
Edge-partitioning a graph into paths:

beyond the Barát-Thomassen conjecture∗

Julien Bensmaila, Ararat Harutyunyanb,
Tien-Nam Lec, and Stéphan Thomasséc

aI3S and INRIA

Université Nice-Sophia-Antipolis

06900 Sophia-Antipolis, France

bLAMSADE, CNRS

Université Paris-Dauphine, PSL Research University

75016 Paris, France

cLaboratoire d’Informatique du Parallélisme

École Normale Supérieure de Lyon

69364 Lyon Cedex 07, France

Abstract

In 2006, Barát and Thomassen conjectured that there is a func-
tion f such that, for every fixed tree T with t edges, every f(t)-edge-
connected graph with its number of edges divisible by t has a partition
of its edges into copies of T . This conjecture was recently verified by
the current authors and Merker [1].

We here further focus on the path case of the Barát-Thomassen
conjecture. Before the aforementioned general proof was announced,
several successive steps towards the path case of the conjecture were
made, notably by Thomassen [11, 12, 13], until this particular case was
totally solved by Botler, Mota, Oshiro and Wakabayashi [2]. Our goal
in this paper is to propose an alternative proof of the path case with
a weaker hypothesis: Namely, we prove that there is a function f such
that every 24-edge-connected graph with minimum degree f(t) has an
edge-partition into paths of length t whenever t divides the number of
edges. We also show that 24 can be dropped to 4 when the graph is
eulerian.

∗The first author was supported by ERC Advanced Grant GRACOL, project no.
320812. The second author was supported by an FQRNT postdoctoral research grant
and CIMI research fellowship. The fourth author was partially supported by the ANR
Project STINT under Contract ANR-13-BS02-0007.

1

1 Introduction

Unless stated otherwise, graphs considered here are generally simple, loop-
less and undirected. Given a graph G, we denote by V (G) and E(G) its
vertex and edge sets, respectively. Given a vertex v of G, we denote by
dG(v) (or simply d(v) in case no ambiguity is possible) the degree of v in
G, i.e., the number of edges incident to v in G. We denote by δ(G) and
∆(G) the minimum and maximum, respectively, degree of a vertex in G.
When X is a subset of vertices of G, we denote by dX(v) the degree of v in
the subgraph of G induced by X ∪ {v}. Given two graphs G = (V,E) and
H = (V, F) with F ⊆ E, we denote by G\H the graph (V,E\F).

Let G and H be two graphs such that |E(H)| divides |E(G)|. We say
that G is H-decomposable if there exists a partition E1 ∪ E2 ∪ ... ∪ Ek of
E(G) such that every Ei induces an isomorphic copy of H. We then call
E1 ∪ E2 ∪ ... ∪ Ek an H-decomposition of G.

This paper is devoted to the following conjecture raised by Barát and
Thomassen in [4], stating that highly edge-connected graphs can be decom-
posed into copies of any tree.

Conjecture 1.1. For any fixed tree T , there is an integer cT such that every
cT -edge-connected graph with its number of edges divisible by |E(T)| can be
T -decomposed.

Conjecture 1.1 was recently solved by the current authors and Merker in [1].
For a summary of the progress towards the conjecture, we hence refer the
interested reader to that paper. Before this proof was announced, the path
case of the conjecture had been tackled through successive steps. First, the
conjecture was verified for paths of small length, namely for T being P3 and
P4 by Thomassen [11, 12], where P` here and further denotes the path on
` edges. Thomassen then proved, in [13], the conjecture for arbitrarily long
paths of the form P2k . Later on, Botler, Mota, Oshiro and Wakabayashi
proved the conjecture for P5 [3] before generalizing their arguments and
settling the conjecture for all paths [2].

Conjecture 1.1 being now solved, many related lines of research sound
quite appealing. One could for example wonder, for any fixed tree T , about
the least edge-connectivity guaranteeing the existence of T -decompositions.
We note that the proof of Conjecture 1.1 from [1], because essentially prob-
abilistic, provides a huge bound on the required edge-connectivity, which is
clearly far from optimal. Another interesting line of research, is about the
true importance of large edge-connectivity over large minimum degree in the
statement of Conjecture 1.1. Of course, one can notice that, to necessar-
ily admit T -decompositions, graphs among some family must meet a least
edge-connectivity condition. We however believe that this condition can be
lowered a lot, provided this is offset by a large minimum degree condition.

2

More precisely, we believe the following refinement of Conjecture 1.1 makes
sense.

Conjecture 1.2. There is a function f such that, for any fixed tree T with
maximum degree ∆T , every f(∆T)-edge-connected graph with its number
of edges divisible by |E(T)| and minimum degree at least f(|E(T)|) can be
T -decomposed.

In this paper, we make a first step towards Conjecture 1.2 by showing it
to hold when ∆T ≤ 2, that is for the cases where T is a path.

Theorem 1.3. For every integer ` ≥ 2, there exists d` such that every 24-
edge-connected graph G with minimum degree at least d` has a decomposition
into paths of length ` and a path of length at most `.

In particular, our proof of Theorem 1.3 yields a third proof of the path case
of Conjecture 1.1. It is also important mentioning that this proof is, in terms
of approach, quite different from the one from [2].

Let us, as well, again emphasize that the main point in the statement of
Theorem 1.3 is that the required edge-connectivity, namely 24, is constant
and not dependent on the path length `. Concerning the optimal value as
f(2) mentioned in Conjecture 1.2 (which is bounded above by 24, following
Theorem 1.3), a lower bound on it is 3 as there exist 2-edge-connected graphs
with arbitrarily large minimum degree admitting no P`-decomposition for
some `. To be convinced of this statement, just consider the following con-
struction. Start from the 2-edge-connected graph G depicted in Figure 1,
which admits no P9-decomposition. To now obtain a 2-edge-connected graph
with arbitrarily large minimum degree d from it, just consider any 2-edge-
connected graph H with sufficiently large minimum degree (i.e., at least d)
and verifying |E(H)| ≡ 7 (mod 9). Then consider any vertex v of G with
small degree, and add two edges from v to a new copy of H. Repeating
this transformation as long as necessary, we get a new graph which is still
2-edge-connected, with minimum degree at least d and whose size is a mul-
tiple of 9 (due to the size of G and H), but with no P9-decomposition –
otherwise, it can be easily checked that G would admit a P9-decomposition,
a contradiction.

Very roughly, the proof of Theorem 1.3 goes as follows. When the graph
G has an eulerian tour E , a natural strategy to obtain a P`-decomposition of
G is to cut E into consecutive `-paths. Of course we may be unsuccessful in
doing so since several consecutive edges of E may be conflicting, that is have
common vertices, hence inducing a cycle. Note however that if every edge of
E (and hence of G) is already a path of length at least `, then, cutting pieces
along E , only its consecutive paths can be conflicting – hence bringing the
notion of conflict to a very local setting. Following this easy idea, the proof
consists in expressing G as a (≥ `)-path-graph (i.e., a system of edge-disjoint

3

Figure 1: Part of the construction for obtaining 2-edge-connected graphs
with arbitrarily large minimum degree but no P`-decomposition for some `.

paths of length at least ` covering all edges) H with low conflicts between
its paths, then making H eulerian somehow while keeping low conflicts, and
eventually deducing a conflictless eulerian tour that can eventually be safely
cut into `-paths.

One side fact resulting from our proof scheme is that when G is eule-
rian, making H eulerian requires less edge-connectivity. This remark, and
additional arguments, allow us to also prove the following result.

Theorem 1.4. For every integer ` ≥ 2, there exists d` such that every
4-edge-connected eulerian graph with minimum degree at least d` has a de-
composition into paths of length ` and a path of length at most `.

This paper is organized as follows. We start by introducing and recalling
preliminary tools and results in Section 2. The notion of path-graphs and
some properties of these objects are then introduced in Section 3. Particular
path-graphs, which we call path-trees, needed to repair eulerianity of path-
graphs are then introduced and studied in Section 4. With all notions and
results in hands, we then prove Theorems 1.3 and 1.4 in Section 5.

2 Tools and preliminary results

Let H = (V, F) be a spanning subgraph of a graph G = (V,E). Let α
be some real number in [0, 1]. We say that H is α-sparse in G if dH(v) ≤
αdG(v) for all vertices v of G. Conversely, we say that H is α-dense in
G if dH(v) ≥ αdG(v) for all vertices v of G. We will also heavily depend

4

on subgraphs of G which are both (roughly) α-sparse and α-dense. This
definition depends on the length of the path `. We say that H is an α-
fraction of G if αdG(v)− 10`` ≤ dH(v) ≤ αdG(v) + 10``.

Given an (improper) edge-coloring φ of some graph G and a color i,
for every vertex v of G we denote by di(v) the number of i-colored edges
incident to v. We call φ nearly equitable if, for every vertex v and every pair
of colors i 6= j, we have |di(v)− dj(v)| ≤ 2. We can now recall a result of de
Werra (cf. [10], Theorem 8.7), and its corollary concerning 1/k-fractions.

Proposition 2.1. Let k ≥ 1. Every graph has a nearly equitable improper
k-edge-coloring.

Proposition 2.2. Let k ≥ 1. Every graph G = (V,E) has a subgraph
H = (V, F) such that |dH(v)− dG(v)/k| ≤ 2 for every vertex v.

We now recall three results on oriented graphs. The first of these is a
folklore result on balanced orientations of graphs.

Proposition 2.3. Every multigraph G has an orientation D such that
|d−D(v)− d+D(v)| ≤ 1 for every vertex v.

The proof is straightforward. We first arbitrarily pair vertices of odd degree
of G, then add a dummy edge between every pair to obtain a multigraph
G′ in which every vertex has even degree. Orienting the edges of G′ as
they are encountered when going along an eulerian tour, we then deduce an
orientation D′ of G′ such that d−D′(v) = d+D′(v) for every vertex v. Removing
the dummy edges results in a desired orientation D of G.

The second result is a result of Nash-Williams (see [9]) implying that
any graph with large edge-connectivity admits a balanced orientation with
large arc-connectivity. In the following, a digraph D is k-arc-strong if the
removal of any set of at most k − 1 arcs leaves D strongly-connected.

Proposition 2.4. Every 2k-edge-connected multigraph has an orientation
D such that D is k-arc-strong and such that |d−(v) − d+(v)| ≤ 1 for every
vertex v.

The third result we recall is due to Edmonds (see [5]) and expresses a
condition for a digraph to admit many arc-disjoint rooted arborescences.
In the statement, an out-arborescence of a digraph D refers to a rooted
spanning tree T of D whose arcs are oriented in such a way that the root
has in-degree 0, and every other vertex has in-degree 1.

Proposition 2.5. A directed multigraph with a special vertex z has k arc-
disjoint out-arborescences rooted at z if and only if the number of arc-disjoint
paths between z and any vertex is at least k.

We end this section recalling probabilistic tools we will need in the next
sections (refer e.g., to [8] for more details). The first of these is the well-
known Local Lemma.

5

Proposition 2.6 (Lovász Local Lemma). Let A1, ..., An be a finite set of
events in some probability space Ω, with P[Ai] ≤ p for all i. Suppose that
each Ai is mutually independent of all but at most d other events Aj. If
4pd < 1, then Pr[∩ni=1Ai] > 0.

We will also require the use of the following concentration inequality
due to McDiarmid [7] (see also [8]) concerning random permutations. We
think of a permutation as a bijective function. In what follows, a choice is
defined to be the position that a particular element gets mapped to in a
permutation.

Proposition 2.7 (McDiarmid’s Inequality (simplified version)). Let X be
a non-negative random variable, not identically 0, which is determined by m
independent permutations Π1, ...,Πm. If there exist d, r > 0 such that

• interchanging two elements in any one permutation can affect X by at
most d, and

• for any s > 0, if X ≥ s then there is a set of at most rs choices whose
outcomes certify that X ≥ s,

then for any 0 ≤ λ ≤ E[X],

P
[
|X − E[X]| > λ+ 60d

√
rE[X]

]
≤ 4e

− λ2

8d2rE[X] .

3 Path-graphs

Let G = (V,E) be a graph. A path-graph H on G is a couple (V,P) where P
is a set of edge-disjoint paths of G. The graph H = (V, F), where F contains
the edges of paths in P, is called the underlying graph of H. If F = E, then
H is called a path-decomposition of G. Two edge-disjoint paths of G sharing
an end v are said conflicting if they also intersect in another vertex different
from v. Equivalently, we say that two paths of H issued from a same vertex
are conflicting if the corresponding paths in H are conflicting.

We denote by H̃ the multigraph on vertex set V and edge set the multiset
containing a pair uv for each path from u to v in P (if P contains several
paths from u to v, we add as many edges uv). We now transfer the usual
definitions of graphs to path-graphs. The degree of a vertex v in H, denoted
dH(v), is the degree (with multiplicity) of v in H̃. We say that H is connected
if H̃ is connected, that H is eulerian if H̃ is eulerian, and that H is a path-
tree if H̃ is a tree (even if the paths of P pairwise intersect). From a tour
in H̃, we naturally get a corresponding tour in H. Such a tour is said
non-conflicting if every two of its consecutive paths are non-conflicting.

We need also to speak of the lengths of the paths in P. Let us say that
H is an `-path-graph if all paths in P have length `, a (≥ `)-path-graph if all

6

paths in P have length at least `, an (`1, `2, ...)-path-graph if all paths in P
have length among {`1, `2, ...}, and an [`, ` + i]-path-graph if all paths in P
have length in the interval [`, `+ i].

In general, the paths of a path-graph H = (V,P) can pairwise intersect,
and we would hence like to measure how much. For every vertex v, let PH(v)
be the set of paths in H incident with v, i.e., starting or ending at v. The
conflict ratio of v is

conf(v) :=
maxw 6=v

∣∣{P ∈ PH(v) : w ∈ P}
∣∣

dH(v)
.

Now, regarding H, we set confG(H) := maxv conf(v). When the graph G
is clear from the context, we will often omit the subscript in the notation.
Clearly we always have conf(H) ≤ 1.

With all the terminology above in hand, we can now prove (or recall)
properties of path-graphs. We start by recalling that, as desired, eulerian
path-graphs with somewhat low conflicts have non-conflicting eulerian tours.
This matter was actually already considered by Jackson (cf. [6], Theorem
6.3) under the following different terminology.

For a vertex v, let Ev be the set of edges incident to v. A generalised
transition system S for a graph G is a set of functions {Sv}v∈V (G) such that

Sv : Ev → 2Ev and whenever e1 ∈ Sv(e2), we have that e2 ∈ Sv(e1). We say
that an eulerian tour E is compatible with S if for all v ∈ V (G), whenever
e1 ∈ Sv(e2) it follows that e1 and e2 are not consecutive edges in E .

Theorem 3.1 (Jackson [6]). Let S be a generalised transition system for
an eulerian graph G. Suppose that for each vertex v ∈ V (G) and e ∈ Ev,
we have

(i) |Sv(e)| ≤ 1
2d(v)− 1 when d(v) ≡ 0(mod 4) or d(v) = 2, and

(ii) |Sv(e)| ≤ 1
2d(v)− 2, otherwise.

Then G has an eulerian tour compatible with S.

From Theorem 3.1, the following result is immediate.

Theorem 3.2. Every eulerian [`, `+3]-path-graph H with conf(H) ≤ 1/2(`+
10) and dH(v) ≥ `+ 10 has a non-conflicting eulerian tour.

Proof. Let P ∈ PH(v). The number of paths of PH(v) conflicting with P is
at most 1

2(`+10)(`+3)dH(v), and so at most 1
2dH(v)−2 since dH(v) ≥ `+10.

The result now follows from Theorem 3.1.

We now prove that every graph with large enough minimum degree can
be expressed as a (≥ `)-path-graph meeting particular properties.

7

Theorem 3.3. Let ` be a positive integer, and ε be an arbitrarily small
positive real number. There exists L such that if G = (V,E) is a graph with
minimum degree at least L, then there is an `-path-graph H on G with

• conf(H) ≤ ε,

• dH(v)/dG(v) ∈
[
1−ε
` , 1+ε`

]
for every vertex v, and

• dG\H(v) ≤ εdH(v) for every vertex v.

Proof. Let c := [
√
L] and b := [c2/3], and pick L so that b � `. According

to Proposition 2.1, we can nearly equitably color the edges of G with `
colors. For every color i, applying Proposition 2.3 we can orient the i-colored
edges so that the numbers of in-edges and out-edges of color i incident to
every vertex v differ by at most 1. Let E−i (v) and E+

i (v) be the sets of
i-colored in-edges and out-edges, respectively, incident to v. Then, for every
color i ∈ {1, ..., `− 1}, we have∣∣|E−i (v)| − |E+

i+1(v)|
∣∣ ≤ 2.

For the sake of convenience, we would like to have that |E−i (v)| = |E+
i+1(v)|

for all i and v. To this end, we add a dummy vertex v0 to G. Now, if
|E−i (v)|− |E+

i+1(v)| = k > 0, then we add k dummy edges of color i+1 from
v to v0 to equalize |E−i (v)| and |E+

i+1(v)|. Similarly, if |E+
i+1(v)|− |E−i (v)| =

k > 0, then we add k dummy edges of color i from v0 to v.
Now, for every v ∈ V (G) and color i ∈ {1, ..., `}, we choose rv,i ∈

{0, . . . , c − 2} such that E−i (v) ≡ rv,i (mod c − 1). Since the minimum
degree in each color in G is greater than c(c− 2), we can partition every set
E−i (v) into subsets of size c and c− 1 so that precisely rv,i of them have size
c. As E+

i+1(v) = E−i (v), we can similarly partition every set E+
i+1(v) into

subsets of size c and c− 1 so that precisely rv,i of them have size c.
We call these subsets of edges i-half cones and (i+ 1)-half cones, respec-

tively. Now, for each vertex v and color i, 1 ≤ i ≤ ` − 1, we arbitrarily
pair i-half cones of E−i (v) with (i+ 1)-half cones E+

i+1(v) in a way such that
in each pair the size of the two half cones are equal. We call such a pair
an i-cone at vertex v. Thus, an i-cone ϕ at some vertex v consists of an
i-half cone ϕ− and an (i+ 1)-half cone ϕ+ with |ϕ−| = |ϕ+|. Note that an
edge e of color i directed from a vertex u to a vertex v in G appears both
in an i-half cone of E+

i (u) as well as in an i-half cone of E−i (v), but we do
not require these two i-half cones to have the same size. By convention,
we do not create a cone at the dummy vertex v0. However, each edge uv0
will still be inside a cone at vertex u. We also remark that the 1-half cones
of E+

1 (v) and the `-half cones of E−` (v) do not get paired with other half
cones. Nevertheless, we will adopt the convention that whenever we talk of
a general cone ϕ, we will assume that ϕ might also consist of a single 1-half
cone or `-half cone of the aforementioned type.

8

We now have a fixed set of cones on G. To obtain our desired path-
graph, we will use the cone structure to construct rainbow paths of length
`, i.e., paths where for all i the ith edge of every path is of color i. One
way to obtain this is to randomly match edges of the two half cones of every
cone. Indeed, this is what we do. For each cone ϕ we carry out random
permutations π−ϕ of the edges of ϕ− and π+ϕ of the edges of ϕ+. We then pair
the edges π−ϕ (k) and π+ϕ (k) for each 1 ≤ k ≤ c. If ϕ is actually a special 1-half
cone or `-half cone, then there is only one random permutation performed
at ϕ, which will have no effect on the decomposition as will be apparent
shortly. Note that each edge e = uv of G, with the exception of some edges
of 1-cones, some edges of `-cones and the dummy edges, is in exactly two
cones - one centered at u and the second centered at v. Thus, e is involved
in two random permutations corresponding to the two permutations of the
two half cones containing it. Therefore, given the random matchings, each
non-dummy edge e = uv of color i, 1 < i < `, is paired exactly with one
edge of color i− 1 (which enters u) and one edge of color i+ 1 (which exits
v). From an arbitrary edge, we can thus go forward and backward by edges
paired with it until we reach edges of color ` or 1 (unless we reach dummy
edges). Thus, the random matchings yield a natural decomposition of all
edges of G into edge-disjoint walks. Unfortunately, some of the walks will
not be paths. We will divide the walks into three types. Of the first type are
those walks which are paths, and thus by construction they are necessarily
isomorphic to P`. A walk that is not a path and which does not use the
dummy vertex v0 is called a bad walk ; note that every bad walk is of length
`. A walk that uses the dummy vertex v0 is called a short walk. Note that a
short walk is no longer extended from v0 as there is no cone centered at v0.

For each cone ϕ, there are c− 1 or c walks via ϕ, depending on |ϕ|. We
will show that, with high probability, the number of bad or short walks via ϕ
is negligible compared to c. We then will argue that proving this statement
for all the cones is sufficient for us to extract a dense path-graph from G.

Denote P` := x0x1...x`. We first focus on bad walks. Suppose that ϕ is
a k-cone at some vertex v, and i, j are two colors. We say that a bad walk
P = u0u1...u` going through ϕ is (i, j)-bad if its ith vertex and jth vertex
are the same, that is, uj = ui. Let Aϕ(i, j) be the event that the number of
(i, j)-bad walks going through the cone ϕ is greater than b. We will show

that P[Aϕ(i, j)] < 4e−c
2/3/64.

Denote by Pi,k and Pj,k the subpaths from xi to xk, and xj to xk in
P`, respectively. In case one of these paths is contained in another, we may
assume that Pi,k is contained in Pj,k. Let xj′ be the neighbor of xj in Pj,k.
Note that j′ ∈ {j − 1, j + 1}. Let Pϕ be the set of walks that go through ϕ
which are not short. Clearly, |Pϕ| ≤ c.

We define Ωj′ to be the set of all j′-cones in G if j′ = j − 1, and the
set of all j-cones if j′ = j + 1. Let Π be an arbitrary but fixed outcome

9

of all permutations at all cones except the set of permutations on Ωj′ . In
other words, given Π, we only need to know the outcomes of the set of
permutations {π+ϕ , π−ϕ | ϕ ∈ Ωj′} to know the decomposition of the walks
in G. We will condition on Π; that is, we will show that P[Aϕ(i, j)] | Π] <

4e−c
2/3/64 for any Π. Clearly, since Π is arbitrary, this is sufficient to give

us the uniform bound P[Aϕ(i, j)] < 4e−c
2/3/64.

Let P ′ϕ denote the set of walks Pϕ conditional on Π. Let Xϕ be the
number of (i, j)-bad walks going through the cone ϕ conditional on Π. By
fixing Π, the set P ′ϕ is also fixed. Indeed, each P ′ ∈ P ′ϕ is a partial subwalk,
where we know the vertex of P ′ that lies in some half-cone of a cone ψ ∈
Ωj′ . Note that the vertex ui of P ′ corresponding to xi is already known.
Moreover, the vertex uj′ corresponding to the vertex xj′ is known as well.

Note that whether P ′ is (i, j)-bad depends only on the permutations π−ψ
and π+ψ . Note that there are c−1 or c different images possible to match uj′

when the random permutations π−ψ and π+ψ are carried out, and only one of
which could possibly be ui. Thus, the probability that P ′ is (i, j)-bad is at
most 1

c−1 .
Now, by linearity of expectation,

E[Xϕ] ≤ |Pϕ| ·
1

c− 1
≤ c

c− 1
.

We will apply McDiarmid’s inequality to the random variable Yϕ defined by
Yϕ := Xϕ + c2/3. Clearly E[Yϕ] = E[Xϕ] + c2/3 ∈ [c2/3, c2/3 + 2]. Only the
permutations π−ψ , π

+
ψ with ψ ∈ Ωj′ affect Xϕ and thus Yϕ. If two elements

in one of these permutations are interchanged, then the structure of two
walks in Pϕ changes. However, clearly the number of (i, j)-bad walks in Pϕ
cannot change by more than 2. Thus, we can choose d = 2 in McDiarmid’s
inequality.

If Yϕ ≥ s, then Xϕ ≥ s− c2/3, and thus at least s− c2/3 of the walks in
Pϕ are (i, j)-bad. Let P ′ ∈ P ′ϕ be a subwalk of a walk P that is counted by
Xϕ. As before, let ui = uj denote the images of xi and xj in P , and ψ ∈ Ωj′

the cone through which P ′ passes. To verify that P is (i, j)-bad, we only
need to reveal the two elements π+ψ (s), π−ψ (s), where 1 ≤ s ≤ c is the value

such that the edge uj′uj ∈ {π+ψ (s), π−ψ (s)}.
Thus, Xϕ ≥ s− c2/3 can be certified by the outcomes of 2(s− c2/3) < 2s

choices and we can choose r = 2 in McDiarmid’s inequality. By applying
McDiarmid’s inequality to Yϕ with λ = E[Yϕ], d = 2, r = 2, we get

P
[
|Yϕ − E[Yϕ]| > E[Yϕ] + 120

√
2E[Yϕ]

]
≤ 4e−

E[Yϕ]
64 ≤ 4e−

c2/3

64

and thus P
[
Xϕ > 2c2/3

]
≤ 4e−c

2/3/64. So we have P[Aϕ(i, j)|Π] < 4e−c
2/3/64.

Since Π is arbitrary it follows that P[Aϕ(i, j)] < 4e−c
2/3/64. Let Aϕ be the

10

event that there are more than `2b bad walks via ϕ. Then

P[Aϕ] ≤ P
[⋃
∀i,j

Aϕ(i, j)
]
≤
∑
∀i,j

P[Aϕ(i, j)] < 4`2e−c
2/3/64.

We still consider the same cone ϕ. For an integer j 6= k and vertex u,
let Bϕ(j, u) be the event that the number of walks via ϕ, which maps xj to
u, is greater than b, and let Bϕ(u) be the event that the number of walks of
ϕ containing u is greater than `b.

We show that P[Bϕ(j, u)] < 4e−c
2/3/64. As the computation is virtually

identical to the case of P[Aϕ(i, j)], we only highlight the differences. As
before, let xj′ be the vertex adjacent to xj on Pj,k, and let Π be an arbi-
trary but fixed outcome of all permutations at all cones except the set of
permutations on Ωj′ . It suffices to show that P[Bϕ(j, u) | Π] < 4e−c

2/3/64.
Let Xϕ denote the random variable conditional on Π which counts the

number of walks in Pϕ where u is the image of xj . The vertex u appears at
most once in each cone of Ωj′ , so by linearity of expectation we have

E[Xϕ] ≤ |Pϕ| ·
1

c− 1
≤ c

c− 1
.

We again apply McDiarmid’s inequality to the random variable Yϕ de-
fined by Yϕ := Xϕ + c2/3. As before, E[Yϕ] = E[Xϕ] + c2/3.

Since the vertex u appears at most once in each cone of Ωj′ , swapping
two positions in any permutation of a half-cone in Ωj′ can affect Xϕ by at
most 1. Thus, we can choose d = 1 in McDiarmid’s inequality.

If Yϕ ≥ s, then Xϕ ≥ s − c2/3. Let P ′ be a subwalk that is counted by
Xϕ. As before, we can certify that P ′ is counted by Xϕ by considering only
ψ ∈ Ωj′ , the cone through which P ′ passes.

To certify that P ′ is counted by Xϕ we only need to reveal the two
elements π+ψ (s), π−ψ (s), where s is the value such that one of the edges

π+ψ (s), π−ψ (s) contains the endpoint u. Thus, Xϕ ≥ s − c2/3 can be cer-

tified by the outcomes of 2(s − c2/3) < 2s choices and we can choose r = 2
in McDiarmid’s inequality. Thus, by a similar argument as above we obtain
that P[Bϕ(j, u)] < 4e−c

2/3/64. Now,

P [Bϕ(u)] ≤ P
[⋃
∀i
Bϕ(i, u)

]
≤
∑
∀i

P [Bϕ(i, u)] < 4`e−c
2/3/64.

Let Bϕ be the event that there exists a vertex u such that more than `b
walks of ϕ contain u. The number of vertices u that could possibly appear
in the walks Pϕ is at most c+ c2 + ...+ c` < c`+1 . Hence,

P[Bϕ] = P
[⋃
∀u
Bϕ(u)

]
≤
∑
∀u

P[Bϕ(u)] < 4c`+1`e−c
2/3/64.

11

Let B′ϕ(j) be the event that the number of walks via ϕ such that they

enter v0 at exactly their jth-vertex is greater than b, and let B′ϕ be the event
that the number of walks of ϕ containing v0 is greater than `b. We upper
bound P[B′ϕ(j)].

The argument is virtually identical to that of the estimate above. We
apply McDiarmid’s inequality to the random variable Yϕ := Xϕ+c2/3, where
Xϕ is the number of walks via ϕ that enter v0 at the jth edge conditional
on Π. As before, we obtain that E[Xϕ] ≤ c/(c − 1), d = 1, r = 2, yielding

P[B′ϕ(j)] ≤ 4e−c
2/3/64. Thus, P[B′ϕ] < 4`e−c

2/3/64.

Let Jϕ = Aϕ ∪Bϕ ∪B′ϕ. Then

P[Jϕ] ≤ P[Aϕ] + P[Bϕ] + P[B′ϕ] < (`2 + c`+1`+ `)4e−c
2/3/64 < e−b/100.

Let Jϕ be the set of events Jψ that are not mutually independent of Jϕ.
Note that the number of permutations determining Jϕ is at most (2c) +
(2c)2 + ...+ (2c)` < c`+1. Indeed, c`+1 is an upper bound on the number of
walks of length ` that could contain an edge of ϕ. Each such permutation
itself could affect at most c+ ...+ c` < c`+1 events Jψ. Thus, |Jϕ| ≤ (c`+1)2.

We now apply the symmetric version of the Local Lemma. To that aim,
we need to have that (c`+1)2e−b/100 < 1/4, which clearly holds since ` is fixed
and c is sufficiently large. Thus, by Lovász Local Lemma, P

[⋂
∀ϕ Jϕ

]
> 0.

Thus, there exists pairings of the edges of the cones Γ such that no event
Jϕ occurs for every cone ϕ.

Let H be the `-path-graph obtained from Γ by removing all bad walks
and short walks. Let R := G\H. We can assume that L is sufficiently large
so that `4b < ε(1− ε)c/2. Then:

1. In every cone ϕ, there are no more than εc bad and short walks via
it, so there are at least (1 − ε)c paths in H via it. Hence, using the
fact that G is nearly equitably colored and by considering the special
1-half and `-half cones, we obtain that for every vertex v, there are at
least 1−ε

2` dG(v) paths in H starting at v, and at least 1−ε
2` dG(v) paths

in H ending at v. Hence, dH(v) ≥ 1−ε
` dG(v). The nearly equitable

`-edge-coloring implies immediately that dH(v) ≤ 1+ε
` dG(v).

2. For every pair of vertices u, v, u 6= v, among all walks via a cone of u,
the ratio of walks going through v is less than `2b/c < ε/2`. Hence,
among all walks via u, the ratio of walks going through v is less than
ε/2`. Thus

|{P ∈ P : u, v ∈ P}|
dG(u)

≤ ε/2`,

and, hence, conf(u) ≤ ε.

12

3. In every cone, there are no more than `3b bad and short walks via
it, so the proportion of bad walks is at most `3b/c < ε(1 − ε)/2`.
Hence, among all walks via a vertex v, the ratio of bad and short
walks is less than ε(1−ε)/2`. Thus dR(v) < ε(1−ε)dG(v)/2`, implying
dR(v) ≤ εdH(v).

In the sequel, given two path-graphs H1 and H2 over a same graph,
we will need to grow paths of, say, H1 using the paths from H2. This
will essentially be achieved by considering every path P of H1, incident to,
say, a vertex v, then considering a path P ′ incident to v in H2, and just
concatenating P and P ′. So that the concatenation can be performed this
way for every path of H1, we just need H2 to have enough paths, and to
make sure to evenly use these paths. The latter requirement can be ensured
by just orienting H2 in a balanced way, that is so that |d+(v)−d−(v)| ≤ 1 for
every vertex v, and choosing, as P ′, a path out-going from v. All such out-
going paths are called private paths of v throughout the upcoming proofs.

The path-graph H we get from G after applying Theorem 3.3 hence
satisfies 1−ε

` dG(v) ≤ dH(v) ≤ 1+ε
` dG(v) for every vertex v. If we preserve

the orientation of the edges of H as in the proof, and denote by d+H(v) the
number of paths starting from v in H, we get

1− ε
2`

dG(v) ≤ d+H(v) ≤ 1 + ε

2`
dG(v)

for every vertex v. These d+H(v) paths out-going from v will hence be re-
garded as its private paths in what follows.

Theorem 3.4. Let ` be a positive integer, and ε′ be a sufficiently small
positive real number depending on `. There exists L such that, for every
graph G with minimum degree at least L, there is an (`, `+ 1)-path-graph H
decomposing G with

• conf(H) ≤ 1/4(`+ 10), and

• 1−ε′
` dG(v) ≤ dH(v) ≤ 1+ε′

` dG(v) for every vertex v.

Proof. Let ε′ > 0 be sufficiently small, and set ε := ε′/10`. Let G1 be a 1/9`-
fraction of G obtained by Proposition 2.2, and G2 := G\G1. By applying
Theorem 3.3 on G1 and G2 with ε, we get two `-path-graphs H1 and H2

and two remainders R1 and R2 satisfying all properties from the statement
of Theorem 3.3. For convenience, we will keep the orientation of the edges
of H1 and H2 given by Theorem 3.3. Note that

1−ε
` ·

(
dG(v)
9` − 2

)
≤ dH1(v) ≤ 1+ε

` ·
(
dG(v)
9` + 2

)
and

1−ε
` ·

(
(9`−1)dG(v)

9` − 2
)
≤ dH2(v) ≤ 1+ε

` ·
(
(9`−1)dG(v)

9` + 2
)
.

13

Now, we have 1−ε
(1+ε)(9`−1)dH2(v) − 10 ≤ dH1(v) ≤ 1+ε

(1−ε)(9`−1)dH2(v) + 10 for
all vertices v. Let R := R1 ∪R2. Then for every vertex v, we have

dR(v) = dR1(v) + dR2(v) ≤ εdH1(v) + εdH2(v) ≤ 10`εdH1(v).

Arbitrarily orient the edges of R. In our construction, every step consists
in extending an arc vu of R using a private (i.e., out-going) `-path starting
at v in H1 that does not contain u – thus forming an (` + 1)-path. Since
the conflict ratio of H1 satisfies conf(H1) ≤ ε, at most εdH1(v) paths in H1

with v as endpoint contain u. Note that the number of directed `-paths in

H1 starting at v is d+H1
(v) ≥ 1

2 ·
(1−ε)dG1

(v)

` . Thus, d+H1
(v)− dR(v) > εdH1(v)

since L can be chosen sufficiently large. Hence, all the dR(v) edges can be
used to form (`+ 1)-paths.

We call H ′1 the resulting (`, `+1)-path-graph obtained by concatenating
paths from H1 and paths from R. Since dR(v) ≤ 10`εdH1(v) for every v, the
degree of v in H ′1 is as

dH1(v)− 10`εdH1(v) ≤ dH′1(v) ≤ dH1(v) + 10`εdH1(v).

Let H := H ′1 ∪H2. Then H is an (`, `+ 1)-path-graph decomposing G,
in which we have dH(v) = dH′1(v) + dH2(v) for all vertices v. Thus,

dH1(v)− 10`εdH1(v) + dH2(v) ≤ dH(v) ≤ dH1(v) + 10`εdH1(v) + dH2(v).

Thus,

1−ε
` dG(v)− 10`εdH1(v) + 1 ≤ dH(v) ≤ 1+ε

` dG(v) + 10`εdH1(v) + 1.

Since ε′ = 10`ε, we obtain that

1−ε′
` dG(v) ≤ dH(v) ≤ 1+ε′

` dG(v).

Observe also that dH′1(v)/dH2(v) ≤ 1/6`. Thus,

conf(H) ≤ conf(H2) + conf(H ′1)/6` ≤ ε+ 1/6` < 1/4(`+ 10),

as required.

4 Path-trees

This part is the combinatorial core behind the proofs of our main results. We
need here to show the existence of particular path-trees, namely (`, 2`)-path-
trees, under mild connectivity and minimum degree requirements. These
(`, 2`)-path-trees will play a crucial role to insure that some path-graph has
all of its vertices being of even degree. However, directly getting an (`, 2`)-
path-tree seems a bit challenging, and we will follow a long way for this,
starting with a (1, 2)-path-tree and making its paths grow.

We start off with the following lemma which is the key for the drop of
the large edge-connectivity requirement.

14

Lemma 4.1. Every 2-edge-connected multigraph has a subcubic spanning
(1, 2)-path-tree.

Proof. Let G be connected and bridgeless. A structured-tree T on G is a
strongly-connected digraph whose vertices are subsets Xi of V (G) satisfying
the following properties:

• The Xi’s form a partition of V (G).

• The arcs of T are of two types: the forward arcs forming a rooted out-
arborescence A, and the backward arcs, always directed from a vertex
to one of its ancestors in A.

• Every arc XiXj corresponds to some edge xixj ∈ E(G) such that
xi ∈ Xi and xj ∈ Xj .

• There is at most one backward arc leaving each vertex Xi (unless T is
rooted at Xi).

• Internal vertices of A are singletons.

• Every leaf Xi of A is spanned by a (1, 2)-path-tree Ti on G with max-
imum degree 3.

• The (unique) forward and backward arcs incident to a leaf Xi have
endpoints in Ti with degree at most 2, and if these endpoints coincide,
the degree is at most 1 in Ti. In other words, adding the arcs as edges
of Ti preserves maximum degree 3.

• Every edge of G is involved in at most one arc of T and one path of Ti.
In other words, the edges of G involved in T and the Ti’s are distinct.

We first show that G has a structured-tree T , using a classical algorithm
to find a strongly-connected orientation of a bridgeless graph. Fix a vertex
x and compute a Depth-First-Search tree A from x. Orient the edges of
A from x to form the forward arcs. By the DFS property, every edge of
G not in A joins vertices which are parents. Orient these edges from the
descendent to the ancestor: these are our backward arcs. Since we need
to keep at most one backward arc issued from every vertex, we only keep
the arc going to the lowest ancestor. Note that we obtain a structured-tree
T , where each Xi is a singleton vertex in G and every leaf Ti is a trivial
(1, 2)-path-tree on one vertex.

We now prove that every structured-tree T with at least two vertices
on G can be reduced to one with less vertices. This will imply that T can
be reduced to a single vertex Xi = V (G), hence providing the subcubic
spanning (1, 2)-path-tree Ti.

15

We start by deleting the backward arcs of T which are not needed for
strong connectivity. Then we consider an internal vertex Xj = {xj} of A
with maximal height. Let X1, X2, ..., Xr be the (leaf) children of Xj . Each
forward arc XjXi corresponds to an edge xjxi, where xj ∈ Xj and xi ∈ Xi.
Each of these leaves Xi is the origin of a backward arc XiX

′
i which we write

yix
′
i, where yi ∈ Xi and x′i ∈ X ′i. We assume that our enumeration satisfies

that X ′i+1 is always an ancestor of X ′i (possibly equal to X ′i). We now
discuss the different reductions, in which the conditions of structured-trees
are easily checked to be preserved.

• If Xj has only one child X1 and is not the origin of a backward arc, we
merge X1 and Xj into a unique leaf X1j spanned by the (1, 2)-path-
tree T1 ∪ {x1xj}. If Xj is the root, we are done, otherwise we let the
forward arc entering X1j be the one entering Xj , and the backward
arc leaving X1j be X1jX

′
1 (thus corresponding to the edge y1x

′
1).

• If Xj has only one child and is the origin of a backward arc XjX
′
j , we

merge X1 and Xj into a unique leaf X1j spanned by the (1, 2)-path-
tree T1∪{x1xj}. The forward arc entering X1j is the one entering Xj ,
and the backward arc leaving X1j is the one of XjX

′
j .

• IfXj has at least three children, orXj has two children and is the origin
of a backward arc, observe that deleting X1 and X2 from T preserves
strong connectivity. Hence we merge X1 and X2 into a unique leaf X12

spanned by the (1, 2)-path-tree T1 ∪ T2 ∪ {x1xjx2}. The forward arc
entering X12 is x′1y1 (hence reversing the backward arc X1X

′
1), and

the backward arc leaving X12 is X12X
′
2 corresponding to y2x

′
2.

• The last case is when Xj has two children X1 and X2 and is not the
origin of a backward arc. Here we merge X1, X2, Xj into a unique leaf
X12j spanned by the (1, 2)-path-tree T1∪T2∪{x1xj}∪{x2xj}. If Xj is
the root, we are done, otherwise we let the forward arc entering X12j

be the one entering Xj , and the backward arc leaving X12j be X12jX
′
2

(thus corresponding to y2x
′
2).

We now turn our (1, 2)-path-tree into a (1, k)-path-tree. For this we
need to feed our original connected bridgeless graph G (in which we find the
subcubic (1, 2)-path-tree) with some additional graph H, edge-disjoint from
G, and with large enough degree.

Lemma 4.2. Let G = (V,E) be a graph. Let T be a spanning (1, k)-path-
tree of G, where k ≥ 2. Let H be a graph on V , edge-disjoint from G, with
the property that dH(v) ≥ 2(dT (v)+2k) for every vertex v of G. Then G∪H
is spanned by a (1, k + 1)-path-tree T ′.

16

Proof. Start by arbitrarily orienting the edges of H in a balanced way so
that every vertex v of H has outdegree at least dT (v) + 2k. Every vertex is
hence provided with a set of private edges in H, namely, its out-going arcs.
We will use these private edges to transform k-paths of T into (k+1)-paths.

In this proof, a structured-tree T ′ on G is a rooted (1, k)-path-tree whose
vertices are subsets Xi partitioning V (G) and satisfying the following prop-
erties:

• If XiXj is an edge in T ′, then there exists a corresponding 1-path or
k-path xixj ∈ E(T), where xi ∈ Xi and xj ∈ Xj .

• If Xj has children X1, ..., Xr in T ′ then there is a unique xj ∈ Xj such
that x1xj , ..., xrxj are the corresponding paths in E(T). We call xj
the center of Xj .

• Every vertex Xi of T ′ is spanned by a (1, k + 1)-path-tree T ′i .

Initially, let T ′ be the structured-tree T , where each Xi is a singleton
element {xi} in V (T). Note that all the vertices of T ′ are trivial (1, k + 1)-
path-trees. Our goal is to iteratively reduce T ′ to a structured-tree consisting
of one single vertex Xi, hence providing a spanning (1, k + 1)-path-tree
T ′i . We will always make sure that at any iteration every center xj has at
least r + 2k private edges, where r is the number of children of Xj , hence
guaranteeing the repetition of the process. Let us now show that T ′ can be
reduced to a structured-tree with less vertices (unless T ′ is a single vertex).

We consider an internal vertex Xj of T ′ with maximal height. Let
X1, ..., Xr be the (leaf) children of Xj corresponding to paths x1xj , ..., xrxj ,
where xj is the center of Xj . If one of these paths, say x1xj , is an edge,
we simply create a new vertex X1j by concatenating X1 and Xj and letting
T ′1j = T ′1 ∪ T ′j ∪ {x1xj}. So we can assume that every xixj-path has length
k.

Consider Xj and one of its children, say X1. Let y be a private neighbor
of xj which is not a vertex of the path xjx1. Such a y exists since xj has
at least 2k + r private neighbors. We distinguish two cases, in which the
conditions of structured-trees are easily checked to be preserved:

• We first consider the case where y is in some Xi, Xi 6= X1. Call P
the (k + 1)-path obtained by concatenating the k-path x1xj with the
edge xjy. We here add X1 to the set Xi to form the set X1i which is
spanned by T ′1i = T ′1 ∪ T ′i ∪ {P}. Here xj loses one private edge, but
Xj has one less child.

• The second case is when y ∈ X1. We here add X1 to the set Xj to
form the set X1j which is spanned by the (1, k + 1)-path-tree T ′1j =
T ′1 ∪ T ′j ∪ {xjy}. Here xj loses one private edge, but Xj has one less
child.

17

The next result follows from Lemma 4.1 and repeated applications of
Lemma 4.2:

Corollary 4.3. For every `, there exists L such that if G = (V,E) is a
2-edge-connected graph and H is another graph on V , edge-disjoint from G,
with minimum degree at least L, then one can form a spanning (1, ` + 1)-
path-tree T where dT (v) ≤ dH(v) for every vertex v.

Proof. We first apply Lemma 4.1 to get a subcubic (1, 2)-path-tree T0 from
G. Fix a sufficiently small ε1 > 0. We choose a sequence of edge-disjoint
subgraphs H1, ...,H`−1 of H, where each Hi is an εi-fraction of H, where
εi+1 = 4εi for all i. Free to choose L large enough as a function of ε1, we
can clearly obtain the desired subgraphs H1, ...,H`−1 by repeatedly applying
Proposition 2.2. Since L is sufficiently large, for each vertex v, we have that
dH1(v) ≥ ε1L − 10`` > 2dT0(v) + 4`. Thus, by Lemma 4.2, we can use H1

to extend T0 into a (1, 3)-path-tree T1. Note that dT1(v) ≤ dT0(v) + dH1(v).
Now we have that dH2(v) ≥ 3.5dH1(v) > 2dT1(v) + 4`, and thus, we can
again use H2 as an additional graph to extend T1 into a (1, 4)-path-tree T2
with dT2(v) ≤ dT0(v) + dH1(v) + dH2(v). We iterate this process to form our
(1, `+ 1)-path-tree T . Note that

dT (v) ≤ dT0(v) +

`−1∑
i=1

dHi(v) < L ≤ dH(v),

where the second to last inequality follows from the fact that we can choose
ε1 to be arbitrarily small.

Our ultimate goal now is to find path-trees where the lengths of the
paths are a multiple of some fixed value `. One way to do so is to transform
some (1, `+ 1)-path-trees into (`, 2`)-path-trees. Note that if ` is even, and
our graphs G and H are bipartite with the same bipartition, then there is
no spanning (`, 2`)-path-tree since an even path always connects a partite
set with itself. The next result asserts that we can nevertheless connect each
partite set separately.

Lemma 4.4. For every even integer `, there exists L such that if G = (V,E)
is a 2-edge-connected bipartite graph with vertex partition (A,B) and H is
another bipartite graph on V with vertex partition (A,B), edge-disjoint from
G, and with minimum degree at least L, then one can form an (`, 2`)-path-
tree T spanning A where dT (v) ≤ dH(v) for every vertex v.

Proof. We first use a small ε-fraction of H (and still call H the graph minus
this fraction for convenience) in order to apply Corollary 4.3. We can then
obtain a spanning (1, `+1)-path-tree T where dT (v) ≤ εdH(v) for all vertices
v. Note that ε > 0 can be taken arbitrarily small since we can take L so that
εL is sufficiently large to apply Corollary 4.3. We now apply Theorem 3.3 on

18

H to find an (`−1)-path-graph H ′ (while preserving the balanced orientation
given by the proof) on H with conf(H ′) ≤ ε and

1− ε
`− 1

dH(v) ≤ dH′(v) ≤ 1 + ε

`− 1
dH(v)

for all vertices v.
In our construction, every step consists in extending a path P of T

starting at some vertex v using a private (i.e., out-going) (`− 1)-path from
H ′. This will form either an `-path or a 2`-path. According to the conflict
ratio assumption and the fact that ε can be chosen to be sufficiently small,
every such P is conflicting with at most |P |εdH′(v) < dH′(v)/8 private
paths of v, which is 1/4 total number of private paths of v. In our upcoming
process, the total number of private paths of v we will use is at most dT (v) ≤
εdH(v), thus at most 1/4 of the total number of private paths of v since
d+H′(v) ≥ 1−ε

2` dH(v). Hence, even if we have already used 1/4 of the private
paths of v, and we need a private path of v which is non-conflicting with
two paths of T incident to v, we can still find one. Thus, in the upcoming
arguments, we always assume that a private path is available whenever we
need one.

We now turn to the construction of the (`, 2`)-path-tree T ′ spanning
A. A structured-tree T ′ on G is a rooted tree in which the vertices are
disjoint subsets Xi whose union covers a subset of V (G) containing A with
the following properties:

• If XiXj is an edge in T ′, then there exists a corresponding 1-path or
(`+ 1)-path xixj ∈ E(T), where xi ∈ Xi and xj ∈ Xj .

• If Xj has children X1, ..., Xr then there is a unique xj ∈ Xj such that
x1xj , ..., xrxj are the corresponding paths in T . We call xj the center
of Xj .

• Every vertex Xi containing an element of B is a singleton, i.e., Xi =
{xi}.

• Every vertex Xi of T ′ is spanned by an (`, 2`)-path-tree T ′i .

We again start with T ′ equal to T in the sense that all Xi’s are singletons,
and all T ′i ’s are trivial (`, 2`)-path-trees. We root T ′ at some arbitrary vertex
of A. Again our goal is to show that we can reduce T ′ until it is reduced
to its root, which will therefore be equal to the set A, covered by an (`, 2`)-
path-tree. Note that since ` is even, we always have that an edge XiXj of
T ′ connects a vertex of B and a subset of A.

Observe first that if T ′ has a leaf in B, we can simply delete it and keep
our properties. We can then assume that all leaves are subsets of A. We
consider an internal vertex Xj of T ′ with maximal height. Let X1, X2, ..., Xr

19

be the (leaf) children of Xj corresponding to the paths x1xj , ..., xrxj . Note
that all Xi’s are subsets of A, and that Xj = {xj} is in B. We now discuss
the different reductions, in which the conditions of structured-trees are easily
checked to be preserved.

Consider Xj and one of its children, say X1. Let Xk be the parent of
Xj in T ′. Note that Xk is a subset of A. We denote by xjxk the path of T
joining Xj and Xk. Let y be a private neighbor of xj which is not a vertex
of the path xjxk and xjx1. We again consider two cases:

• First assume that y is in some Xi, with Xi 6= X1. We denote by P ′ the
path obtained by concatenating the path x1xj with xjy. Note that P ′

is an `-path or a 2`-path. We add X1 to the set Xi to form the set X1i

which is spanned by T ′1i = T ′1 ∪T ′i ∪{P ′}. Note that xj loses a private
path, but Xj has one less child.

• Otherwise, y ∈ X1. We add X1 to the set Xk to form the set X1k

which is spanned by the (`, 2`)-path-tree T ′1k = T ′1 ∪ T ′k ∪ {P ′′}, where
P ′′ is the concatenation of xkxj and xjy (note that P ′′ is an `-path
or a 2`-path). Note that xj loses a private path, but Xj has one less
child.

We will also need the following lemma.

Lemma 4.5. Let ` be a positive integer. There exists L such that if G1 =
(V,E) is a 2-edge-connected graph and G2 = (V, F) is a graph of minimum
degree at least L edge-disjoint from G1, then there is a connected [`, ` + 3]-
path-graph H decomposing G1 ∪G2 with conf(H) < 1

2(`+10) .

Proof. Start by applying Lemma 4.1 to get a subcubic (1, 2)-path-tree T
spanning G1, and put the non-used edges of G1 in G2. Still calling this
graph G2, we decompose G2 into a 1/(5`)-fraction R1 and a 1 − 1/(5`)-
fraction R2, by Proposition 2.1. Thus, by Theorem 3.4, G2 can then be
decomposed into two (`, ` + 1)-path-graphs H1 and H2, respectively, both
having conflict ratio at most 1

4(`+10) , and verifying

1− ε
(5`− 1)(1 + ε)

dH2(v) ≤ dH1(v) ≤ 1 + ε

(5`− 1)(1− ε)
dH2(v)

for all vertices v, and any ε.
In our construction, every step consists in extending a path P of T

starting at v using a private (≥ `)-path starting at v in H1 (where we recall
that the private paths at any vertex are its out-going paths in a balanced
orientation of H1). This will form a (≥ `)-path. By the assumption on the
conflict ratio, every P is conflicting with at most, say, half of the private
paths of v. Because T is subcubic, the total number of private paths of v we

will need is at most 6. Since L can be chosen so that L
5` ·

1
2` ·
(

1− 1
4(`+10)

)
20

is arbitrarily large, we can hence assume we have enough private paths for
the whole process.

We now turn to the construction of the spanning (≥ `)-path-tree T ′ from
T and H1. A structured-tree T ′ on V is a rooted tree in which the vertices
are disjoint subsets Xi partitioning V with the following properties:

• If XiXj is an edge in T ′, then there exists a corresponding 1-path or
2-path xixj ∈ E(T), where xi ∈ Xi and xj ∈ Xj .

• Every vertex Xi of T ′ is spanned by a (≥ `)-path-tree T ′i .

We again start with T ′ being equal to T in the sense that all Xi’s are
singletons, and all T ′i ’s are trivial (≥ `)-path-trees. We root T ′ at some
arbitrary vertex. Again our goal is to show that we can reduce T ′ until it is
reduced to its root, which will therefore be a spanning (≥ `)-path-tree.

We consider a leaf X1 of T ′ with direct ancestor Xj . Then there exists
a path x1xj of T ′ having length 1 or 2. We pick a private path xjy ∈ H1

not conflicting with the path x1xj . Assume y ∈ Xk. If Xk 6= X1, then we
denote by P the path obtained by concatenating x1xj and xjy. Then we
add X1 to Xk to form the set X1k being spanned by T ′1k = T ′1 ∪ T ′k ∪ {P}.
If Xk = X1, then we add X1 to Xj to form the set X1j being spanned by
T ′1j = T ′1 ∪ T ′j ∪ {xjy}. We choose a private path xjz in H1 not conflicting
with x1xj , and concatenate these two paths to get a path x1z that we put
back into H1.

Once the procedure above is finished, we end up with a spanning (≥ `)-
path-tree T ′ and an (`, ` + 1)-path-graph H ′1, where H ′1 is the path-graph
remaining from H1 after we have used some of its paths to obtain T ′. Let
H := T ′ ∪H ′1 ∪H2. Then H covers all edges of G. Note also that H is an
[`, `+3]-path-graph. Since dT ′∪H′1(v) ≤ dH1(v)+3 for every vertex v and we
can choose ε to be sufficiently small, we have dT ′∪H′1(v) ≤ dH2(v)/4(`+ 10)
for every vertex v. Thus,

conf(H) ≤ conf(H2) +
conf(T ′ ∪H ′1)

4(`+ 10)
<

1

4(`+ 10)
+

1

4(`+ 10)
≤ 1

2(`+ 10)
,

which concludes the proof.

5 Edge-partitioning a graph into `-paths

We now have all ingredients to prove our main results, i.e., Theorems 1.3
and 1.4. We start off with the proof of Theorem 1.3.

Proof of Theorem 1.3. Without loss of generality, we assume that ` is even
(as the statement for paths of length 2k implies the statement for paths of
length k). First of all, we consider a maximum cut (V1, V2) of G, and just

21

keep the set of edges F across the cut. We call G′ the graph (V, F). Observe
that G′ is at least 12-edge-connected and has minimum degree at least d`/2.

By Proposition 2.4, there is an orientation D of G′ such that D is 6-
arc-strong and with d+(v) and d−(v) differing by at most 1 for every vertex
v. By applying Proposition 2.5 to D with some vertex z, we obtain 6 arc-
disjoint out-arborescences, T1, ..., T6, rooted at z. Since each vertex v has
in-degree at most 1 in Ti (z has in-degree 0), and d+D(v) and d−D(v) differ by
at most 1, the graph T1 ∪ ... ∪ T6 is 1/2-sparse in G′.

Call now G1 := T1 ∪ T2, G2 := T3 ∪ T4, G3 := T5 ∪ T6, and let R
be the graph consisting of all the edges of F which are not in G1, G2, G3.
Observe that G1, G2, G3 are connected and bridgeless. Furthermore, the
graph G1 ∪G2 ∪G3 is 1/2-sparse in G′, and hence R is 1/2-dense in G′. In
the sequel, several fractions of edges will be removed from R, but, for the
sake of legibility, we will still call R the set remaining after the transfers.

We turn G1 into an (`, 2`)-path-tree as follows: we consider a small ε-
fraction R1 of R, and apply Lemma 4.4 (with G1 for G and R1 for H) to
form an (`, 2`)-path-tree T ′ spanning V1 in which dT ′(v) ≤ dR1(v) for all
vertices v ∈ V1. In other words, T ′ is ε′-sparse in R for some negligible
ε′ > 0 depending on ε. Similarly, we can obtain, from G2, a ε′-sparse (`, 2`)-
path-tree T ′′ spanning V2. We still consider (neglecting the two ε-fractions)
that R is 1/2-dense in G′. Add all edges of E(G)\F to R.

Now, G = G3 ∪ T ′ ∪ T ′′ ∪ R. We claim that we can remove a collection
of `-paths or 2`-paths from the path-tree T ′ spanning V1 in a way so that
we can obtain that at most one vertex of V1 has odd degree in G. Indeed,
note that if T is a tree and X is an even subset of V (T), then there exists
a set of edges F ⊆ E(T) such that for each vertex x, dF (x) is odd if and
only if x ∈ X (one way to see this is to note that the characteristic vector
of X is in the span of the incidence matrix of T). In particular, denoting by
X1 the set of all odd-degree vertices of G3 ∪ T ′′ ∪R inside V1 (and possibly
removing one vertex of X1 to make X1 of even size) we can find a subtree F ′

of T ′ such that dF ′(v) is odd if and only if v ∈ X1. In other words, removing
the `- or 2`-paths of T ′ corresponding to F ′ leaves G with every vertex of V1
(except possibly one) having even degree. Similarly, we remove paths of the
path-tree T ′′ spanning V2 so that at most one vertex of V2 has odd degree.

We still call G the remaining graph after the procedure, and we add the
remaining edges of T ′ ∪ T ′′ to R. Then G = G3 ∪ R. Note that G3 is 2-
edge-connected, and R is 1/4-dense in G. By applying Lemma 4.5 (with G3

for G1 and R for G2), we can express G as a connected [`, `+ 3]-path-graph
H with conf(H) < 1/2(` + 10). Note that dG(v) − dH(v) is even for every
vertex v – so the degree of every vertex in H is even, except (possibly) for
two vertices v1 ∈ V1 and v2 ∈ V2. In this case, we add a dummy `-path
from v1 to v2 in H to make H eulerian. By Theorem 3.2, we get that H
has a non-conflicting eulerian tour from which we can deduce the desired
decomposition.

22

One important fact in the proof of Theorem 1.3 is that, when con-
structed, the path-graph H covers all edges of G. For this reason, it should
be clear that the parity of the degree of every vertex is preserved from G
to H. This simple remark implies the following interesting counterpart re-
sult on eulerian graphs that are sufficiently edge-connected and have large
enough minimum degree.

Theorem 5.1. For every integer `, there exists d` such that every 4-edge-
connected eulerian graph G with minimum degree at least d` has an eulerian
tour with no cycle of length at most `.

Proof. Following the arguments in the second paragraph of Theorem 1.3,
we can extract from G two trees T1 and T2 so that T1 ∪ T2 is 1/2-sparse in
G. Let G1 := T1 ∪ T2, and G2 := G\G1. Then G1 is 2-edge-connected, and
G2 is 1/2-dense. Applying Lemma 4.5, we can express G as a connected
[`, `+ 3]-path-graph H with conf(H) < 1/2(`+ 10). Since G is eulerian, so
is H. Hence H has non-conflicting eulerian tours according to Theorem 3.2,
and these tours do not have cycles of length at most ` since all paths of H
have length at least `.

Theorem 5.1 now directly implies Theorem 1.4.

References

[1] J. Bensmail, A. Harutyunyan, T.-N. Le, M. Merker and S. Thomassé.
A Proof of the Barát-Thomassen Conjecture. Journal of Combinatorial
Theory, Series B, 124:39-55, 2017.

[2] F. Botler, G.O. Mota, M. Oshiro and Y. Wakabayashi. Decomposing
highly edge-connected graphs into paths of any given length. Journal
of Combinatorial Theory, Series B, 122:508-542, 2017.

[3] F. Botler, G.O. Mota, M. Oshiro and Y. Wakabayashi. Decompositions
of highly connected graphs into paths of length five. Discrete Applied
Mathematics, Doi: 10.1016/j.dam.2016.08.001, 2016.

[4] J. Barát and C. Thomassen. Claw-decompositions and Tutte-
orientations. Journal of Graph Theory, 52:135-146, 2006.

[5] J. Edmonds, Edge-disjoint branchings. B. Rustin, editor, Combinatorial
Algorithms, pp. 91-96, Academic Press, 1973.

[6] B. Jackson, On circuit covers, circuit decompositions and Euler tours of
graph, Surveys in Combinatorics, London Mathematical Society Lecture
Note Series, pp. 191–210, 187: 1993.

23

[7] C. McDiarmid. Concentration for Independent Permutations. Combi-
natorics, Probability and Computing, 11:163-178, 2002.

[8] M. Molloy and B. Reed. Graph Colouring and the Probabilistic Method.
Springer, 2002.

[9] C.St.J.A. Nash-Williams. On orientations, connectivity and odd-vertex-
pairings in finite graphs. Canadian Journal of Mathematics, 12:555-567,
1960.

[10] M. Stiebitz, D. Scheide, B. Toft, L. M. Favrholdt. Graph Edge Coloring:
Vizing’s Theorem and Goldberg’s Conjecture. Wiley, 2012.

[11] C. Thomassen. Decompositions of highly connected graphs into paths
of length 3. Journal of Graph Theory, 58:286-292, 2008.

[12] C. Thomassen. Edge-decompositions of highly connected graphs. Ab-
handlungen aus dem Mathematischen Seminar der Universität Ham-
burg, 18:17-26, 2008.

[13] C. Thomassen. Decomposing graphs into paths of fixed length. Combi-
natorica, 33(1):97-123, 2013.

24

