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Abstract

Given a digraph D, we denote by α⃗(D) the maximum size of an
acyclic set of D (i.e. a set of vertices which induces a subdigraph with
no directed cycles), and by χ⃗(D) the minimum number of acyclic sets
into which V (D) can be partitioned. In this paper, we study α⃗(D) and
χ⃗(D) from various perspectives, including restrictions on degrees and
cycle lengths. A main result is that, if D is a random r-regular digon-
free simple digraph of order n, then α⃗(D) = Θ(n log r/r) with high
probability. This extends a result of Spencer and Subramanian on the
Erdős–Rényi random digraph model [29]. Along the way, we derive
some related results and propose some conjectures. An example of
this is an analog of the theorem of Bondy which bounds the chromatic
number of a graph by the circumference of any strong orientation.

1 Introduction

A graph is simple if it has no loops or parallel edges. In this paper, our
graphs will always be simple. Similarly, a digraph is simple if it has no
loops or parallel arcs. We are mostly interested in digraphs that are simple.
Sometimes, we shall require a digraph to be an oriented graph, meaning that
directed cycles of length two (called digons) are also forbidden. Digraphs
are usually denoted by D = (V,A), where V is the set of vertices and A is
the set of arcs. A subset S of vertices of a digraph D is called acyclic if the
induced subdigraph on S contains no directed cycle. We denote by α⃗(D)
the maximum size of an acyclic set in D. The dichromatic number χ⃗(D) of
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D is the smallest integer k such that V (D) can be partitioned into k sets
V1, . . . , Vk where each Vi is acyclic. Note that, equivalently, the dichromatic
number is the smallest integer k, such that the vertices of D can be colored
with k colors so that there is no monochromatic directed cycle. It is easy to
see that, for any undirected graph G and its bidirected digraph D obtained
from G by replacing each edge by two oppositely oriented arcs, we have
χ(G) = χ⃗(D), where χ(G) is the chromatic number of G—the minimum
number of colors needed to color the vertices of G such that no two adjacent
vertices have the same color. The dichromatic number was first introduced
by Neumann-Lara [26].

In recent years, there has been considerable attention devoted to this
topic, and many results have demonstrated that this digraph invariant gen-
eralizes many results on the graph chromatic number (see, for example [4,
5, 7, 19, 20]). Some evidence of this surprising relationship includes the gen-
eralization of Gallai’s classical theorem on list coloring to digraphs in [20],
the extension of the important result of Erdős that sparse graphs can have
large chromatic number to digraphs in [7], the derivation of an analog of a
classical result due to Bollobás in [19], etc.

In the present paper, we study the existence of large acyclic sets in
general digraphs as well as bounds on the dichromatic number. We use n
for the number of vertices and m for the number of edges or arcs. The
following two conjectures motivated our results. The first conjecture is due
to Aharoni, Berger and Kfir.

Conjecture 1.1. [1] If D is an oriented graph then

α⃗(D) ≥ (1 + o(1))
n2

m
log2

m

n
.

For an n-vertex tournament D we have m = n(n − 1)/2, so for large
tournaments the conjecture says that

α⃗(D) ≥ (2 + o(1)) log2 n as n → ∞.

This is known up to a factor of 2; every n-vertex tournament contains a
transitive subtournament of order ⌊log2 n⌋ + 1. Whether the factor 2 can
indeed be gained is a major open problem which was already discussed by
Erdős and Moser [17].

An equivalent way of stating Conjecture 1.1 is that if D has average
outdegree d+ = m

n , then

α⃗(D) ≥ (1 + o(1))n log2 d
+ /d+.
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We note that the meaningful interpretation of the term o(1) is for d+ large:
if, for a digraph D, α⃗(D) ≤ (1 − ε)n log2 d

+/d+ (which is the case, for
example, for the Paley tournament on seven vertices [17], or some other
specific orders [27]), then the disjoint union of any number of copies of D
will also satisfy this inequality.

On the other hand, if digons are permitted, then clearly one cannot hope
to find an acyclic set of size greater than Θ(n/d+); this directly follows from
the fact that in a symmetric digraph an acyclic set corresponds to an inde-
pendent set of the underlying graph. The extra logarithmic factor can only
appear if one considers digraphs of digirth at least three. Interestingly, in
the context of undirected graphs, a similar phenomenon occurs with inde-
pendent sets.

Theorem 1.2. [2] Every triangle-free graph G of average degree d has
α(G) ≥ n ln d

100d .

Shearer [28] improved the constant 1/100 to 1+o(1) (as d → ∞). Later,
Johansson [22, 25] addressed the coloring version of the problem.

Theorem 1.3. There is a constant c such that, for any triangle-free graph
G with maximum degree ∆ ≥ 2, χ(G) ≤ c∆/ ln ∆.

Also in this case, the constant has been brought to 1 + o(1) (as ∆ → ∞)
[24]. For oriented graphs, Erdős and Neumann-Lara [15] conjecture that the
analog of Johansson’s theorem (and an extension of Conjecture 1.1) should
hold: one can color D with O(∆/ log ∆) colors such that each color class is
acyclic.

The next conjecture that motivated our paper is the following one:

Conjecture 1.4. For every tournament H, there is εH > 0 such that any
H-free tournament T on n vertices satisfies α⃗(T ) ≥ nεH .

(In this paper, by an H-free digraph D we will mean a digraph D which
has no subdigraph isomorphic to H.) Alon, Pach and Solymosi [3] proved
that the conjecture above is equivalent to the Erdős–Hajnal conjecture, one
of the central questions in extremal graph theory.

Conjecture 1.5. [16] For every graph H, there is εH > 0 such that any
graph G on n vertices which does not have H as an induced subgraph satisfies
max{α(G), ω(G)} ≥ nεH .

The structure of the paper is as follows. In Section 2, we prove a theorem
on digraph coloring which is reminiscent of a well-known theorem of Bondy.
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The results of this section give an upper bound on the dichromatic number
when the largest cycle of a digraph has bounded length. In Section 3, we
propose a strengthening of the Erdős–Hajnal conjecture, motivating it with
several special cases. Lastly, Section 4 concerns random digraphs: we show
that, up to a multiplicative constant, random r-regular oriented graphs sat-
isfy the Aharoni–Berger–Kfir conjecture with high probability. Moreover,
we also give an upper bound, which essentially differs from the lower bound
by a factor of 4.

2 Digraph Coloring and Bondy’s Theorem

By the circumference of a digraph D, we mean the maximum length of a
directed cycle (when we talk about the circumference of D, we assume that
D has a directed cycle). Bondy proved the following classical theorem.

Theorem 2.1. [9] Let G be a graph and D an orientation of G which is
strongly connected. Suppose that D has circumference s. Then χ(G) ≤ s.

A k-list-assignment L to a digraph D is an assignment L : V (D) →
P(Z+) of sets of positive integers to the vertices of D such that |L(v)| ≥ k
for every vertex v. D is L-colorable if V (D) can be partitioned into acyclic
sets V1, . . . , Vs so that, for every vertex v, v ∈ ∪i∈L(v)Vi. Let χ⃗ℓ(D) denote
the list dichromatic number of D, that is, the minimum k such that D is
L-colorable for any k-list-assignment to D. List colorings of digraphs were
introduced in [20] and were later studied in [5].

Theorem 2.2. Let D be a simple digraph in which all (directed) cycle
lengths belong to a set K with |K| = k. Then χ⃗ℓ(D) ≤ k + 1; and in-
deed, given any corresponding lists of size k + 1, we can find a list acyclic
coloring in polynomial time.

We note that both Theorem 2.1 and Theorem 2.2 are tight; indeed, Kn

and the bidirected complete digraph on n vertices, respectively, serve as
examples. The following corollary of Theorem 2.2 is in the spirit of Bondy’s
result (Theorem 2.1).

Corollary 2.3. Let D be an oriented graph with circumference s ≥ 3. Then
χ⃗ℓ(D) ≤ s− 1.

To deduce the corollary, observe that in D there are at most s−2 distinct
cycle lengths. The theorem follows from the next three easy lemmas. A
digraph D is k-degenerate if in each subdigraph (including D itself) there is
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a vertex with indegree or outdegree at most k. A k-degeneracy order for D
is a listing of the vertices as v1, . . . , vn such that for each j = 2, . . . , n vertex
vj has indegree or outdegree at most k in the subdigraph of D induced on
{v1, . . . , vj}.

Lemma 2.4. Let K be a set of k positive integers, and let D be a simple di-
graph in which all (directed) cycle lengths are in K. Then D is k-degenerate.

Proof. Let D′ be a subdigraph of D. Let P = (v1, v2, v3, . . .) be a longest
(directed) path in D′. If v1 has an in-neighbor w in D′ then w must lie on
P , and w can only be a vertex vj for some j ∈ K. Thus v1 has indegree at
most k, completing the proof.

Lemma 2.5. Let the digraph D be k-degenerate. Then we can find a k-
degeneracy order for D in polynomial time.

Proof. Compute the indegree and outdegree of each vertex. Start with an
empty list. Repeatedly, choose a vertex v with indegree or outdegree at
most k, put v at the start of the current list, and delete v from D and
update the remaining indegrees and outdegrees.

Lemma 2.6. Let the loop-free digraph D have a given k-degeneracy order
v1, . . . , vn. Then given any lists of size k+1, we can read off a list acyclic
coloring f in polynomial time.

Proof. For each j = 1, . . . , n proceed as follows. Let Aj be a smaller of the
two sets N−(vj) ∩ {v1, . . . , vj−1} and N+(vj) ∩ {v1, . . . , vj−1}, so |Aj | ≤ k;
and set f(vj) to be any color in L(vj)\{f(w) : w ∈ Aj}. No (directed) cycle
C is monochromatic: for if j is the largest index such that vj is in C, then
C must contain a vertex w ∈ Aj and f(vj) ̸= f(w).

This completes the proof of Theorem 2.2. We next show that for tour-
naments we can do much better than Theorem 2.2 and Corollary 2.3. Let
us note first a simple but useful lemma.

Lemma 2.7. For every digraph D, χ⃗(D) (resp. χ⃗ℓ(D)) equals the maximum
value of χ⃗(D′) (resp. χ⃗ℓ(D

′)) over the strongly connected components D′ of
D.

Proof. Let t be the maximum value of χ⃗(D′) over the strongly connected
components D′ of D. We may use colors from [t] to properly color each
strongly connected component. This gives a proper coloring of D, since
each directed cycle is contained within one of the components. The same
proof works for list colorings.
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For each n ∈ N, let t(n) be the maximum value of χ⃗ℓ(T ) for T ranging
over all n-vertex tournaments. Equivalently, t(n) is the maximum value of
χ⃗ℓ(D) for D ranging over all n-vertex oriented graphs. From [17] and [5] we
have

(1/2 + o(1))n/ log2 n ≤ t(n) ≤ (1 + o(1))n/ log2 n as n → ∞ (1)

(the lower bound comes from random tournaments). Recall that a strongly
connected tournament has a (directed) Hamilton cycle [10]; and thus for
a tournament the circumference equals the maximum order of a strongly
connected component. Hence, by the last lemma, if T is a tournament of
circumference at most s then χ⃗ℓ(T ) ≤ t(s). By (1) we now have:

Theorem 2.8. If T is a tournament of circumference at most s then

χ⃗ℓ(T ) ≤ (1 + o(1)) s/ log2 s as s → ∞ .

We now show that Theorem 2.8 is essentially best possible (up to a
constant factor). Indeed, one may just take a random tournament on n = s
vertices. It is known that this tournament has no acyclic set of size at least
2 log2 n + 2 with positive probability (in fact, with probability tending to
1 as n → ∞ [17]). The next theorem shows that we can also choose a
tournament of arbitrary order.

Theorem 2.9. For all positive integers s and n with s ≤ n, there exists
an n-vertex tournament T with circumference at most s such that α⃗(T ) ≤
4n
s log2(2s), and so χ⃗(T ) ≥ s

4 log2(2s)
.

Proof. Let T be the following tournament. Partition the vertices into ⌈ns ⌉
sets, A1, . . . , A⌈n/s⌉, each of size at most s. On the vertices of each Ai, orient
the edges so that the largest acyclic set in Ai has size less than 2 log2 s + 2
(this is always possible since the random tournament on s vertices achieves
this bound with positive probability). For any two vertices vi ∈ Ai and
vj ∈ Aj , where i < j, put an arc from vi to vj . Note that each cycle C in T
is contained within one of the sets Ai, so C has length at most s. Moreover,
since α⃗(Ai) < 2 log2 s + 2, it follows that

α⃗(T ) < ⌈n/s⌉(2 log2 s + 2) < 4n
s log2(2s).

Finally, χ⃗(T ) ≥ n/α⃗(T ) > s
4 log2(2s)

.

We now consider the problem for general oriented graphs. We shall see
in Corollary 2.13 that we can gain a factor of 2 over the non-list version of
Corollary 2.3 above (since the digirth is at least 3).
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Theorem 2.10. Let D be a simple digraph with circumference s and di-
girth g. Then χ⃗(D) ≤ ⌈ s

g−1⌉.

We note that a slightly weaker version of this theorem is known: it was
proved in [13] that χ⃗(D) ≤ ⌈ s−1

g−1⌉+1. Our bound is clearly at most this value
and for many values of s and g it is an improvement of one. Additionally,
our proof is somewhat shorter and less technical. To prove Theorem 2.10,
we will use a result of Bessy and Thomassé.

First, we need some notation. Let D be a strong simple digraph on vertex
set V . An enumeration E = v1, . . . , vn of V is elementary equivalent to
another enumeration E′ if one of the following holds: E′ = vn, v1, . . . , vn−1,
or E′ = v2, v1, v3, . . . , vn and neither v1v2 nor v2v1 is an arc in D. Two
enumerations E,E′ of V are said to be equivalent if there is a sequence
E = E1, . . . , Ek = E′ such that Ei and Ei+1 are elementary equivalent
for each i. The equivalence classes of this equivalence relation are called
the cyclic orders of D. Given an enumeration E = v1, . . . , vn we say that
an arc vivj is a forward arc (with respect to E) if i < j, and a backward
arc otherwise. A directed path in D is called a forward path if all its arcs
are forward arcs. The index of directed cycle C, iE(C), is the number of
backward arcs of C. Importantly, the index of a cycle is invariant in a given
cyclic order C. A cycle is simple if it has index one. A cyclic order C is
coherent if for every enumeration E of C and every backward arc vjvi in E,
there is a forward path from vi to vj . The next lemma is similar to Lemma 1
of [6].

Lemma 2.11. Let D be a strong simple digraph and let C be a directed
cycle of D. Then D has a coherent cyclic order such that C is simple.

Proof. Amongst all cyclic orders of D such that C is simple, pick a cyclic
order C which minimizes the sum of all cycle indices. Then the proof of
Lemma 1 of [6] shows that C is coherent.

Lemma 2.12. [6, Section 4] Let D = (V,A) be a strong simple digraph
and C be a longest cycle in D, of length k. Suppose C is a coherent cyclic
order of D such that C is simple in C. Then there is an enumeration E =
v1, . . . , vi1 , vi1+1, . . . , vi2 , vi2+1, . . . , vik of C such that {vij+1, . . . , vij+1} is a
stable set for all j = 0, . . . , k − 1 (with i0 := 0).

Proof of Theorem 2.10. Note that it is sufficient to prove the result for
strong digraphs. Indeed, if D has r strongly connected components D1, . . . ,
Dr, we color each Di with at most ⌈ s

g−1⌉ colors. Since every directed cycle
of D is contained entirely in a single Di, this gives a proper coloring of D.
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Thus, we may assume that D is strongly connected. Let C be a cy-
cle of length s in D. By Lemma 2.11, D has a coherent cyclic order C
such that C is simple. Now by Lemma 2.12, there is an enumeration E =
v1, . . . , vi1 , vi1+1, . . . , vi2 , vi2+1, . . . , vis of C such that Ij := {vij−1+1, . . . , vij}
is a stable set for each j = 1, . . . , s. We claim that Ij ∪ Ij+1 ∪ . . . ∪ Ij′ is
an acyclic set for each 1 ≤ j ≤ j′ ≤ min{j + g − 2, s}. Indeed, since Ij ,
Ij+1, . . . , Ij′ are all stable sets, any cycle on Ij ∪ . . . ∪ Ij′ must use a back-
ward arc vqvp, with vq ∈ Ij+r and vp ∈ Ij+k, where r > k ≥ 0. Now, since
D is assumed to be of digirth g, there is no forward path from vp to vq.
This contradicts the fact that C is coherent. Thus, we can color the digraph
induced by Ij ∪ . . . ∪ Ij′ with one color. Coloring consecutive (g − 1)-tuples
Ij , . . . , Ij+g−2 (and perhaps one shorter tuple) with a single color gives a

coloring with at most
⌈

s
g−1

⌉
colors.

Corollary 2.13. Let D be an oriented graph with circumference s. Then
χ⃗(D) ≤ ⌈ s2⌉.

The corollary is clearly tight for s = 3 or s = 4, but we think that it is
not optimal for large s (see Theorem 2.8).

Conjecture 2.14. If D is an oriented graph with no directed cycle of length
greater than s, then χ⃗(D) = O(s/ log s) as s → ∞.

It was proved by Neumann-Lara [26] that if D is an oriented graph only
containing odd cycles or only containing even cycles then χ⃗(D) ≤ 2. On the
other hand, Chen, Ma and Zang showed the following.

Theorem 2.15. [11] Let k and r be integers with k ≥ 2 and 0 ≤ r ≤ k− 1.
If a simple digraph D contains no directed cycle of length r modulo k, then
χ⃗(D) ≤ k.

We show that this theorem cannot be strengthened to a list coloring
version in the case 0 modulo k.

Proposition 2.16. For all positive integers k ≥ 3 and t, there is an oriented
graph D such that all cycles of D have length 0 modulo k, and χ⃗ℓ(D) > t.

Proof. Let k ≥ 3 and t ≥ 1. Set c = k(t − 1) + 1. Consider the following
digraph D. Take the directed cycle C⃗k with vertices v1, . . . , vk and blow-up
each vertex vi into a set Bi of independent vertices of size

(
c
t

)
. Now, put

a complete bipartite graph between every pair (Bi, Bi+1) with edges going
from Bi to Bi+1 (here, Bk+1 is B1). Denote this digraph by D. Clearly, all
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cycle lengths of D are multiples of k. Let L be an assignment of lists of size
t for D such that on each set Bi we see each t-subset of {1, . . . , c}.

Now suppose that D is L-colorable. In any such coloring, at most t− 1
of the c colors are absent on any given Bi. Indeed, suppose that on some Bi

we do not see at least t colors, say, the colors {1, . . . , t}. This is clearly not
possible since then the vertex in Bi with the list {1, . . . , t} was not colored.
Thus, in total, there are at most k(t−1) colors missing from all the Bi. Thus,
there is some color j that appears on all the Bi. But this is a contradiction
since we obtain a directed cycle of color j. Thus, D is not L-colorable and
χ⃗ℓ(D) > t.

3 Strong Erdős–Hajnal conjecture

In this section, we propose the following strengthening of the Erdős–Hajnal
conjecture (see Conjectures 1.4 and 1.5).

Conjecture 3.1. For every tournament T there exists some εT > 0 such
that for any n-vertex T -free simple digraph D, α⃗(D) > nεT .

We say that a tournament T has the Strong Erdős–Hajnal property if
the above conjecture is satisfied for T . In this case, we let ζT be the limit,
when k → ∞, of the supremum of all εT such that α⃗(D) ≥ nεT for each
T -free simple digraph D of order n ≥ k.

Theorem 3.2. If T is a tournament with t ≥ 3 vertices which has the Strong
Erdős–Hajnal property, then ζT ≤ 2/t.

The proof if probabilistic. We say that events A1, A2, . . . hold with high
probability (whp) if P(An) → 1 as n → ∞. We denote by Dn,p the random
digraph on n vertices where an edge is placed between two vertices indepen-
dently with probability 2p, and each present edge is oriented independently
in one of the two possible ways with probability 1/2.

Proof. Consider the random digraph Dn,p with p = 1
2n

−2/t. Subramanian

and Spencer [29] showed that whp α⃗(Dn,p) ≤ 2 ln(np)
ln(1−p)−1 (1 + o(1)). Thus,

α⃗(Dn,p) ≤ 4n2/t lnn whp. Let XT count the number of copies of T in Dn,p.
Clearly,

E[XT ] ≤
(
n

t

)
t! p(t

2) ≤ ntn−t+1/2t(t−1)/2 ≤ n/8.

Now, by Markov’s inequality, P(XT ≥ n/4) ≤ 1/2. Therefore, there is
a digraph D with number of copies of T at most n/4 and with α⃗(D) ≤
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4n2/t lnn. We may delete a vertex from each copy of T in D to obtain a T -
free digraph D′ with at least 3n/4 vertices. But α⃗(D′) ≤ α⃗(D) ≤ 4n2/t lnn,
and the theorem follows.

The following special case is worthy of attention.

Conjecture 3.3. The directed triangle has the Strong Erdős–Hajnal prop-
erty.

We do not have any means of approaching the above special case, though
an inductive argument would show that every n-vertex simple digraph with-
out directed triangles has an acyclic set of size ω(log n). Interestingly, when
one forbids the transitive tournament on three vertices, the proof is straight-
forward.

Proposition 3.4. Let T be the transitive tournament on three vertices.
Then, T has the Strong Erdős–Hajnal property. Moreover, for any n-vertex
T -free simple digraph D with maximum (total) degree ∆, χ⃗(D) = O(∆/ log ∆).

Proof. Let D be a T -free digraph. Take an ordering of vertices, and form
a graph Gf from the digraph D by only keeping the forward edges. We
remark that since D does not contain T , Gf is triangle-free. Note that an
independent set in Gf is an acyclic set in D. Now, since Gf is triangle-free,
by Ramsey Theory (the fact that R(3, t) ∼ t2/ log t, see [23]), it follows
that α(Gf ) = Ω(

√
n log n). Thus, there is an acyclic set of size Ω(

√
n log n)

in D. The second part of the claim follows from Johansson’s theorem on
colorings [22, 25] applied to the triangle-free graph Gf .

4 Random regular digraphs

A (multi)digraph is r-regular if every vertex has exactly r in-arcs and r
out-arcs. For random r-regular n-vertex oriented graphs, we prove that
the size of the largest acyclic set is Θ(n ln r/r) whp; see Theorems 4.3 and
4.5. This matches the behavior of the binomial random oriented graph
Dn,p with p = r/n, where vertices have expected indegree and expected
outdegree r(1 − 1/n). Indeed, by a result of Spencer and Subramanian (see
Corollary 1.1 in [29]), as r → ∞,

α⃗(Dn,r/n) = (1 + o(1)) 2n ln r
r whp.

Random regular graphs can be constructed by means of the configura-
tion model [8, Section 2.4]. Let n, and r be positive integers such that nr
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is even. For each vertex i ∈ [n] we create an r-set G[i], where the sets
G[1], . . . , G[n] are pairwise disjoint. We then put a uniformly random pair-
ing (a configuration) between all the elements of ∪n

i=1G[i]. Let G∗(n, r), or
simply G∗, be the r-regular multigraph obtained on vertex set [n], where
there is an edge ij for each element of G[i] that is paired with an element of
G[j]. The probability that G∗ is simple is bounded away from 0 by a con-
stant, and every r-regular n-vertex (simple) graph has the same probability
of appearing as G∗ [8]. Let us denote by G ∗(n, r) the set of all r-regular
n-vertex multigraphs with vertex set [n], by G (n, r) the subset of (simple)
r-regular n-vertex graphs, and by Pn,r the probability measure on G ∗(n, r)
associated with G∗.

In the directed setting, we consider the following analog of the configu-
ration model. For each vertex i ∈ [n] we create two r-sets: D+[i] and D−[i],
where D+[1], D−[1], . . . , D+[n], D−[n] are pairwise disjoint. We denote by
D+ and D− the unions ∪n

i=1D
+[i] and ∪n

i=1D
−[i], respectively. Next, we put

a pairing between the elements of D+ and D− (a directed configuration), uni-
formly at random. Let D∗(n, r), or simply D∗, be the r-regular multidigraph
obtained on vertex set [n], where there is an arc ij for each element u ∈ D+[i]
which is paired with some v ∈ D−[j]. Here, the different elements of a fixed
r-set D+[i] or D−[i] play an undistinguishable role, so permuting them does
not affect the resulting multidigraph. More precisely, these permutations
generate a group that acts on the set of all directed configurations, and each
orbit corresponds to (an r-regular n-vertex) multidigraph D. Thus, D arises
from exactly r!2nΠa∈A(D)

1
mult(a)! directed configurations, where A(D) is the

set of arcs of D and mult(a) is the multiplicity of the arc a. In particular,
every simple digraph has the same probability of appearing as D∗.

If we forget the orientations of the arcs of D∗, we then obtain a 2r-regular
n-vertex multigraph that we call forgD∗. We denote by Qn,r the probability
measure on G ∗(n, 2r) associated with forgD∗.

Remark 4.1. We can establish a link between forgD∗(n, r) and G∗(n, 2r)
through the enumeration of Eulerian orientations. When considering orien-
tations of multigraphs, we have to clarify whether the edges are labelled or
not. Unless specified, we will make no distinction between multiple copies of
the same edge. An Eulerian orientation of a multigraph G is an orientation
D of G such that indegD(v) = outdegD(v) for every vertex v. Let E∗

n,r(G)
be the number of labelled (i.e. edges are labelled) Eulerian orientations of
G ∈ G ∗(n, r), with the convention that loops can be oriented in two ways.
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Then
E∗

n,2r

E[E∗
n,2r]

=
Qn,r

Pn,2r
, (2)

where the expectation is taken on G∗(n, 2r).

Proof of (2). Note that in the configuration model with parameters n, 2r

there are cn,2r := (2nr)!
(nr)!2nr possible pairings, and in the directed version of the

configuration model with parameters n, r there are dn,r := (nr)! possible
pairings. Thus, we see that, for every 2r-regular n-vertex multigraph G,

Pn,2r(G) =
(2r)!n

2ℓ(G)cn,2r

∏
e∈E(G)

1

mult(e)!
,

where ℓ(G) is the number of loops of G and E(G) is its set of edges. Similarly,

Qn,r(G) =
r!2n

dn,r

∑
D∈EO(G)

∏
a∈A(D)

1

mult(a)!
,

where EO(G) is the set of Eulerian orientations of G and A(D) is the set of
arcs of D. On the other hand,

E∗
n,2r(G) = 2ℓ(G)

∑
D∈EO(G)

∏
e∈E′(G)

(
multG(e)

multD(e+)

)
,

where E′(G) is the set of non-loop edges of G and, for each e ∈ E′(G), e+ is
a fixed orientation of e (notice that the previous expression is independent
of this choice). The claim follows from the fact that

E[E∗
n,2r] =

2nr
(
2r
r

)n(
2nr
nr

)
(see the proof of Theorem 3.47 in [14]: there, E∗

n,2r is defined in an alternative
way).

Parallel to the undirected case, D∗ is an oriented graph with probability
at least a positive constant. We could not find this result in the literature,
so we prove it here for completeness. (In contrast, the probability that D∗

is simple has been studied; see for instance [12, Proposition 4.2].)

Lemma 4.2. For every positive integer i, let µi = (2r−1)i+1
2i . Then,

lim
n→∞

P(D∗(n, r) is an oriented (simple) graph) = e−µ1−µ2 .

12



Proof. Given integers k, j, let us denote k(k − 1) . . . (k − j + 1) by (k)j .
For every positive integer i, let Xi,n be the random variable counting the
number of cycles of length i in G∗(n, 2r). It is shown in [14, Lemma 3.51]
that

lim
n→∞

E[E∗
n,2r(X1,n)j1 . . . (Xk,n)jk ]

E[E∗
n,2r]

=
k∏

i=1

µji
i

for any set of non-negative integers j1, . . . , jk, where the expectation is taken
on G∗(n, 2r). By Remark 4.1,

E[E∗
n,2r(X1,n)j1 . . . (Xk,n)jk ]

E[E∗
n,2r]

= E
[
Qn,r

Pn,2r
(X1,n)j1 . . . (Xk,n)jk

]
=

∑
G∈G ∗(n,2r)

(
Qn,r

Pn,2r
(X1,n)j1 . . . (Xk,n)jk

)
(G)Pn,2r(G) = EQn,r [(X1,n)j1 . . . (Xk,n)jk ],

where EQn,r is the expectation taken on forgD∗(n, r). Therefore, by the
method of moments (see [21, Theorem 6.10]), under the measures Qn,r,

Xi,n
d→ X̃i as n → ∞, jointly for all i, where X̃i ∈ Po(µi) are independent

Poisson random variables (see also [21, Lemma 9.17]). Hence,

lim
n→∞

P(D∗(n, r) is an oriented graph)

= lim
n→∞

P(forgD∗(n, r) ∈ G (n, 2r)) = lim
n→∞

Qn,r(G (n, 2r))

= lim
n→∞

Qn,r(X1,n = X2,n = 0) = e−µ1−µ2 .

We say that events A1, A2, . . . hold with very high probability (wvhp) if
P(An) = 1 − e−Ω(n) as n → ∞.

Theorem 4.3. Let r be a positive integer and let D be a random digraph,
chosen uniformly among all r-regular n-vertex oriented graphs with labelled
vertices. Then, α⃗(D) ≤ 2 ln r+4

r n wvhp.

Proof. Let D∗ be the random r-regular n-vertex multidigraph obtained with
the directed version of the configuration model. By Lemma 4.2, D∗ is an
oriented graph (i.e., has no parallel arcs, loops, or digons) with probability
bounded away from 0. Moreover, every r-regular n-vertex oriented graph
has the same probability of appearing as D∗. Thus, it suffices to prove that
P(α⃗(D∗) ≥ 2 ln r+4

r n) = e−Ω(n) as n → ∞.
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Let k be a positive integer and 0 < β < 1 a real number, for now
both of them unspecified. Let ℓ be the integer divisible by k in the interval
[βn, βn+k). Suppose that some A ⊆ V (D∗) of size |A| = ℓ is acyclic. Then,
there is an ordering of A σ : {1, . . . , ℓ} → A such that each arc in D∗[A] is of
the form σ(i) → σ(j) for some i < j. This implies that A can be partitioned
into k subsets A1, . . . , Ak in a way that

(a) |Ai| = ℓ
k ;

(b) for each pair 1 ≤ i < j ≤ k, there is no arc from any element of Aj to
any element of Ai.

If α⃗(D∗) ≥ ℓ, then for one of the ℓ-subsets A of V (D∗) the above condi-
tion must hold. The number of ways to choose A is

(
n
ℓ

)
and the number of

ways to partition such a set A into k parts A1, . . . , Ak is easily at most kℓ.
Thus, in total there are at most

(
n
ℓ

)
kℓ ≤ ( eknℓ )ℓ choices.

Now, let us assume that we have fixed a set A ⊆ V (D∗) with |A| = ℓ,
and a partition A1, . . . , Ak of A with |Ai| = ℓ

k . Without loss of generality,

we may assume that A = {1, . . . , ℓ} and that A1 = {1, . . . , ℓ
k}, . . . , Ak =

{(k − 1) ℓ
k + 1, . . . , ℓ}. We would like to compute the probability that there

is no backward arc, i.e., no arc from Aj to Ai for any j > i. Let E1 be the
event that there is no arc from Ak to any of the Ai, for all i < k. Clearly,

P(E1) =

r ℓ
k
−1∏

j=0

rn− r(k − 1) ℓ
k − j

rn− j
≤
(

1 − (k − 1)ℓ

kn

) rℓ
k

.

In general, let Ei be the event that no vertex of Ak−i+1 has a backward arc.
Then

P(Ei|E1, . . . , Ei−1) =

r ℓ
k
−1∏

j=0

rn− r(i− 1) ℓ
k − r(k − i) ℓ

k − j

rn− r(i− 1) ℓ
k − j

≤

(
1 −

(k − i) ℓ
k

n− (i− 1) ℓ
k

) rℓ
k

≤
(

1 − (k − i)ℓ

kn

) rℓ
k

≤ exp

(
−r(k − i)ℓ2

k2n

)
.

Thus the probability that A with the partition A1, . . . , Ak satisfies (b) is at
most

exp

(
−

k∑
i=1

r(k − i)ℓ2

k2n

)
= exp

(
−
r(1 − 1

k )ℓ2

2n

)
.
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Hence, the probability that there is an acyclic set of size ℓ is at most(
ekn

ℓ

)ℓ

exp

(
−
r(1 − 1

k )ℓ2

2n

)
≤ exp

{
ℓ

(
1 + ln k − lnβ − βr

2

(
1 − 1

k

))}
,

where we used the facts that ekn
ℓ ≤ ek

β and r(1 − 1
k )ℓ2 ≥ r(1 − 1

k )βnℓ.

Now, we fix β = 2 ln(3r/4)+4
r and k = ⌈βr/2⌉. Clearly, we can assume

that r ≥ 2. This implies that β > 4
r , so we have the bound k < βr

2 +1 < 3βr
4 .

Denote by cr := 1 + ln k − lnβ − βr
2

(
1 − 1

k

)
and note that cr < 1 + ln 3r

4 −
βr
2 + 1 = 0. Moreover, note that cr is independent of n. Thus, for n large

enough,

P(α⃗(D∗) ≥ 2 ln r+4
r n) ≤ P(α⃗(D∗) ≥ βn + k) ≤ P(α⃗(D∗) ≥ ℓ) ≤ ecrℓ ≤ ecrβn,

which completes the proof.

Remark 4.4. Unfortunately, the bound of Theorem 4.3 is meaningless for
small r. It makes sense to push the analysis above to try to find a constant
c < 1 such that wvhp α⃗(D) ≤ cn. Note that we cannot expect that to
work for r = 1. Indeed, it is well-known that the number of cycles of
the uniform random permutation π ∈ Sn is concentrated around its mean
1 + 1

2 + 1
3 + . . . + 1

n [18, Example III.4]. It follows that, when r = 1,
α⃗(D∗) = n− (1 + o(1)) lnn with probability tending to 1 as n → ∞. Below
we show that, for r ≥ 2, one can take c = 99/100. In any case, the bounds
from Theorems 4.3 and 4.5 are still far from each other, and bringing them
closer remains an open problem.

In the proof of Theorem 4.3, we now bound the probability of the event
Ei as follows:

P(Ei) =

r ℓ
k
−1∏

j=0

rn + r ℓ
k − rℓ− j

rn− r(i− 1) ℓ
k − j

≤

(
n + ℓ

k − ℓ

n− (i− 1) ℓ
k

) rℓ
k

≤

(
k
β + 1 − k

k
β + 1 − i

) rℓ
k

,

and so the product
∏k

i=1 P(Ei) is upper-bounded by((
k

β
+ 1 − k

)k k∏
i=1

1
k
β + 1 − i

) rℓ
k

.

We have that

k∑
i=1

ln
(

k
β + 1 − i

)
≥
∫ k

1
ln
(

k
β + 1 − x

)
dx
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=
[
−x−

(
k
β + 1 − x

)
ln
(

k
β + 1 − x

)]k
1

= 1 − k −
(

k
β + 1 − k

)
ln
(

k
β + 1 − k

)
+ k

β ln k
β ,

so P(α⃗(D∗) ≥ ℓ) is at most

exp
{
ℓ
(

1 + r
(
1 − 1

k

)
+
(

1 − r
β

)
ln k

β + r
(

1
β + 1

k

)
ln
(

k
β + 1 − k

))}
.

Therefore, it is enough to ask that

1 + r
(
1 − 1

k

)
+
(

1 − r
β

)
ln k

β + r
(

1
β + 1

k

)
ln
(

k
β + 1 − k

)
< 0,

which, for r ≥ 2, is satisfied by k = 100 and β = 99/100.

There is a natural (fast) greedy algorithm which yields an acyclic set in
a loop-free digraph D. (The U is for ‘unused’.)

input: a digraph D and a total order ⪯ on V (D)
set A = U = ∅ and W = V (D)
while W ̸= ∅

let w be the first (smallest) vertex in W and reveal N+(w)
move w into A and move N+(w) ∩ (W\{w}) into U

output: A

Observe that the output set A is acyclic if we ignore any loops, since all
arcs point ‘backwards’ to vertices added earlier. We call A the greedy acyclic
set of D with respect to ⪯, and denote its size by α⃗(D,⪯). (If we wanted
to find a large acyclic set in a general loop-free digraph, not necessarily
random, we would pick ⪯ uniformly at random.)

Theorem 4.5. Let r be a positive integer and let D be a random digraph,
chosen uniformly among all r-regular oriented graphs on [n]. Then α⃗(D,≤)
≥ 1

5 n log2(r + 1)/r wvhp. Moreover, for any ε > 0 there exists an rε such
that, if r ≥ rε, then α⃗(D,≤) ≥ (12 − ε)n ln(r + 1)/r wvhp.

Note that our lower bounds on α⃗(D,≤) match the upper bound in The-
orem 4.3 on α⃗(D) up to a constant factor. From now on, log means log2.
Let 0 < α < 1 be fixed. To prove Theorem 4.5 we shall use a truncated
version of the above greedy algorithm, where we replace the condition ‘while
W ̸= ∅’ by ‘while W ̸= ∅ and |A| ≤ αn’. Later we shall set α = 1

5 .
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We shall prove that, when α = 1
5 , for D∗ the random n-vertex r-regular

multidigraph obtained with the directed version of configuration model (as
in the proof of Theorem 4.3), the algorithm yields a set A with

|A| ≥ 1
5 n log(r + 1)/r wvhp. (3)

But by Lemma 4.2 the probability that D∗ is an oriented graph is bounded
away from 0, and all oriented graphs have the same probability of appearing
as D∗, so the theorem will follow. (The proof below shows that, essentially,
the bounds of Theorem 4.5 hold also for α⃗(D∗), since the expected number
of loops in D∗ is r.)

We use one preliminary lemma. Let n ≥ 1 and 0 ≤ a, b ≤ n. Let U and
V be disjoint n-sets, and let G be the complete bipartite graph with parts
U and V . Let M be a random perfect matching in G chosen uniformly from
the n! perfect matchings in G. Let A ⊆ U with |A| = a and B ⊆ V with
|B| = b. Let the random variable X(n,A,B) (or less precisely X(n, a, b)) be
the number of edges in M between A and B. Observe that E[X] = ab/n.

If X,Y are two random variables, we say that X is stochastically dom-
inated by Y if P(X ≥ t) ≤ P(Y ≥ t) for every t, and we denote it by
X ≤s Y .

Lemma 4.6. Let n, n′ ≥ 1, let a, b ≤ n, let a′, b′ ≤ n′; and suppose that
n′ ≤ n, a′ ≥ a and b′ ≥ b. Let Y = X(n, a, b) and Y ′ = X(n′, a′, b′). Then
Y ≤s Y

′.

Proof of Lemma 4.6. It suffices to establish the following three simple claims.

If a + 1 ≤ n then X(n, a, b) ≤s X(n, a + 1, b). (4)

If b + 1 ≤ n then X(n, a, b) ≤s X(n, a, b + 1). (5)

X(n + 1, a, b) ≤s X(n, a, b). (6)

To prove (4), let a + 1 ≤ n; let A ⊆ A′ ⊆ U with |A| = a, |A′| = a + 1;
and let B ⊆ V with |B| = b. Then always X(n,A,B) ≤ X(n,A′, B) so (4)
holds. We may prove (5) in the same way.

It remains to prove (6). Let U and V be disjoint (n+ 1)-sets, let A ⊆ U
with |A| = a ≤ n and let B ⊆ V with |B| = b ≤ n. Let u ∈ U\A, and let v

17



be the random vertex in V paired with u in the random matching M . Then
for each relevant integer i

P(X(n + 1, a, b) ≥ i)

= P((X(n + 1, A,B) ≥ i) ∧ (v ∈ B)) + P((X(n + 1, A,B) ≥ i) ∧ (v ̸∈ B))

= b
n+1 P(X(n, a, b− 1) ≥ i) + n+1−b

n+1 P(X(n, a, b) ≥ i)

≤ b
n+1 P(X(n, a, b) ≥ i) + n+1−b

n+1 P(X(n, a, b) ≥ i) by (5)

= P(X(n, a, b) ≥ i).

Now (6) follows, and the proof if complete.

Proof of (3), and thus of Theorem 4.5. Consider part way through a run of
the algorithm, when we are about to reveal N+(w). At this time, we know
the sets A, U and W of vertices in G; we know all the r arcs out of each
vertex in A (that is, we know the edges in the random matching M which
are incident to the points corresponding to an out-incidence of a vertex in
A), and all these arcs go from A to A ∪ U . The remaining r(n− |A|) edges
in M form a uniformly random perfect matching M ′ in the bipartite graph
over the remaining points. Let the cost Y when revealing N+(w) be the
consequent reduction in the size of W . Then

Y ≤s 1 + X(r(n− |A|), r, r|W |) ≤s 1 + X(r(n− ⌊αn⌋), r, r|W |), (7)

where we use Lemma 4.6 for the second inequality ≤s. Note that 1 ≤ Y ≤
r + 1, and E[Y ] ≤ 1 + r|W |

n(1−α) .

Let b ≥ 1 + r−1 be a constant. We assume that n is large enough.
Divide the runs of the algorithm into stages s = 1, 2, . . ., where stage s is
when nb−s+1 ≥ |W | > nb−s. Consider stage s, where 1 ≤ s ≤ logb(r + 1).
Let Y1, Y2, . . . be the costs of the first, second,... vertices added to A in this
stage, where we set Yi = 0 if the algorithm stops before adding the ith vertex
or |W | has decreased to at most nb−s. If we add an ith vertex, then at this
time |W | ≤ nb−s+1 and |A| ≤ ⌊αn⌋, so by (7) (conditional on all history to
date)

Yi ≤s 1 + X(r(n− ⌊αn⌋), r, r|W |) ≤s Z

where Z ∼ 1 + X(r(n − ⌊αn⌋), r, rnb−s+1). Further, let Z1, . . . , Zk be in-
dependent copies of Z: then jointly (Y1, . . . , Yk) ≤s (Z1, . . . , Zk), and so∑k

i=1 Yi ≤s
∑k

i=1 Zi. Recall that 1 ≤ Z ≤ r + 1 and E[Z] = 1 + rnb−s+1

n−⌊αn⌋ ≤
1 + βrb−s+1, where β = (1 − α)−1. But rb−s+1 ≥ br

r+1 ≥ 1, so E[Z] ≤
(1 + β)rb−s+1.
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Let γ < (β + 1)−1 and k = γn(b−1)
br , and note that (k + 1)E[Z] ≤ (β +

1)γn(b−s+1− b−s)+(1+β)rb−s+1. Thus
∑⌈k⌉

i=1 Zi ≤ n(b−s+1− b−s)− (r+1)
wvhp, by a standard inequality, see for example [25, Section 10.1]. Hence,
in this stage wvhp either we add at least ⌈k⌉ vertices to A, or by the end of
the stage we have |A| ≥ αn. This holds for each stage s = 1, . . . , logb(r+ 1).

Hence after these stages, wvhp either |A| ≥ logb(r + 1)k = γ(b−1)n logb(r+1)
br

or |A| ≥ αn.
Finally set b = 2, α = 1

5 (so β = 5
4), and γ = 2

5 . Then

min{γ(b−1) logb(r+1)
br , α} = min{ log(r+1)

5r , 15} = log(r+1)
5r .

Thus after the stages above we have |A| ≥ log(r+1)
5r n wvhp, and we have

proved (3) as required. Alternatively, if b = 1 + r−1 and α, γ are chosen
arbitrarily close to 0 and 1

2 , respectively, and assuming that r is large enough,
then

min{γ(b−1) logb(r+1)
br , α} = γ(b−1) logb(r+1)

br ≥ (12 − ε) ln(r+1)
r

for any given ε ∈ R+.

We know that for every r-regular simple digraph D, χ⃗(D) ≤ r + 1 and
so α⃗(D) ≥ n/(r + 1) (see Lemmas 2.5 and 2.6). The lower bound here on
α⃗(D) is better than that in Theorem 4.5 for small r.

Finally, note that both Theorem 4.3 and Theorem 4.5 hold also if D is
chosen uniformly at random among all r-regular n-vertex simple digraphs
(i.e. allowing digons). Indeed, we may use essentially the same proofs: in
the first paragraph of the proof of Theorem 4.3 we can just replace ‘ori-
ented graph’ by ‘simple digraph’, and we can do the same in the paragraph
following (3).
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