Cooperative Games Lecture 2: The core

Stéphane Airiau

ILLC - University of Amsterdam

- We all want to work together and get $v(N)$, but we all have different views about how to share the fruits of our work. We can use the values of other coalitions as arguments in favor of a distribution.
- A condition for a coalition to form:
all agents prefer to be in it.
i.e., none of the participants wishes she were in a different coalition or by herself \Rightarrow Stability
- Stability is a necessary but not sufficient condition, (e.g., there may be multiple stable coalitions).
- The core is a stability concepts for which no agents prefer to deviate to form a different coalition.
- For simplicity, we will only consider the problem of the stability of the grand coalition:
\Rightarrow Is the grand coalition stable \Leftrightarrow Is the core non-empty

Today

- Definition of the core
- Some geometrical representation of the core for games with up to three agents
- Convex games and the core

Definition (valuation or characteristic function)
A valuation function v associates a real number $v(\mathrm{C})$ to any subset \mathcal{C}, i.e., $v: 2^{N} \rightarrow \mathbb{R}$.

Definition (TU game)

A TU game is a pair (N, v) where N is a set of agents and where v is a valuation function.

Definition (Imputation)
An imputation is a payoff distribution x that is efficient and individually rational, i.e.:

- $\sum_{i \in N} x_{i}=v(N)$ (efficiency)
- for all $i \in N, x_{i} \geqslant v(\{i\})$ (individual rationality)

Definition (Group rationality)

$$
\forall \mathbb{C} \subseteq N, \sum_{i \in \mathbb{C}^{x}(i) \geqslant v(\mathcal{C}) .}
$$

The core relates to the stability of the grand coalition: No group of agents has any incentive to change coalition.

Definition (core of a game (N, v))
Let (N, v) be a TU game, and assume we form the grand coalition N. The core of (N, v) is the set:

$$
\operatorname{Core}(N, v)=\left\{x \in \mathbb{R}^{n} \mid x \text { is a group rational imputation }\right\}
$$

Equivalently,

$$
\operatorname{Core}(N, v)=\left\{x \in \mathbb{R}^{n} \mid x(N) \leqslant v(N) \wedge x(\mathcal{C}) \geqslant v(\mathcal{C}) \forall \mathcal{C} \subseteq N\right\} .
$$

Weighted graph games

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$$
\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}
$$

Weighted graph games

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$$
\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}
$$

Weighted graph games

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$$
\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}
$$

Weighted graph games

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$$
\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}
$$

Weighted graph games

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$$
\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}
$$

Weighted graph games

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

The core may not be fair: the core only considers stability.

$$
\left.\left.\begin{array}{c}
N=\{1,2,3\} \\
v(\{i\})=0 \\
v(\{\mathcal{C}\})=\alpha \text { for }|\mathcal{C}|=2 \\
v(N)=1
\end{array}\right\} \begin{array}{l}
\forall i \in N, x_{i} \geqslant 0
\end{array} x_{1}, x_{2}, x_{3}\right) \in \operatorname{Core}(N, v) \Leftrightarrow\left\{\begin{array}{l}
\forall i(i, j) \in N^{2} \quad i \neq j, x_{i}+x_{j} \geqslant \alpha \\
\sum_{i \in N} x_{i}=1 \tag{2}
\end{array}\right\}
$$

Core (N, v) is nonempty iff $\alpha \leqslant \frac{2}{3}$
(by summing (1) for all $i \in N$ and using (2))
what happens when $\alpha>\frac{2}{3}$ and the core is empty?

Example with barycentric coordinate

$$
\left.\begin{array}{lll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 \quad v(\{1,2,3\})=8 \\
& v(\{3\})=1 & v(\{2,3\})=5
\end{array}\right] \begin{aligned}
& \text { set of imputations } \mathcal{J}
\end{aligned}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\} ?
$$

J is a triangle with vertices:
$(7,0,1),(1,6,1),(1,0,7)$.
On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v((\{1,3\})=3 \\
v(\{3\})=1 & v((\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 \\
& v(\{3\})=1 & v(\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane: $x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rl}
v(\emptyset(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0
\end{array} \quad v\left((\{1,3\})=3 \quad v(\{1,2,3\})=8 ~ 子 \begin{array}{ll}
v(\{3\})=1 & v(\{2,3\})=5
\end{array}\right]
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rll}
& v(\{1\})=1 & v(\{1,2\})=4 \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3 \\
& v(\{3\})=1 & v(\{2,3\})=5
\end{array} \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{aligned}
& v(\{1\})=1 \quad v(\{1,2\})=4 \\
& v(\emptyset)=0 \quad v(\{2\})=0 \quad v(\{1,3\})=3 \quad v(\{1,2,3\})=8 \\
& v(\{3\})=1 \quad v(\{2,3\})=5 \\
& \text { set of imputations } \mathcal{J}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\}
\end{aligned}
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{lll}
v(\{1\})=1 & v(\{1,2\})=4 & \\
v(\emptyset)=0 & v(\{2\})=0 & v(\{1,3\})=3
\end{array} \quad v(\{1,2,3\})=8
$$

set of imputations $\mathcal{J}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\}$
J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{aligned}
& v(\{1\})=1 \quad v(\{1,2\})=4 \\
& v(\emptyset)=0 \quad v(\{2\})=0 \quad v(\{1,3\})=3 \quad v(\{1,2,3\})=8 \\
& v(\{3\})=1 \quad v(\{2,3\})=5 \\
& \text { set of imputations } \mathcal{J}=\left\{\sum_{i=1}^{3} x_{i}=8, x_{1} \geqslant 1, x_{2} \geqslant 0, x_{3} \geqslant 1\right\}
\end{aligned}
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rl}
& v(\{1\})=1 \\
v(\emptyset)=0 & v(\{1,2\})=4 \\
& v(\{3\})=0
\end{array} \quad v(\{1,3\})=3 \quad v(\{2,3\})=5 \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Example with barycentric coordinate

$$
\begin{array}{rl}
& v(\{1\})=1 \\
v(\emptyset)=0 & v(\{1,2\})=4 \\
& v(\{3\})=0
\end{array} \quad v(\{1,3\})=3 \quad v(\{2,3\})=5 \quad v(\{1,2,3\})=8
$$

J is a triangle with vertices: $(7,0,1),(1,6,1),(1,0,7)$. On the plane:
$x_{1}+x_{2}+x_{3}=8$

Issues with the core

- The core may not always be non-empty
- When the core is not empty, it may not be 'fair'
- It may not be easy to compute
\Rightarrow Are there classes of games that have a non-empty core?
\Rightarrow Is it possible to characterize the games with non-empty core?

Definition (Convex games)

A game (N, v) is convex iff $\forall \mathcal{C} \subseteq \mathcal{T}$ and $i \notin \mathcal{T}, v(\mathcal{C} \cup\{i\})-v(\mathcal{C}) \leqslant v(\mathcal{T} \cup\{i\})-v(\mathcal{T})$.
TU-game is convex if the marginal contribution of each player increases with the size of the coalition she joins.

Bankruptcy game $(E, c) E \geqslant 0$ is the estate, there are n claimants and $c \in \mathbb{R}_{+}^{n}$ is the claim vector (c_{i} is the claim of the $i^{\text {th }}$ claimant). $v(\mathcal{C})=\max \left\{0, E-\sum_{i \in N \backslash e} c_{i}\right\}$

Theorem

Each bankruptcy game is convex

Theorem

A convex game has a non-empty core

Minimum cost spanning tree games

- N be the set of customers
- 0 be the supplier
- $N_{*}=N \cup\{0\}$
- $c_{i, j}$ is the cost of connecting i and j by the edge $e_{i j}$ for $(i, j) \in N_{*}^{2}, i \neq j$
- for a coalition $\mathcal{C}, T_{\mathcal{C}}=\left(\mathcal{C}, E_{\mathcal{C}}\right)$ is the minimum cost spanning tree spanning over the set of edges $\mathcal{C} \cup\{0\}$.
- the cost function is $c(S)=\sum_{(i, j) \in E_{\mathcal{C}}} c_{i j}$
- A minimum cost spanning tree game is the associated cost game.

Theorem

Every minimum cost spanning tree game has a nonempty core.

The Bondareva Shapley theorem: a characterization of games with non-empty core.

The theorem was proven independently by
O. Bondareva (1963) and L. Shapley (1967).

Let $\mathcal{C} \subseteq N$. The characteristic vector $\mathcal{X} \mathcal{C}$ of \mathcal{C} is the member of \mathbb{R}^{N} defined by $\chi_{\mathcal{C}}^{i}=\left\{\begin{array}{l}1 \text { if } i \in \mathcal{C} \\ 0 \text { if } i \in N \backslash \mathcal{C}\end{array}\right.$
A map is a function $2^{N} \backslash \emptyset \rightarrow \mathbb{R}_{+}$that gives a positive weight to each coalition.
Definition (Balanced map)

$$
\begin{aligned}
& \text { A function } \lambda: 2^{N} \backslash \emptyset \rightarrow \mathbb{R}_{+} \text {is a balanced map iff } \\
& \sum_{\mathfrak{e} \subseteq N} \lambda(\mathcal{C}) \chi_{e}=\chi_{N}
\end{aligned}
$$

A map is balanced when the amount received over all the coalitions containing an agent i sums up to 1 .
Example: $n=3, \lambda(\mathcal{C})=\left\{\begin{array}{l}\frac{1}{2} \text { if }|\mathcal{C}|=2 \\ 0 \text { otherwise }\end{array}\right.$

$\lambda(\{1,2\}) \chi_{\{1,2\}}$	< $\frac{1}{2}$	$\frac{1}{2}$	0)	Each of the column sums up to 1$\frac{1}{2} x_{\{1,2\}}+\frac{1}{2} x_{\{1,3\}}+\frac{1}{2} x_{\{2,3\}}=x_{\{1,2,3\}}$
$\lambda(\{1,3\}) \chi_{\{1,3\}}$	< ${ }^{2}$	0	$\frac{1}{2}$	
$\lambda(\{2,3\}) \chi_{\{2,3\}}$	<0	$\frac{1}{2}$	$\frac{1}{2}$)	

Characterization of games with non-empty core

Definition (Balanced game)

A game is balanced iff for each balanced map λ we have $\sum_{\mathfrak{e} \subseteq N, \mathfrak{C} \neq \emptyset} \lambda(\mathcal{C}) v(\mathcal{C}) \leqslant v(N)$.

Theorem (Bondareva Shapley)

A TU game has a non-empty core iff it is balanced.

Summary

- We introduced the core: a stability solution concept.
- We looked at some examples and geometrical representation
- We saw that the core can be empty.
- We proved that convex games have a non-empty core.
- We proved that Minimum Cost Spanning Tree game have a non-empty core
- We started to look at a characterization of the Bondareva-Shapley theorem

Coming next

- Characterization of games with non-empty core (Bondareva Shapley theorem), informal introduction to linear programming.
- Application of Bondareva-Shapley to market games.
- Other games with non-empty core.
- Computational complexity of the core.

