695

di,k,F ) which starts with s1.696

Finally, because we assumed that each clause is satisfied by exactly one literal, we know697

that one of the clause words starts with s2 and the other nlj − 1 clause words start with s1.698

Conversely, we claim that if we can fill the whole grid, then we can construct a truth as-699

signment f : X → {T, F} such that each clause of ϕ has exactly one true literal. Furthermore,700

one such assignment is the following:701

f(xi) =
{

T, if di,1,T is assigned to hSloti,1
j(i,1),1,

F, otherwise.
(1)702

703

We first prove the following claim.704

▷ Claim 18. Let l be the literal of a clause cj corresponding to the k-th appearance of some705

variable xi. l is true under the truth assignment (1) iff the word in hSlotsi,k
j,2 starts with s2.706

Proof. Due to its length, hSlotsi,k
j,2 receives either di,k,T or di,k,F , and one of these words707

starts with s2 whereas the other starts with s1. Therefore, we have two cases. In the first708

case di,k,F starts with s2, then di,k,T starts with s1 and l = xi. In the second case, di,k,T709

starts with s2, di,k,F starts with s1 and l = ¬xi.710

Assume that di,k,F (resp., di,k,T ) starts with s2. By construction, we have that l = xi711

(resp., l = ¬xi).712
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If di,k,F (resp., di,k,T ) is assigned to hSlotsi,k
j,2, then di,k,T (resp., di,k,F ) is assigned713

to hSlotsi,k
j,1. By Property 1 we know that hSlotsi,1

j,1 must contain di,1,T (resp., di,1,F ) so714

f(xi) = T (resp., f(xi) = F ). So, if di,k,F (resp., di,k,T ) is assigned to hSlotsi,k
j,2, then we715

know that f(xi) = T (resp., f(xi) = F ) and l = xi (resp., l = ¬xi) which means that l must716

be true under the truth assignment (1).717

In reverse direction, if we have assigned di,k,T (resp., di,k,F ) to hSlotsi,k
j,2, then we know718

that f(xi) = F (resp., f(xi) = T ) and l = xi (resp., l = ¬xi) thus, l is false under the truth719

assignment (1). ◀720

Based on the previous claim, we will show that each clause has exactly one true literal721

under the truth assignment f given in (1).722

For any j ∈ [m] there are exactly nlj pairs (i, k) where i ∈ [n] and k ∈ [ai] such that the723

k-th appearance of xi is in cj . Let Cj be the set that contains contains all these pairs (i, k).724

Observe that for each pair (i, k) ∈ Cj there exists a pair of slots hSlotsi,k
j,2, vSlotsi,k

j,2725

which share their first cells. Because the grid is full, the nlj vertical slots, vSlotsi,k
j,2, where726

(i, k) ∈ Cj , must contain the words dt
j , t ∈ [nlj ]. One of these words starts with s2 and727

nlj − 1 others start with s1. Therefore, the same must hold for the words that have been728

assigned in the slots hSlotsi,k
j,2 for (i, k) ∈ Cj .729

Using the previous claim, we know that one of the literals in cj is true and the other730

nlj − 1 are false under the truth assignment 1. Therefore, if we can fill the whole grid, then731

there exists a truth assignment such that exactly one literal of each clause of ϕ is true. ◀732

▶ Remark 19. In our construction each T has unique shape1 so the problem remains NP -hard733

even in this case.734

A.3 Proof of Corollary 9735

Proof of Corollary 9. Since there are n slots in the instance, even if the grid is a complete736

bipartite graph, the instance contains at most n2/4 cells which are shared between two slots.737

In time ℓn2/4 we consider all possible letters that could be placed in these cells. Finally, as we738

have shown in Proposition 1, each of these instances can be solved in polynomial time. ◀739

A.4 Proof of Lemma 11740

The first step of our reduction will be to prove that Sparse 3-SAT cannot be solved in741

sub-exponential time (in n) under the randomized ETH, via a reduction from 3-SAT. To do742

this, we will need the following combinatorial lemma.743

▶ Lemma 20. For each ϵ > 0 there exists C > 0 such that for sufficiently large n we have the744

following. There exists a randomized algorithm running in expected polynomial time which,745

given a bipartite graph G = (A, B, E) such that |A| = |B| = n and the maximum degree of746

G is 3, produces a set V ′ ⊆ A ∪ B with |V ′| ≥ 2(1 − ϵ)n and a coloring c : V ′ → [k] of the747

vertices of V ′ with k colors, where k ≤ C
√

n, such that for all i ∈ [k] we have |c−1(i)| ≤
√

n748

and for all i, j ∈ [k] the graph induced by c−1(i) ∪ c−1(j) contains at most one edge.749

Proof. Let k = C⌈
√

n⌉, where C is a sufficiently large constant (depending only on ϵ) to be750

specified later. We color each vertex of the graph uniformly at random from a color in [k],751

1 Two crosses are of the same shape if they are identical: same number of horizontal cells, same number
of vertical cells, and same shared cell.
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call this coloring c. Let Xi,j be the set of edges which have as endpoints a vertex of color i752

and a vertex of color j.753

Our algorithm is rather simple: initially, we set V ′ = V . Then, for each i, j ∈ [k] we754

check whether Xi,j contains at most one edge. If yes, we do nothing; if not, we select for755

each edge e ∈ Xi,j an arbitrary endpoint and remove that vertex from V ′. In the end we756

return the set V ′ that remains and its coloring. It is clear that this satisfies the property757

that c−1(i) ∪ c−1(j) contains at most one edge for the graph induced by V ′ for all i, j ∈ [k],758

so what we need to argue is that (i) |c−1(i)| ≤
√

n for all i with high probability and (ii)759

that V ′ has the promised size with at least constant probability. If we achieve this it will760

be sufficient to repeat the algorithm a polynomial number of times to obtain the claimed761

properties with high probability, hence we will have an expected running time polynomial in762

n.763

For the first part, fix an i ∈ [k] and observe that E[|c−1(i)|] ≤ 2
√

n
C . To prove that all764

|c−1(i)| are of size at most 4
√

n/C with high probability (and hence also at most
√

n for C765

sufficiently large), we will use Chernoff’s Inequality.766

▶ Proposition 21 (Chernoff’s Inequality). Let X be a binomial random variable and ϵ > 0.767

Then P [|X − E[X]| > ϵE[X]] < 2e−ϵ2E[X]/3
768

We take ϵ = 1. It follows that P [|c−1(i)| > 4
√

n/C] ≤ 2e−2
√

n/3C . Now, taking the union769

bound, we obtain that almost surely for all color i, |c−1(i)| < 4
√

n/C770

The more interesting part of this proof is to bound the expected size of V ′. Let e be771

an edge whose endpoints are colored with colors i and j. We say that e is good if no other772

edge in G has one endpoint colored i and the other colored j by the coloring c. Let u and773

v be the endpoints of e. The probability of another edge having endpoints of colors i and774

j in the graph G − {u, v} is at most 2|E|
C2n ≤ 6

C2 . The probability that at least one of the775

at most four edges incident to e has endpoints colored i and j is at most 4
C

√
n

. Thus, the776

probability that e is good is at least 1 − 6
C2 − 4

C
√

n
> 1 − 7

C2 , if n is sufficiently large. Let X777

be the number of edges which are not good. Then, E[X] ≤ 7C−2|E|. By Markov’s Inequality778

P [X > 21C−2|E|] < 1/3. Thus, with probability at least 2/3, our algorithm will remove at779

most 21C−2|E| ≤ 63C−2n vertices. Since we have promised to remove at most 2ϵn vertices,780

it suffices to select any value C ≥ 8√
ϵ
. ◀781

Proof of Lemma 11. Suppose that the statement is false, therefore for any ϵ > 0 we can782

solve Sparse 3-SAT in which the number of variables and clauses can be upper-bounded783

by N in expected time 2ϵN using some supposed algorithm. Fix an arbitrary ϵ′ > 0. We784

will show how to solve an arbitrary instance of 3-SAT with n variables and m clauses in785

expected time 2ϵ′(n+m) using this supposed algorithm for Sparse 3-SAT. If we can do this786

for any arbitrary ϵ′, this will contradict the randomized ETH.787

Start with an arbitrary 3-SAT instance ϕ with n variables and m clauses. We first edit788

ϕ to ensure that each variable appears at most three times. In particular, if x appears k > 3789

times, we replace each appearance of x with a fresh variable xi, i ∈ [k], and add the clauses790

(¬x1 ∨ x2) ∧ (¬x2 ∨ x3) ∧ . . . ∧ (¬xk ∨ x1).791

The number of variables in the new instance is at most n + 3m. The number of clauses792

is at most 4m. This is because every new clause and every new variable corresponds to793

an occurrence of an original variable in an original clause and there are at most 3m such794

occurrences.795

We now have an instance ϕ′ equivalent to ϕ with at most n + 3m variables and at most796

4m clauses, such that each variable appears at most 3 times. Let N be the smallest perfect797
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square such that N ≥ n + 4m. We have N < 10(n + m). What we need now is to produce a798

partition of the vertices and clauses of ϕ′.799

In order to produce this partition we invoke Lemma 20 on the incidence graph of ϕ′, that800

is, the bipartite graph where we have variables on one side and clauses on the other, and801

edges signify that a variable appears in a clause. Add some dummy isolated vertices on each802

side so that both sides of the incidence graph contain N vertices. We invoke Lemma 20 by803

setting ϵ to be ϵ′/80. We obtain a coloring of all but at most ϵ′N
40 ≤ ϵ′(n+m)

4 of the vertices804

of the incidence graph.805

Let U be the set of variables and clauses that correspond to uncolored vertices of the806

incidence graph. Then, for each such variable we produce two formulas (one by setting807

it to True and one by setting it to False), and for each such clause, at most 3 formulas808

(one by setting each of the literals of the clause to True). We thus construct at most809

3ϵ′(n+m)/4 ≤ 2ϵ′(n+m)/2 new formulas, such that one of them is satisfiable if and only if ϕ810

was satisfiable. We will then use the supposed algorithm for Sparse 3-SAT to decide each811

of these formulas one by one.812

Each new formula we have contains at most N variables and at most N clauses, and by813

Lemma 20 we have partitions of the variables and clauses into C
√

N groups, where C is814

a constant (that depends on ϵ′). By setting N ′ = ⌈C⌉2N we can view these instances as815

instances of Sparse 3-SAT, because then the number of groups becomes equal to the square816

root of the upper bound on the number of variables and clauses, and by the properties of817

Lemma 20 there is at most one edge between each group of variables and each group of818

clauses. Since we suppose that for all ϵ > 0 such instances can be solved in 2ϵN ′ , by setting819

ϵ = ϵ′/50⌈C⌉2 we can solve each formula in 2ϵ′(n+m)/5. The total expected running time of820

our algorithm is at most 2ϵ′(n+m)/2 · 2ϵ′(n+m)/5 · (n + m)O(1) ≤ 2ϵ′(n+m), so we contradict821

the ETH. ◀822

A.5 Proof of Theorem 13823

Proof of Theorem 13. Fix some ε ∈ (0, 1]. Let kv := min(⌈ 1
ε ⌉, n − h) and rv := ⌈ n−h

kv
⌉.824

Create rv groups of vertical slots G1, . . . , Grv such that |Gi| ≤ kv for all i ∈ [rv] and825

G1 ∪ . . . ∪ Grv
covers the entire set of vertical slots.826

For each Gi, guess an optimal choice of words, i.e., identical to a global optimum, and827

complete this partial solution by filling the horizontal slots (use the aforementioned matching828

technique where the words selected for Gi are excluded from D). Each slot of
⋃

j ̸=i Gj gets829

the empty word.830

Since |Gi| ≤ kv, guessing an optimal choice of words for Gi by brute force requires at most831

mkv combinations. This is done rv times (once for each Gi). The maximum matching runs in832

O((m+n)2 ·mn). In all, the time complexity of the algorithm is O(mkv ·rv · (m+n)2 ·mn) ≤833

O(m1/ε · εn · (m + n)2 · mn).834

If the weight of an optimum is cut in W ∗
H and W ∗

V for horizontal and vertical slots,835

respectively, then the weight of our solution is at least W ∗
H + 1

rv
W ∗

V .836

We do the same work, but the roles of vertical and horizontal slots are interchanged. Fix837

a parameter kh := min(⌈ 1
ε ⌉, h). Create rh := ⌈ h

kh
⌉ groups of horizontal slots G1, . . . , Grh

838

such that |Gi| ≤ kh for all i ∈ [rh] and G1 ∪ . . . ∪ Grh
covers the entire set of horizontal slots.839

For each Gi, guess an optimal choice of words and complete this partial solution by filling840

the vertical slots. Each slot of
⋃

j ̸=i Gj gets the empty word.841

Since |Gi| ≤ kh, guessing an optimal choice of words for Gi by brute force requires at842

most mkh combinations. This is done rh times. In all, the time complexity of the algorithm843

is O(mkh · rh · (m + n)2 · mn) ≤ O(m1/ε · εn · (m + n)2 · mn).844
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We get a second solution of weight at least W ∗
V + 1

rh
W ∗

H .845

Return the best solution out the two.846

Suppose W ∗
H ≥ W ∗

V . The first approximate solution has value W ∗
H + 1

rv
W ∗

V ≥ 1+1/rv

2 (W ∗
H +847

W ∗
V ). If kv = n − h then rv = 1 and our approximation ratio is 1. Otherwise, kv = ⌈ 1

ε ⌉ and848

rv = ⌈ n−h
⌈1/ε⌉ ⌉ ≤ n−h

⌈1/ε⌉ + 1 = n−h+⌈1/ε⌉
⌈1/ε⌉ . It follows that 1

rv
≥ ⌈1/ε⌉

n−h+⌈1/ε⌉ . Use n − h + ⌈1/ε⌉ ≤849

n + 1
ε and ⌈1/ε⌉ ≥ 1/ε to get that 1

rv
≥ 1/ε

n+1/ε = 1
εn+1 . Our approximation ratio is at least850

1+1/(εn+1)
2 .851

Suppose W ∗
V ≥ W ∗

H . The second approximate solution has value W ∗
V + 1

rh
W ∗

H ≥852

1+1/rh

2 (W ∗
H + W ∗

V ). If kh = h, then our approximation ratio is 1. Otherwise, kh = ⌈ 1
ε ⌉ and853

our approximation ratio is at least 1+1/(εn+1)
2 .854

Note that 1+1/(εn+1)
2 ≤ 1. In all, we have a 1+1/(εn+1)

2 -approximate solution in O(m1/ε ·855

εn · (m + n)2 · mn) for all ε ∈ (0, 1]. ◀856

A.6 Proof of theorem 3857

Proof. As the techniques we are going to use are standard we are sketching some details. For858

more details on tree decomposition (definition and terminology) see [3, Chap. 7]. Assuming859

that we have a rooted nice tree decomposition of the grid graph, we are going to perform860

dynamic programming on the nodes of this tree decomposition. For a node Bt of the given861

tree decomposition of the grid graph we denote by B↓
t the set of vertices of the grid graph862

that appears in the nodes of the subtree with Bt as a root. Since each vertex of the grid863

graph corresponds to a slot, we interchangeably mention a vertex of the grid graph and its864

corresponding slot. In particular, we say that a solution σ assigns words to the vertices of865

the grid graph, and σ(v) denotes the word assigned to v.866

For each node Bt of the tree decomposition we are going to keep all the triplets (σ, W, Wt)867

such that:868

σ is an assignment of words to the vertices of Bt;869

W is the weight of σ restricted to the vertices appearing in Bt;870

and Wm is the maximum weight, restricted to the vertices appearing in B↓
t , of an871

assignment consistent with σ.872

In order to create all the possible triplets for all the nodes of the tree decomposition we are873

going to explore the nodes from leaves to the root. Therefore, each time we visit a node we874

assume that we have already created the triplets for all its children. Let us explain how we875

deal with the different types of nodes.876

In the Leaf nodes we have no vertices so we keep an empty assignment (σ does not assign877

any word) and the weights W and Wm are equal to 0.878

For an Introduce node Bt we need to take in consideration its child node. Assume that u879

is the introduced vertex; for each triplet (σ, W, Wm) of the child node we are going to create880

all the triplets (σ′, W ′, W ′
m) for the new node as follows. First we find all the words d ∈ D881

that fit in the corresponding slot of u and respect the assignment σ (i.e., if there are cells882

that are already filled under σ and d uses these cells then it must have the same letters). We883

create one triplet (σ′, W ′, W ′
m) for each such a d as follows:884

We set σ′(u) := d and σ′(v) := σ(v) for all v ∈ Bt \ {u}.885

We can easily calculate the total weight, W ′, of the words in Bt where the shared letters886

are counted only once under the assignment σ′.887

For the maximum weight W ′
m we know that it is increased by the same amount as W ; so888

we set W ′
m = Wm + W ′ − W .889
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Observe that we do not need to consider the intersection with slots whose vertices appear in890

B↓
t \ Bt as each node of a tree decomposition is a cut set.891

Finally, we need to take in consideration that we can leave a slot empty. For this case we892

create a new word d∗ which, we assume that, fits in all slots and d∗ has weight 0. Because893

the empty word has weight 0, W ′ and W ′
m are identical to W and Wm so for each triplet of894

the child node, we only need to extend σ by assigning d∗ to u. In the case we assign the895

empty word somewhere we will consider that the cells of this slot are empty unless another896

word d ̸= d∗ uses them.897

For the Forget nodes we need to restrict the assignments of the child node to the vertex898

set of the Forget node, as it has been reduced by one vertex (the forgotten vertex), and899

reduce the weight W (which we can calculate easily). The maximum weight is not changed900

by the deletion.901

However, if we restrict the assignments we may end up with several triplets (σ, W, Wm)902

with identical assignments σ. In that case we are keeping only the triplet with maximum903

Wm. Observe that we are allowed to keep only triplets with the maximum Wm because each904

node of a tree decomposition is a cut set so the same holds for the Forget nodes. Specifically,905

the vertices that appear in the nodes higher than a Forget node Bt of the tree decomposition906

do not have edges incident to vertices in B↓
t \ Bt so we only care for the assignment in Bt.907

Finally, we need to consider the Join nodes. Each Join node has exactly two children.908

For each possible assignment σ on the vertices of this Join node, we create a triplet iff this σ909

appears in a triplet of both children of the Join node.910

Because W is related only to the assignment σ, it is easy to see that it will be the same911

as in the children of the Join node. So we need to find the maximum weight Wm. Observe912

that between the vertices that appear in the subtrees of two children of a Join node there are913

no edges except those incident to the vertices of the Join node. Therefore, we can calculate914

the maximum weight Wm as follows: first we consider the maximum weight of each child of915

the Join node reduced by W , we add all these weights and, in the end, we add again the W .916

It is easy to see that this way we consider the weight of the cells appearing in each subtree917

without those of the slots of the Join node and we add the weight of the words assigned to918

the vertices of the Join node in the end.919

For the running time we need to observe that the number of nodes of a nice tree920

decomposition is O(tw · n) and all the other calculations are polynomial in n + m so we only921

need to consider the different assignments for each node. Because for each vertex we have922

|D| + 1 choices, the number of different assignments for a node is at most (|D| + 1)tw+1. ◀923
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