Cooperative Games

Lecture 1: Introduction

Stéphane Airiau

ILLC - University of Amsterdam

Why study coalitional games?

Cooperative games are a branch of game theory that models cooperation or collaboration between agents.

Coalitional games can also be studied from a computational point of view (e.g., the problem of succint representation).

A coalition may represent a set of:

- persons or group of persons (labor unions, towns)
- objectives of an economic project
- artificial agents

We have a population N of n agents.
Definition (Coalition)
A coalition \mathcal{C} is a set of agents: $\mathcal{C} \in 2^{N}$.

The classic problem

- N is the set of all agents (or players)
- $v: 2^{N} \rightarrow \mathbb{R}$ is the valuation function. For $\mathcal{C} \subseteq N, v(\mathcal{C})$ is the value obtained by the coalition \mathcal{C}
problem: a game (N, v), and we assume all agents in N want to cooperate.
solution: a payoff distribution $x \in \mathbb{R}^{n}$ that provides a value to individual agents.

What are the interesting properties that x should satisfy?
How to determine the payoff vector x ?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle^{\prime \prime}$.
- 1 can say to 2 and 3, "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".
- 1 can say to 2 and 3 , "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle^{\prime \prime}$.
- 1 can say to 2 and 3 , "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle^{\prime \prime}$.
- 1 can say to 2 and 3 , "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".
- 1 can say to 2 and 3 , "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".
- 1 can say to 2 and 3 , "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

An example

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".
- 1 can say to 2 and 3 , "fine! $\{1,2,3\}$ and $\langle 33,47,25\rangle$
- ... is there a "good" solution?

1- Games with Transferable Utility (TU games)

- Any two agents can compare their utility
- Utility can be transferred between agents

Definition (valuation or characteristic function)
A valuation function v associates a real number $v(\mathrm{C})$ to any subset $\mathcal{C} \subseteq N$, i.e., $v: 2^{N} \rightarrow \mathbb{R}$
Without loss of generality, we will assume that $\left\{\begin{array}{l}v(\emptyset)=0 \\ v(\mathcal{C}) \geqslant 0\end{array}\right.$
Definition (TU game)
A TU game is a pair (N, v) where N is a set of agents and where v is a valuation function.

2- Games with Non Transferable Utility (NTU games)
It is not always possible to compare the utility of two agents or to transfer utility (e.g., no price tags). Agents have preference over coalitions.

Today

- We provide some examples of TU games.
- We discuss some desirable solution properties.
- We end with a quick overview of the course and practicalities
- A set of tasks needs to be performed,
- they require different expertises
- they may be decomposed.
- Agents do not have enough resource on their own to perform a task.
- Find complementary agents to perform the tasks
- robots have the ability to move objects in a plant, but multiple robots are required to move a heavy box.
- transportation domain: agents are trucks, trains, airplanes, ships... a task is a good to be transported.
- Issues:
- What coalition to form?
- How to reward each each member when a task is completed?

A market is a quadruple (N, M, A, F) where

- N is a set of traders
- M is a set of m continuous good
- $A=\left(a_{i}\right)_{i \in N}, a_{i} \in \mathbb{R}_{+}^{m}$ is the initial endowment vector
- $F=\left(f_{i}\right)_{i \in N}, f_{i}: \mathbb{R}_{+}^{m} \rightarrow \mathbb{R}$ is the valuation function vector

Assumptions of the model:

- The utility of agent i for possessing $x \in \mathbb{R}_{+}^{m}$ and an amount of money $p \in \mathbb{R}$ is $u_{i}(x, p)=f_{i}(x)+p$. The money models side payments.
- Initially, agents have no money.
- p_{i} can be positive or negative (like a bank account).
- Agents can increase their utility by trading: after a trade among the members of S, they have an endowment $\left(b_{i}\right)_{i \in S}$ and money $\left(p_{i}\right)_{i \in S}$ such that $\sum_{i \in S} a_{i}=\sum_{i \in b} b_{i}$ and $\sum_{i \in S} p_{i}=0$.

Market games (cont.)

Definition (Market game)

A game (N, v) is a market game if there exists a market (N, M, A, F) such that, for every $S \subseteq N$,

$$
v(S)=\max \left\{\sum_{i \in S} f_{i}\left(x_{i}\right) \mid x_{i} \in \mathbb{R}_{+}^{m}, \sum_{i \in S} x_{i}=\sum_{i \in S} a_{i}\right\}
$$

Shapley. The solutions of a symmetric market game, in Contributions to the Theory of Games, Luce and Tuckers editors, 1959

Shapley and Shubik. On market games, Journal of Economic Theory, 1, 9-25, 1969

Cost allocation games

Definition (Cost allocation game)

A cost allocation game is a game (N, c) where

- N represents the potential customers of a public service or a public facility.
- $c(S)$ is the cost of serving the members of S

Mathematically speaking, a cost game is a game. The special status comes because of the different intuition (worth of a coalition vs. cost of a coalition).
We can associate a cost game with a "traditional game" using the corresponding saving game (N, v) given by

$$
v(S)=\sum_{i \in S} c(\{i\})-c(S) .
$$

Examples of cost allocation games

- Airport game: n types of planes can land on a runway. The cost to accommodate a plane of type k is c_{k}. The cost is defined as $c(S)=\max _{k \in S}\left\{c_{k}\right\}$
- Sharing a water supply system: n towns considers building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

B

A

D

E

Examples of cost allocation games

- Airport game: n types of planes can land on a runway. The cost to accommodate a plane of type k is c_{k}. The cost is defined as $c(S)=\max _{k \in S}\left\{c_{k}\right\}$
- Sharing a water supply system: n towns considers building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

Examples of cost allocation games

- Airport game: n types of planes can land on a runway. The cost to accommodate a plane of type k is c_{k}. The cost is defined as $c(S)=\max _{k \in S}\left\{c_{k}\right\}$
- Sharing a water supply system: n towns considers building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

Examples of cost allocation games

- Airport game: n types of planes can land on a runway. The cost to accommodate a plane of type k is c_{k}. The cost is defined as $c(S)=\max _{k \in S}\left\{c_{k}\right\}$
- Sharing a water supply system: n towns considers building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

Examples of cost allocation games

- Minimum cost spanning tree games: a set H of houses have to be connected to a power plant P. The houses can be linked directly to P or to another house. The cost of connecting two locations $(i, j) \in H \cup\{P\}$ is $c_{i j}$. Let $S \subseteq H$. $\Gamma(S)$ is the minimum cost spanning tree spanning over the set of edges $S \cup\{P\}$. The cost function is $c(S)=\sum_{\text {all edges }} c_{i j}$.

Examples of cost allocation games

- Minimum cost spanning tree games: a set H of houses have to be connected to a power plant P. The houses can be linked directly to P or to another house. The cost of connecting two locations $(i, j) \in H \cup\{P\}$ is $c_{i j}$. Let $S \subseteq H . \Gamma(S)$ is the minimum cost spanning tree spanning over the set of edges $S \cup\{P\}$. The cost function is $c(S)=\sum_{\text {all edges of } \Gamma(S)} c_{i j}$.

Examples of cost allocation games

- Minimum cost spanning tree games: a set H of houses have to be connected to a power plant P. The houses can be linked directly to P or to another house. The cost of connecting two locations $(i, j) \in H \cup\{P\}$ is $c_{i j}$. Let $S \subseteq H . \Gamma(S)$ is the minimum cost spanning tree spanning over the set of edges $S \cup\{P\}$. The cost function is $c(S)=\sum_{\text {all edges of } \Gamma(S)} c_{i j}$.

Examples of cost allocation games

- Minimum cost spanning tree games: a set H of houses have to be connected to a power plant P. The houses can be linked directly to P or to another house. The cost of connecting two locations $(i, j) \in H \cup\{P\}$ is $c_{i j}$. Let $S \subseteq H$. $\Gamma(S)$ is the minimum cost spanning tree spanning over the set of edges $S \cup\{P\}$. The cost function is $c(S)=\sum_{\text {all edges of } \Gamma(S)} c_{i j}$.

Simple or Voting games

Definition (voting games)
A game (N, v) is a voting game when
the valuation function takes two values

- 1 for a winning coalitions
- 0 for the losing coalitions
v satisfies unanimity: $v(N)=1$
v satisfies monotonicity: $S \subset T \Rightarrow v(S) \leqslant v(T)$

Weighted Voting games

Definition (weighted voting games)

A game $\left(N, w_{i \in N}, q, v\right)$ is a weighted voting game when v satisfies unanimity, monotonicity and the valuation function is defined as

$$
v(S)=\left\{\begin{array}{l}
1 \text { when } \sum_{i \in S} w_{i} \geqslant q \\
0 \text { otherwise }
\end{array}\right.
$$

Example: 1958 European Economic Community: Belgium, Italy, France, Germany, Luxembourg and the Netherlands. Each country gets the following number of votes:

- Italy, France, Germany: 4
- Belgium, the Netherlands: 2
- Luxembourg: 1

The threshold of the game is $q=12$.

Some types of TU games

$\forall \mathfrak{C}_{1}, \mathfrak{C}_{2} \subseteq N \mid \mathfrak{C}_{1} \cap \mathfrak{C}_{2}=\emptyset, i \in N, i \notin \mathfrak{C}_{1}$

- additive (or inessential): $v\left(\mathfrak{C}_{1} \cup \mathfrak{C}_{2}\right)=v\left(\mathfrak{C}_{1}\right)+v\left(\mathrm{C}_{2}\right)$ trivial from the game theoretic point of view
- superadditive: $v\left(\mathcal{C}_{1} \cup \mathfrak{C}_{2}\right) \geqslant v\left(\mathrm{C}_{1}\right)+v\left(\mathrm{C}_{2}\right)$ satisfied in many applications: it is better to form larger coalitions.
- weakly superadditive: $v\left(\mathfrak{C}_{1} \cup\{i\}\right) \geqslant v\left(\mathfrak{C}_{1}\right)+v(\{i\})$
- subadditive: $v\left(\mathfrak{C}_{1} \cup \mathfrak{C}_{2}\right) \leqslant v\left(\mathfrak{C}_{1}\right)+v\left(\mathfrak{C}_{2}\right)$
- convex: $\forall \mathcal{C} \subseteq \mathcal{T}$ and $i \notin \mathcal{T}$, $v(\mathcal{C} \cup\{i\})-v(\mathcal{C}) \leqslant v(\mathcal{T} \cup\{i\})-v(\mathcal{T})$.
Convex game appears in some applications in game theory and have nice properties.
- monotonic: $\forall \mathcal{C} \subseteq \mathcal{T} \subseteq N v(\mathcal{C}) \leqslant v(\mathcal{T})$.

Some properties

Let $x \in \mathbb{R}^{n}$ be a solution of the TU game (N, v)
Feasible solution: $\sum_{i \in N} x(i) \leqslant v(N)$
Anonymity: a solution is independent of the names of the player.

Definition (marginal contribution)
The marginal contribution of agent i for a coalition $\mathcal{C} \subseteq N \backslash\{i\}$ is $m c_{i}(\mathbb{C})=v(\mathcal{C} \cup\{i\})-v(\mathcal{C})$.
Let $m c_{i}^{\text {min }}$ and $m c_{i}^{\text {max }}$ denote the minimal and maximal marginal contribution.
x is reasonable from above if $\forall i \in N x^{i} \leqslant m c_{i}^{\max }$
$\Rightarrow m c_{i}^{\max }$ is the strongest threat that an agent can use against a coalition.
x is reasonable from below if $\forall i \in N x^{i} \geqslant m c_{i}^{\text {min }}$
$\Rightarrow m c_{i}^{\text {min }}$ is a minimum acceptable reward.

Some properties

Let x, y be two solutions of a TU-game (N, v).
Efficiency: $x(N)=v(N)$
\Rightarrow the payoff distribution is an allocation of the entire worth of the grand coalition to all agents.

Individual rationality: $\forall i \in N, x(i) \geqslant v(\{i\})$
\Rightarrow agent obtains at least its self-value as payoff.
Group rationality: $\forall \mathcal{C} \subseteq N, \sum_{i \in \mathfrak{C}} x(i)=v(\mathcal{C})$
\Rightarrow if $\sum_{i \in \mathfrak{e}} x(i)<v(\mathbb{C})$ some utility is lost
\Rightarrow if $\sum_{i \in \mathrm{e}} x(i)>v(\mathrm{C})$ is not possible

Pareto Optimal: $\sum_{i \in N} x(i)=v(N)$

\Rightarrow no agent can improve its payoff without lowering the payoff of another agent.

An imputation is a payoff distribution x that is efficient and individually rational.

Summary

- Two main classes of games: TU games and NTU games
- Examples of TU games: market games, cost allocation games, voting games
- Some classes of TU games: superadditive, convex, etc.
- Some desirable properties of a solution

Coming next

A first solution concept to ensure stable coalitions: the core.
Definition (Core for superadditive games)
The core of a game (N, v) is the set:
$\left\{x \in \mathbb{R}^{n} \mid x(S) \geqslant v(S)\right.$ for all $\left.S \subseteq N\right\}$

Course overview

- Game theory stability concepts: the core, the nucleolus, the kernel
- A fair solution concept: the Shapley value
- Special types of games: Voting games
- Representation and complexity
- Other model of cooperation: NTU games and hedonic games.
- Issues raised by practical approaches (seach for optimal CS, uncertainty, overlapping coalition, etc).

Practicalities

- Webpage: http://staff.science.uva.nl/
~stephane/Teaching/CoopGames/2012/
It will contain the lecture notes and the slides, posted shortly before class.
- Evaluation: $6 \mathrm{ECTS}=6 \cdot 28 \mathrm{~h}=168 \mathrm{~h}$.
- some homeworks (every two or three weeks) 40% of the grade. LATEXis preferred, but you can hand-write your solution.
- final paper 50% of the grade (more details at the end of the first block)
- final presentation 10% of the grade
- no exam.
- Attendance: not part of the grade.

