Lecture 3

The bargaining set

The notion of core stability is maybe the most natural way to describe stability. How-
ever, some games have an empty core. If agents adopts the notion of the core, they
will be unable to reach an agreement about the payoff distribution. If they still want to
benefit from the cooperation with other agents, they need to relax the stability require-
ments. In this lecture, we will see that the notion of bargaining set is one way to reach
an argument and to maintain some notion of stability (though of course, it is a weaker
version of stability).

The definition of the bargaining set is due to Davis and Maschler [1]. This notion is
about the stability of a given coalition structure (CS). The agents do not try to change
the nature of the CS, but simply to find a way to distribute the value of the different
coalitions between the members of each coalition. Let us assume that a payoff distri-
bution is proposed. Some agents may form an objection against this payoff distribution
by pointing out a problem of that distribution and by offering a different payoff distri-
bution that eliminates this issue (or improves the situation). If all other agents agree
with this objection, the payoff distribution should change as proposed. However, some
other agents may form a counter-objection showing some shortcomings of the objec-
tion. The idea of stability in this context is to ensure that, for each possible objection,
there exists a counter-objection. When this is the case, there is no ground for chang-
ing the payoff distribution, which provides some stability. In the following, we will
describe the precise notion of objections and counter-objections.

3.1 Objections, counter-objections and the
prebargaining set

Let (N,v,S) be a game with coalition structure and x an imputation. For the bar-

gaining set, an objection from an agent ¢ against a payoff distribution x is targeting a

particular agent 7, in the hope of obtaining a payment from j. The goal of agent ¢ is to
show that agent j gets too much payoff as there are some ways in which some agents
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32 Lecture 3. The bargaining set

but j can benefit. The objection can take the following (informal) form:

1 get too little in the imputation x, and agent j gets too much! I can form a
coalition that excludes j in which some members benefit and all members
are at least as well off as in x.

We recall that in a game with coalition structure (N, v,S), the agents do not try to
change the CS, but only obtain a better payoff. The set Xy, s) of feasible payoff
vectors for (N, v,S) is defined as Xy, 5) = {x € R*|VC € S,>, .z <v(C)}. We
are now ready to formally define an objection.

ieC

3.1.1. DEFINITION. [Objection] Let (N, v, S) be a game with coalition structure, x €
X(Nws)» C € S be a coalition, and 7 and j two distinct members of C ((, j) € C?,
i # 7). An objection of i against j is a pair (P, y) where

e P C N isacoalition such thati € P and j ¢ P.
e y € R? where p is the size of P
e y(P) <wv(P) (yis a feasible payoff distribution for the agents in P)

o Vk € P,y, > xrand y; > x; (agent ¢ strictly benefits from y, and the other
members of P do not do worse in y than in x.)

An objection is a pair (P, y) that is announced by an agent i against a particular agent j
and a payoff distribution x. It can be understood as a potential threat to form coalition
P, which contains ¢ but not j. If the agents in P really deviate, agent ¢ will benefit
(strictly), and the other agents in P are guaranteed not to be worse off (and may even
benefit from the deviation). The goal is not to change the CS, but simply to update the
payoff distribution. In this case, agent ¢ is calling for a transfer of utility from agent j
to agent .

The agent that is targeted by the threat may try to show that she deserves the payoff
x;j. To do so, her goal is to show that, if the threat was implemented, there is another
deviation that would ensure that j can still obtain x; and that no agent (except maybe
agent 1) would be worse off. In that case, we say that the objection is ineffective. Agent
J can summarize her argument by saying:

I can form a coalition that excludes agent i in which all agents are at least
as well off as in z, and as well off as in the payoff proposed by i for those
who were offered to join i in the argument.

The formal definition of a counter-objection is the following.

3.1.2. DEFINITION. [Counter-objection] A counter-objection of agent j to the objec-
tion (P,y) of agent i is a pair (@, z) where

e () C N isacoalition such that j € Q and i ¢ Q.
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e 2 € R? where ¢ is the size of ()
e 2(Q) <v(Q) (zis afeasible payoff distribution for the agents in Q)
o Vk € (), z;, > xj, (the members of Q get at least the value in x)

o Vk € QN P 2z, > yi (the members of Q which are also members of P get at
least the value promised in the objection)

In a counter-objection, agent j must show that she can protect her payoff z; in spite
of the existing objection of 7. Agents in the deviating coalition () should improve their
payoff compared to z. For those who were also members of the deviating coalition
P with agent ¢, they should make sure that they obtain a better payoff than in y. In
this way, all agents in P and () benefit. Note that agent ¢ is in P and not in (), and
consequently, ¢ may be worse off in this counter-objection.

When an objection has a counter-objection, no agent will be willing to follow agent
1 and implement the threat. Hence, the agents do not have any incentives to change the
payoff distribution and the payoff is stable.

3.1.3. DEFINITION. [Stability] Let (N,v,S) a game with coalition structure. A vector
x € X(nw,s) 18 stable iff for each objection at x there is a counter-objection.

The definition of the pre-bargaining set is then simply the set of payoff distributions
that are stable. Not that they are stable for the specific definition of objections and
counter-objections we presented (we can, and we will, think about other ways to define
objections and counter-objections).

3.1.4. DEFINITION. [Pre-bargaining set] The pre-bargaining set (preB.S) is the set of
all stable members of Xy, s).

We will explain later the presence of the prefix pre in the definition. For now, we
need to wonder about the relationship with the core. The idea was to relax the stability
requirements of the core. The following lemma states that indeed, we have only relaxed
them:

3.1.5. LEMMA. Let (N,v,S) a game with coalition structure, we have
Core(N,v,S) C preBS(N,v,S).
Proof. Let us assume that the core of (/V, v, S) is non-empty and that x € Core(N, v, S).

Given the payoff x, no agent ¢ has any objection against any other agent j. Hence, there
are no objections, and the payoff is stable according to the pre-bargaining set. U
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3.2 An example

Let us now consider an example using a 7-player simple majority game, i.e., we con-
sider the game ({1, 2, 3,4, 5,6, 7},v) defined as follows:

U<C):{ lif|c| > 4

0 otherwise

é, %, e l) It is clear that x(N) = 1. Let us now prove
that « is in the pre-bargaining set of the game (N, v, {N}).

First note that objections within members of {2,3,4,5,6,7} will have a counter-
objection by symmetry (i.e., for i,j € {2,3,4,5,6,7}, if i has an objection (P,y)
against j, j can use the counter-objection (@, z) with Q@ = P\ {i} U {j} and 2z = s
for k € P\ {i} and z; = y,).

Hence, we only have to consider two type of objections (P, y): the ones of 1 against
a member of {2, 3,4,5,6, 7}, and the ones from a members of {2,3,4,5,6, 7} against
1. We are going to treat only the first case, we leave the second as an exercise.

Let us consider an objection (P, y) of agent 7 against a member of {2, 3,4, 5,6, 7}.
Since the members {2,...,7} play symmetric roles, we consider an objection of 1
against 7 using successively P = {1,2,3,4,5,6}, P = {1,2,3,4,5}, P = {1,2,3,4},
P =1{1,2,3}, P = {1,2} and P = {1}. For each case, we will look for a counter-
objection (@, z) of player 7.

Let us consider z = (—

e We consider that P = {1,2,3,4,5,6}. We need to find the payoff vector y € R®
so that (P, y) is an objection.

1 1 1
y:<Oz,g+052,g+043,...,5+a6>,

The conditions for (P, y) to be an objection are the following:

— each agent is as well off as in z: o > —%, a; >0

— y is feasible for coalition P: >0, (a; + 1) + a < 1.

w.logl<as <as<ay <as < ag.

6 6 6
1 5
ThenE (5+ai)—|—a:g+§ ai+a:1—|—g o +a < 1.
i=2 =2 =2

6
1
Then Zai <—a< -

=2

ot

= We need to find a counter-objection for (P, y).
claim: we can choose () = {2,3,4,7} and z = <% + o, % + g, % + ay, % + as)
2Q) =ttt itaztitar+itas=2+37 ;0 < 1since

5 6 1 . .
D oia @i <D, a; < £ s0 z s feasible.
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Itis clear that Vi € ), z; > x; ¥and that Vi € QN P, z; > y; vV

Hence, (@, ) is a counter-objection. v/

e Now, let us consider that P = {1,2,3,4,5}. The vector y = (o, + + as,  +
i3, £ + au, £ + ) is an objection when

5
1
=2

5 5
1 4
This time, we have E (5—|—ai)+a:5+ E o, +a<1

i=2 i=2
2

5 5
4 1 1
thenE aigl—g—a:g—aandﬁnallyg aigg—a<g.
i=2 =2

= We need to find a counter-objection to (P, )
claim: we can choose Q = {2,3,6,7}, 2 = (£ + a2, £ + 3,7, £)
Itis clear that Vi € ), z; > x; ¥'and Vi € P N Q z; > y; (for agent 2 and 3).
2(Q) = %+&2+%+a3+%+% = §+oz2—|—043. We have s + a3 < %, otherwise,
we would have oy + a3 > % and since the «; are ordered, we would then have

5
2

Z a; > i which is not possible. Hence z(Q)) < 1 which proves z is feasible

=2

v

Using similar arguments, we find a counter-objection for each other objections (you
might want to fill in the details at home).

4
o P={1,2,3,4},y = («, %—l—al, %—l—ag, %—i—ag}, a > —%,ai >0,) . ,oita<
2 4 2 3
g:>21:2051'§5—05<5.

=~ @ =12,5,6,7},z= <%+a2,%,%,%) since o g%

o |[P|<3P={1,2,3},v(P) =0,y = (v, ar,as), 0 > =2, 0, > 0,y + p <
—a<i

= @ ={4,5,6,7}, z = (%, %, %, %) will be a counter-objection (1 cannot provide
more than % to any other agent).

e For each possible objection of 1, we found a counter-objection. Using similar
arguments, we can find a counter-objection to any objection of player 7 against
player 1.

=~ x € preBS(N,v,S)v
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3.3 The bargaining set

In the example, agent 1 gets —% when v(C) > 0 for all coalition C C N'! This shows
that the pre-bargaining set may not be individually rational.

Let I(N,v,S) = {z € X(nus) | i > v({i})Vi € N} be the set of individually
rational payoff vector in Xy, s). Given most of the games, the set of individually
rational payoffs is non-empty. For some classes of games, we can show it is the case,
as shown by the following lemma.

3.3.1. LEMMA. Ifa game is weakly superadditive, [(N,v,S) # (.

Proof. A game (N, v) is weakly superadditive when VC C N and i ¢ C, we have that
v(C) +v({i}) < w(CU{i}). Let us consider that, for C € S, each agent in C gets its
marginal contribution given an ordering of agents in C. Since for all C C N, i ¢ C
v(CU{i}) —v(C) > v({i}), we know that z; > v({i}). Hence, there exists a payoff
distribution in I(N, v, S). O

Since we want a solution concept to be at least an imputation (i.e., efficient and
individually rational), we define the bargaining set to be the set of payoff distributions
that are individually rational and in the pre-bargaining set.

3.3.2. DEFINITION. Bargaining set Let (N, v,S) a game in coalition structure. The
bargaining set (BYS) is defined by

BS(N,v,S)=I(N,v,S)NpreBS(N,v,S).

Of course, this restriction does not have any negative impact on the relationship
between the core and the bargaining set.

3.3.3. LEMMA. We have Core(N,v,S) C BS(N,v,S).

This lemma shows that we have relaxed the requirements of core stability. One
question is whether we have relaxed them enough to guarantee that this new stability
concept is guaranteed to be non-empty. The answer to this question is yes!

3.3.4. THEOREM. Let (N, v,S) a game with coalition structure. Assume that [( N,v,S) #
(). Then the bargaining set BS(N,v,S) # ().

It is possible to give a direct proof of this theorem (for example, se the proof in
Section 4.2 in Introduction to the Theory of Cooperative Games [2]. We will not
present this proof now, but we will prove this theorem differently in a coming lecture.
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3.4 One issue with the bargaining set

We relaxed the requirements of core stability to come up with a solution concept that
is guaranteed to be non-empty. In doing so, the stable payoff distributions may have
some issues, and we are going to consider one using the example of a weighted voting
game. We first recall the definition.

3.4.1. DEFINITION. weighted voting games A game (N, w;en, q, v) is a weighted vot-
ing game when v satisfies unanimity, monotonicity and the valuation function is de-
fined as

1whenZwi >q

v(S) = =
0 otherwise
We note such a game by (q : wy, ..., wy,)

We consider the 6-player weighted majority game (3:1,1,1,1,1,0). Agent 6 is a null
player since its weight is 0, in other words, its presence does not affect by any means
the decision taken by the other agents. Nevertheless the following payoff distribution
is in the bargaining set = (%,...,1,2) € BS(N,v)! This may be quite surprising
as the null player receives the most payoff, but none of the other agents are able to
provide a objection that is not countered!

One of the desirable properties of a payoff was to be reasonable from above. We
recall that x is reasonable from above if Vi € N z' < mc!*® where mc"** =

cn}v%}{( } v(CU{i}) — v(C). mc™® is the strongest threat that an agent can use against
CN\{i

a coalition. It is desirable that no agent gets more than mc]*®*, as it never con-

tributes more than mc** in any coalition ¢ can join. The previous example shows

that the bargaining set is not reasonable from above: the dummy agent gets more than
max (v(CUA{6})—v(C)) =0.X

(s (v(CU{6}) ~v(C)

Proof.

This proof will be part of homework 2. U

max
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