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Today

We consider one way to compare two imputations.
We define the Nucleolus and look at some properties.
We prove important properties of the nucleolus, which
requires some elements of analysis.
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Excess of a coalition

Definition (Excess of a coalition)
Let (N,v) be a TU game, C ⊆ N be a coalition, and x
be a payoff distribution over N. The excess e(C,x) of
coalition C at x is the quantity e(C,x) = v(C)−x(C).

An example: let N = {1,2,3}, C= {1,2}, v({1,2}) = 8, x= 〈3,2,5〉,
e(C,x) = v({1,2})−(x1 +x2) = 8−(3+2) = 3.

We can interpret a positive excess (e(C,x) > 0) as the amount
of dissatisfaction or complaint of the members of C from
the allocation x.

We can use the excess to define the core:
Core(N,v)= {x ∈ Rn | x is an imputation and ∀C⊆N,e(C,x)6 0}

This definition shows that no coalition has any complaint:
each coalition’s demand can be granted.
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N = {1,2,3}, v({i}) = 0 for i ∈ {1,2,3}
v({1,2}) = 5, v({1,3}) = 6, v({2,3}) = 6

v(N) = 8

Let us consider two payoff vectors x = 〈3,3,2〉 and y = 〈2,3,3〉.
Let e(x) denote the sequence of excesses of all coalitions at x.

x = 〈3,3,2〉
coalition C e(C,x)

{1} -3
{2} -3
{3} -2
{1,2} -1
{1,3} 1
{2,3} 1
{1,2,3} 0

y = 〈2,3,3〉
coalition C e(C,y)

{1} -2
{2} -3
{3} -3
{1,2} 0
{1,3} 1
{2,3} 0
{1,2,3} 0

Which payoff should we prefer? x or y? Let us write the
excess in the decreasing order (from the greatest excess to
the smallest)
〈1,1,0,−1,−2,−3,−3〉 〈1,0,0,0,−2,−3,−3〉
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Definition (lexicographical order of Rm >lex)

Let >lex denote the lexicographical ordering of Rm,
i.e., ∀(x,y) ∈ Rm, x>lex y iff{

x=y or
∃t s. t. 16 t6m and ∀i s. t. 16 i< t xi = yi and xt > yt

example: 〈1,1,0,−1,−2,−3,−3〉>lex 〈1,0,0,0,−2,−3,−3〉

Let l be a sequence of m reals. We denote by lI the reorder-
ing of l in decreasing order.

In the example, e(x) = 〈−3,−3,−2,−1,1,1,0〉 and then
e(x)I = 〈1,1,0,−1,−2,−3,−3〉.

Hence, we can say that y is better than x by writing
e(x)I >lex e(y)I.
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Some properties of 6lex and its strict version

∀x ∈ Rm x6lex xI

∀x ∈ Rm and any permutation σ of {1, . . . ,m}, σ(x)6lex xI

∀x,y,u,v ∈ Rm and α > 0
x6lex y ⇒ αx6lex αy
x<lex y ⇒ αx<lex αy
(x6lex y ∧ u6lex v) ⇒ x+u6lex y+v
(x<lex y ∧ u6lex v) ⇒ x+u<lex y+v
x6lex y we cannot conclude anything for the comparison
between −αx and −αy.
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Definition (Nucleolus)
Let (N,v) be a TU game.
Let Imp be the set of all imputations.
The nucleolus Nu(N,v) is the set
Nu(N,v) =

{
x ∈ Imp | ∀y ∈ Imp e(y)I >lex e(x)I

}
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An alternative definition in terms of objections and counter-objections

Let (N,v) be a TU game. Objections are made by coalitions in-
stead of individual agents. Let P ⊆ N be a coalition that expresses
an objection.

A pair (P,y), in which P⊆N and y is an imputation,
is an objection to x iff e(P,x) > e(P,y).

Our excess for coalition P is too large at x, payoff y reduces
it.

A coalition (Q,y) is a counter-objection to the objection (P,y)
when e(Q,y) > e(Q,x) and e(Q,y) > e(P,x).

Our excess under y is larger than it was under x for coalition
Q! Furthermore, our excess at y is larger than what your
excess was at x!

An imputation fails to be stable when the excess of some coalition
P can be reduced without increasing the excess of some other
coalition to a level at least as large as that of the original excess of
P.
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Definition (Nucleolus)
Let (N,v) be a TU game. The nucleolus is the set of im-
putations x such that for every objection (P,y), there ex-
ists a counter-objection (Q,y).

M.J. Osborne and A. Rubinstein. A course in game theory, MIT Press,
1994, Section 14.3.3.
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a detour: ε-core and least-core

Definition (ε-core)
A payoff distribution is in the ε-core of the superaddi-
tive game (N,v) for some ∈ R if x(C)> v(C)−ε.

Definition (least-core)
Let ε?(G) = inf {ε ∈ R|ε-core of G is non-empty }

The least-core of G is the ε?(G)-core.

(LP)


minimize ε

subject to


xi > 0 for each i ∈N∑

j∈N xj = v(N)∑
j∈C xj > v(C)−ε for each C⊆N
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Definition (Nucleolus)
A payoff vector x is in the nucleolus of the game (N,v)
if it is the solution of optimization programs O1, . . . ,O|N|

where these programs are defined recursively as fol-
lows:

(O1)

{
minimize ε
subject to

∑
i∈S xi > v(S)−ε ∀S⊂N

(Oi)



minimize ε

subject to


∑

j∈S xj > v(S)−ε0 ∀S ∈ S1
...∑

j∈S xj > v(S)−εi−1 ∀S ∈ Si−1 \Si−2∑
j∈S xj > v(S)−ε ∀S ∈ 2N \Si−1

where εi−1 is the optimal objective value to program
Oi−1 and Si−1 is the set of coalitions for which the con-
straints are realized as equalities in the optimal solution
to Oi−1.
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Theorem
Let (N,v) be a TU game with a non-empty core. Then
Nu(N,v)⊆ Core(N,v)

Proof
This will be part of homework 2 �
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Theorem
Let (N,v) be a superadditive game and Imp be its set of
imputations. Then, Imp 6= ∅.

Proof
Let (N,v) be a superadditive game.
Let x be a payoff distribution defined as follows:

xi = v({i})+ 1
|N|

(
v(N)−

∑
j∈N v({j})

)
.

v(N)−
∑

j∈N v({j})> 0 since (N,v) is superadditive.

It is clear x is individually rational 4

It is clear x is efficient 4

Hence, x ∈ Imp. �

Theorem (Non-emptyness of the nucleolus)
Let (N,v) be a TU game, if Imp 6= ∅,
then the nucleolus Nu(N,v) is non-empty.
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Element of Analysis

Let E = Rm and X ⊆ E. ||.|| denote a distance in E, e.g., the
euclidean distance.
We consider functions of the form u :N→Rm. Another view-
point on u is an infinite sequence of elements indexed by
natural numbers (u0,u1, . . . ,uk, . . .) where ui ∈ X.

convergent sequence: A sequence (ut) converges to
l ∈ Rm iff for all ε > 0, ∃T ∈ N s.t. ∀t> T, ||ut − l||6 ε.
extracted sequence: Let (ut) be an infinite sequence and
f : N→ N be a monotonically increasing function. The
sequence v is extracted from u iff v = u◦ f , i.e., vt = uf(t).
closed set: a set X is closed if and only if it contains all
of its limit points.
i.e. for all converging sequences (x0,x1 . . .) of elements in X,
the limit of the sequence has to be in X as well.
An example: if X = (0,1], (1, 1

2 , 1
3 , 1

4 , . . . , 1
n , . . .) is a converging

sequence. However, 0 is not in X, and hence, X is not closed.
“A closed set contains its borders”.
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Element of Analysis

bounded set: A subset X ⊆ Rm is bounded if it is
contained in a ball of finite radius, i.e. ∃c ∈ Rm and
∃r ∈ R+ s.t. ∀x ∈ X ||x− c||6 r.
compact set: A subset X ⊆ Rm is a compact set iff from
all sequences in X, we can extract a convergent
sequence in X.

ë A set is compact set of Rm iff it is closed and bounded.
convex set: A set X is convex iff ∀(x,y) ∈ X2, ∀α ∈ [0,1],
αx+(1−α)y ∈ X (i.e. all points in a line from x to y is
contained in X).
continuous function: Let X ⊆ Rn, f : Rn→ Rm.
f is continuous at x0 ∈ X iff ∀ε ∈ R, ε > 0, ∃δ ∈ R, δ > 0
s.t. ∀x ∈ X s.t. ||x−x0||< δ, we have ||f (x)− f (xo)||< ε, i.e.
∀ε > 0 ∃δ > 0 ∀x ∈ X ||x−x0||< δ⇒ ||f (x)− f (x0)||< ε.
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Element of Analysis

Let X ⊆ Rn.
Thm A1 If f : Rn→ Rm is continuous and X ⊆ E is a non-empty

compact subset of Rn,
then f (X) is a non-empty compact subset of Rm.

Thm A2 Extreme value theorem: Let X be a non-empty compact
subset of Rn, f : X→ R a continuous function.
Then f is bounded and it reaches its supremum.

Thm A3 Let X be a non-empty compact subset of Rn. f : X→ R is
continuous iff for every closed subset B⊆ R, the set
f−1(B) is compact.
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Proof of non-emptyness of the nucleolus

Assume we have the following theorems 1
and 2 (we will prove them in the next slide).
Theorem (1)

Let A be a non-empty compact subset of Rm.
{x ∈ A | ∀y ∈ A x6lex y} is non-empty.

Theorem (2)
Assume we have a TU game (N,v), and consider its set Imp.
If Imp 6= ∅, then set B= {e(x)I | x∈ Imp} is a non-empty compact
subset of R2|N|

Let us take a TU game (N,v) and let us assume Imp 6= ∅. Then B
in theorem 2 is a non-empty compact subset of R2|N|

. Now let A
in theorem 1 be B in theorem 2. So
{e(x)I | (x ∈ Imp) ∧ (∀y ∈ Imp e(x)I 6lex e(y)I)} is
non-empty. From this, it follows that:
Nu(N,v) =

{
x ∈ Imp | ∀y ∈ Imp e(y)I >lex e(x)I

}
6= ∅. 4
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Proof of theorem 2

Let (N,v) be a TU game and consider its set Imp. Let us assume
that Imp 6= ∅ to prove that B = {e(x)I | x ∈ Imp} is a non-empty
compact subset of R2|N|

.

First, let us prove that Imp is a non-empty compact subset of R|N|.
Imp non-empty by assumption.

To see that Imp is bounded, we need to show that for all i, xi
is bounded by some constant (independent of x). We have
v({i})6 xi (ind. rational) and x(N) = v(N) (efficient). Then
xi +
∑n

j=1,j 6=i v({j})6 v(N), hence xi 6 v(N)−
∑n

j=1,j 6=i v({j}).

Imp is closed (the boundaries of Imp are members of Imp).
This proves that Imp is a non-empty compact subset of R|N|.

Thm A1 If f : E→Rm is continuous, X⊆ E is a non-empty compact subset
of Rn, then f(X) is a non-empty compact subset of Rm.

e()I is a continuous function and Imp is a non-empty and com-
pact subset of R2|N|

. Using thm A1 , e(Imp)I = {e(x)I|x ∈ Imp} is a
non-empty compact subset of R2|N|

.
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Proof of theorem 1

For a non-empty compact subset A of Rm, we need to prove that
the set {x ∈ A | ∀y ∈ A x6lex y} is non-empty.

First, let πi : Rm→ R the projection function s.t. πi(x1, . . . ,xm) = xi.

Then, let us define the following sets:


A0 = A
Ai+1 = argmin

x∈Ai
πi+1(x)

i ∈ {0,1, . . . ,m−1}

• A0 = A
• A1 = argminx∈Aπ1(x) is the set of
elements in A with the smallest first
entry in the sequence.
• A2 = argminx∈A1 π2(x) composed of
the elements that have the smallest
second entry among the elements with
the smallest first entry
• . . .
• Am = {x ∈ A | ∀y ∈ A x6lex y}

We want to prove by induction that each Ai is non-empty compact
subset of Rm for i ∈ {1, . . . ,m} to prove that Am is non-empty.
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Proof of theorem 1

A0 = A is non-empty compact of Rm by hypothesis 4.

Let us assume that Ai is a non-empty compact subset of Rm

and let us prove that Ai+1 is a non-empty compact subset of
Rm. πi+1 is a continuous function and Ai is a non-empty
compact subset of Rm.

Thm A2: Extreme value theorem: Let X be a non-empty compact
subset of Rm, f : X→ R a continuous function.

Using the extreme value theorem, minx∈Ai πi+1(x) exists and
it is reached in Ai, hence argminx∈Ai πi+1(x) is non-empty.
Now, we need to show it is compact.

We note by π−1
i : R→ Rm the inverse of πi. Let α ∈ R, π−1

i (α)
is the set of all vectors 〈x1, . . . ,xi−1,α,xi+1, . . . ,xm〉 s.t. xj ∈ R,
j ∈ {1, . . . ,m}, j 6= i. We can rewrite Ai+1 as:

Ai+1 = π
−1
i+1

(
min
x∈Ai

πi+1(x)
)⋂

Ai
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Proof of theorem 1

Thm A3: Let X be a non-empty compact subset of Rn.
f : X→ R is continuous iff for every closed subset B⊆ R, the set f−1(B) is
compact.

Ai+1 = π−1
i+1


min

x∈Ai
πi+1(x)︸ ︷︷ ︸

closed




︸ ︷︷ ︸

According to Thm A3, it is a compact subset of Rm

⋂
Ai

︸ ︷︷ ︸
is a compact subset of Rm since

the intersection of two closed sets is closed and in Rm,
and a closed subset of a compact subset of Rm

is a compact subset of Rm 4

Hence Ai+1 is a non-empty compact subset of Rm and the proof is
complete. �
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For a TU game (N,v) the nucleolus Nu(N,v) is non-empty
when Imp 6= ∅, which is a great property as agents will al-
ways find an agreement. But there is more!

Theorem
The nucleolus has at most one element

In other words, there is one agreement which is stable ac-
cording to the nucleolus.
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For a TU game (N,v), the Nu(N,v) 6= ∅ when Imp 6= ∅, which
is a great property as agents will always find an agreement.

Theorem
The nucleolus has at most one element

In other words, there is one agreement which is stable ac-
cording to the nucleolus.

To prove this, we need theorems 3 and 4.
Theorem (3)

Let A be a non-empty convex subset of Rm

Then the set {x ∈ A | ∀y ∈ A xI 6lex yI} has at most one ele-
ment.

Theorem (4)
Let (N,v) be a TU game such that Imp 6= ∅.
(i) Imp is a non-empty and convex subset of R|N|

(ii) {e(x) | x ∈ Imp} is a non-empty convex subset of R2|N|
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Proof of Theorem 3

Let A be a non-empty convex subset of Rm, and
Min = {x ∈ A | ∀y ∈ A xI 6lex yI}. We now prove that |Min|6 1.

Towards a contradiction, let us assume Min has at least two ele-
ments x and y, x 6= y. By definition of Min, we must have xI = yI.

Let α ∈ (0,1) and σ be a permutation of {1, . . . ,m} such that
(αx+(1−α)y)I = σ(αx+(1−α)y) = ασ(x)+(1−α)σ(y).
Let us show by contradiction that σ(x) = xI and σ(y) = yI.

Let us assume that either σ(x) <lex xI or σ(y) <lex yI, it follows
that ασ(x)+(1−α)σ(y)<lex αxI+(1−α)yI = xI.
Since A is convex, αx+ (1−α)y ∈ A. But this is a contradiction
because by definition of Min, αx+(1−α)y ∈ A cannot be strictly
smaller than xI, yI in A. This proves σ(x) = xI and σ(y) = yI.

Since xI = yI, we have σ(x) = σ(y), hence x = y. This contradicts
the fact that x 6= y. Hence, Min cannot have at least two elements,
and |Min|6 1.
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Let us show by contradiction that σ(x) = xI and σ(y) = yI.

Let us assume that either σ(x) <lex xI or σ(y) <lex yI, it follows
that ασ(x)+(1−α)σ(y)<lex αxI+(1−α)yI = xI.
Since A is convex, αx+ (1−α)y ∈ A. But this is a contradiction
because by definition of Min, αx+(1−α)y ∈ A cannot be strictly
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the fact that x 6= y. Hence, Min cannot have at least two elements,
and |Min|6 1.
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Proof Theorem 4 (i)

Let (N,v) be a TU game s.t. Imp 6= ∅ (in case Imp = ∅, Imp is triv-
ially convex). Let (x,y) ∈ Imp2, α ∈ [0,1]. Let us prove Imp is con-
vex by showing that u = αx+(1−α)y ∈ Imp, i.e., individually ratio-
nal and efficient.

Individual rationality: Since x and y are individually rational, for
all agents i,
ui = αxi +(1−α)yi > αv({i})+ (1−α)v({i}) = v({i}). Hence u is indi-
vidually rational.

Efficiency: Since x and y are efficient, we have∑
i∈N

ui =
∑
i∈N

αxi +(1−α)yi > α
∑
i∈N

xi +(1−α)
∑
i∈N

yi∑
i∈N

ui > αv(N)+(1−α)v(N) = v(N), hence u is efficient.

Thus, u ∈ Imp.
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Proof Theorem 4 (ii)

Let (N,v) be a TU game and Imp its set of imputations. We need
to show {e(z) | z ∈ Imp} is a non-empty convex subset of Rm.
Let (x,y)∈ Imp2, α∈ [0,1], and C⊆N and we consider the sequence
αe(x)+(1−α)e(y), and we look at the entry corresponding to coali-
tion C.

(αe(x)+(1−α)e(y))C = αe(C,x)+(1−α)e(C,y)
= α(v(C)−x(C))+(1−α)(v(C)−y(C))
= v(C)−(αx(C)+(1−α)y(C))

= v(C)−([αx+(1−α)y](C))

= e(αx+(1−α)y,C)

Since the previous equality is valid for all C ⊆ N, both sequences
are equal: αe(x)+(1−α)e(y) = e(αx+(1−α)y).

Since Imp is convex, αx+(1−α)y ∈ Imp, it follows that
e(αx+(1−α)y) ∈ {e(z) | z ∈ Imp}. Hence, {e(z) | z ∈ Imp} is convex.
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Proof that the nucleolus has at most one element

Let (N,v) be a TU game, and Imp its set of imputations.
Theorem 4(ii): {e(x) | x ∈ Imp} is a non-empty convex subset of
R2|N|

.
Theorem 3: If A is a non-empty convex subset of Rm, then the set
{x ∈ A | ∀y ∈ A xI 6lex yI} has at most one element.

Applying theorem 3 with A = {e(x) | x ∈ Imp} we obtain
B = {e(x) | x ∈ Imp∧ ∀y ∈ Imp e(x)I 6lex e(y)I} has at most one
element.
B is the image of the nucleolus under the function e. We need to
make sure that an e(x) corresponds to at most one element in Imp.
This is true since for (x,y) ∈ Imp2, we have x 6= y⇒ e(x) 6= e(y).

Hence Nu(N,v) = {x | x ∈ Imp∧ ∀y ∈ Imp e(x)I 6lex e(y)I} has at
most one element!
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Summary

We defined the excess of a coalition at a payoff
distribution, which can model the complaints of the
members in a coalition.
We used the ordered sequence of excesses over all
coalitions and the lexicographic ordering to compare
any two imputations.
We defined the nucleolus for a TU game.

pros: If the set of imputations is non-empty, the nucleolus is
non-empty.
The nucleolus contains at most one element.
When the core is non-empty, the nucleolus is contained in
the core.

cons: Difficult to compute.
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Coming next

The kernel, also a member of the bargaining set family,
also based on the excess.
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