Colorings and acyclic sets in planar graphs and digraphs

Ararat Harutyunyan (Oxford)

and

Bojan Mohar (Simon Fraser)

June 18, 2014
Some Definitions

Acyclic digraph: digraph without directed cycles.
Digon: the directed cycle of length two.
An old conjecture

Conjecture (Albertson, Berman 1979)

Every n-vertex planar graph contains an induced forest of order at least $n/2$.
An old conjecture

Conjecture (Albertson, Berman 1979)

Every \(n \)-vertex planar graph contains an induced forest of order at least \(n/2 \).

Best possible: \(K_4 \)
An old conjecture

Conjecture (Albertson, Berman 1979)

Every \(n \)-vertex planar graph contains an induced forest of order at least \(n/2 \).

Best possible: \(K_4 \)

Fact: every \(n \)-vertex planar graph contains an induced forest of order at least \(2n/5 \).
Borodin’s result

Theorem (Borodin 1979)

The vertices of every planar graph can be 5-colored so that any two color classes induce a forest.
Theorem (Borodin 1979)

The vertices of every planar graph can be 5-colored so that any two color classes induce a forest.

\(\exists \) a pair of color classes of total size at least \(\frac{2n}{5} \).
Albertson-Berman via coloring
Albertson-Berman via coloring

Approach: can vertices of every planar graph be colored with two colors such that each color class induces a forest?
Albertson-Berman via coloring

Approach: can vertices of every planar graph be colored with two colors such that each color class induces a forest?

Vertex-arboricity, \(a(G)\), of graph \(G\): smallest \(k\) s.t. \(V(G)\) can be \(k\)-colored with each color class inducing a forest.
∃ planar G with $a(G) = 3$ (Chartrand, Kronk, Wall (1968), Raspaud, Wang (2008))
Vertex-arboricity of planar graphs

\[\exists \text{ planar } G \text{ with } a(G) = 3 \text{ (Chartrand, Kronk, Wall (1968), Raspaud, Wang (2008))} \]

Fact: \(a(G) \leq 3 \) if \(G \) is planar.
Exponentially many 3-arboricities
Exponentially many 3-arboricities

- Theorem (Mohar, H., 2012)

Every planar graph G has at least $2^{|V(G)|/9}$ different 3-arboricities.
Exponentially many 3-arboricities

- Theorem (Mohar, H., 2012)

 Every planar graph G has at least $2^{|V(G)|}/9$ different 3-arboricities.

- Generalizes to 3-list colorings.
Conjecture (H., 2011)

Every n-vertex oriented planar graph *has a set of at least* $3n/5$ *vertices which induces an* acyclic digraph.
Conjecture (H., 2011)

Every n-vertex oriented planar graph has a set of at least $\frac{3n}{5}$ vertices which induces an acyclic digraph.

Best possible.
Digraphs: a conjecture

Conjecture (H., 2011)

Every \(n \)-vertex oriented planar graph has a set of at least \(\frac{3n}{5} \) vertices which induces an acyclic digraph.

Best possible.

Albertson-Berman conjecture would imply \(\frac{n}{2} \) (instead of \(\frac{3n}{5} \)).
The dichromatic number $\chi(D)$ of digraph D is the smallest k s.t. $V(D)$ can be partitioned into k sets V_1, \ldots, V_k each of which induces an acyclic subdigraph.
The **dichromatic number** $\chi(D)$ of digraph D is the smallest k s.t. $V(D)$ can be partitioned into k sets $V_1, ..., V_k$ each of which induces an acyclic subdigraph.

\[
\chi(G) = 3 \\
\chi(D) = 3
\]
Colorings in digraphs

The **dichromatic number** $\chi(D)$ of digraph D is the smallest k s.t. $V(D)$ can be partitioned into k sets $V_1, ..., V_k$ each of which induces an acyclic subdigraph.

$\chi(G) = 3$
$\chi(D) = 3$

Another old conjecture

Conjecture (Neumann-Lara, 1985)

Every oriented planar graph D has $\chi(D) \leq 2$.

Seems very hard to attack.
Another old conjecture

Conjecture (Neumann-Lara, 1985)

Every oriented planar graph *D* *has* $\chi(D) \leq 2$.

Seems very hard to attack.
Another old conjecture

Conjecture (Neumann-Lara, 1985)

Every oriented planar graph D has $\chi(D) \leq 2$.

Seems very hard to attack.

Theorem (Mohar, H., 2013)

Every planar digraph D of digirth at least five has $\chi(D) \leq 2$.
The proof

Idea: Discharging...but messy. Configurations are graphs, not digraphs.
A reducible configuration
Open questions

Conjecture (McDiarmid, Mohar 2002)
Every oriented graph D with maximum degree Δ has $\chi(D) \leq C \cdot \Delta \log \Delta$.

planar and of digirth four $\Rightarrow \chi(D) \leq 2$?
Open questions

- D planar and of digirth four $\Rightarrow \chi(D) \leq 2$?
Open questions

- D planar and of digirth four $\Rightarrow \chi(D) \leq 2$?

Conjecture (McDiarmid, Mohar 2002)

*Every oriented graph D with maximum degree Δ has $\chi(D) \leq C \cdot \frac{\Delta}{\log \Delta}$.***
Thank You