Cooperative Games
 Lecture 6: The Kernel

Stéphane Airiau

ILLC - University of Amsterdam

One last stability concept from the bargaining set family:

The kernel.

M. Davis. and M. Maschler, The kernel of a cooperative game. Naval Research Logistics Quarterly, 1965.

Excess

Definition (Excess)

For a TU game (N, v), the excess of coalition \mathcal{C} for a payoff distribution x is defined as $e(\mathcal{C}, x)=v(\mathcal{C})-x(\mathcal{C})$.

We saw that a positive excess can be interpreted as an amount of complaint for a coalition.
We can also interpret the excess as a potential to generate more utility.

Let (N, v) be a TU game, $\mathcal{S} \in \mathscr{S}_{N}$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between members of the same coalition in \mathcal{S}. Objections and counter-objections take the form of coalitions, i.e., they do not propose another payoff distribution.

Let (N, v) be a TU game, $\mathcal{S} \in \mathscr{S}_{N}$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between members of the same coalition in \mathcal{S}. Objections and counter-objections take the form of coalitions, i.e., they do not propose another payoff distribution.

Let $\mathcal{C} \in \mathcal{S}, k \in \mathcal{C}, l \in \mathcal{C}$.
Objection: A coalition $P \subseteq N$ is an objection of k against l to x iff $k \in P, l \notin P$ and $x_{l}>v(\{l\})$.
" P is a coalition that contains k, excludes l and which sacrifices too much (or gains too little)."

Let (N, v) be a TU game, $\mathcal{S} \in \mathscr{S}_{N}$ a coalition structure and x a payoff distribution. Objections and counter-objections are exchanged between members of the same coalition in \mathcal{S}. Objections and counter-objections take the form of coalitions, i.e., they do not propose another payoff distribution.

Let $\mathcal{C} \in \mathcal{S}, k \in \mathcal{C}, l \in \mathcal{C}$.
Objection: A coalition $P \subseteq N$ is an objection of k against l to x iff $k \in P, l \notin P$ and $x_{l}>v(\{l\})$.
" P is a coalition that contains k, excludes l and which sacrifices too much (or gains too little)."

Counter-objection: A coalition $Q \subseteq N$ is a counter-objection to the objection P of k against l at x iff $l \in Q, k \notin Q$ and $e(Q, x) \geqslant e(P, x)$.
" k 's demand is not justified: Q is a coalition that contains l and excludes k and that sacrifices even more (or gains even less)."

A first definition

Remember that the set of feasible payoff vectors for (N, v, S) is $X_{(N, v, S)}=\left\{x \in \mathbb{R}^{n} \mid\right.$ for every $\left.\mathcal{C} \in \mathcal{S}: x(\mathcal{C}) \leqslant v(\mathcal{C})\right\}$.

Definition (Kernel)
Let (N, v, \mathcal{S}) be a TU game in coalition structure. The kernel is the set of imputations $x \in X_{(N, v, S)}$ s.t. for any coalition $\mathcal{C} \in \mathcal{S}$, for each objection P of an agent $k \in \mathcal{C}$ over any other member $l \in \mathcal{C}$ to x, there is a counterobjection of l to P.

Another definition

Definition (Maximum surplus)

For a TU game (N, v), the maximum surplus $s_{k, l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e.,

$$
s_{k, l}(x)=\max _{\mathfrak{C} \subseteq N \mid k \in \mathcal{C}, l \notin \mathcal{C}} e(\mathcal{C}, x) .
$$

Another definition

Definition (Maximum surplus)

For a TU game (N, v), the maximum surplus $s_{k, l}(x)$ of agent k over agent l with respect to a payoff distribution x is the maximum excess from a coalition that includes k but does exclude l, i.e.,

$$
s_{k, l}(x)=\max _{\mathcal{C} \subseteq N \mid k \in \mathcal{C}, l \notin \mathcal{C}} \mathcal{e}(\mathcal{C}, x) .
$$

Definition (Kernel)
Let (N, v, \mathcal{S}) be a TU game with coalition structure. The kernel is the set of imputations $x \in X_{(N, v, S)}$ such that for every coalition $\mathcal{C} \in \mathcal{S}$, if $(k, l) \in \mathcal{C}^{2}, k \neq l$, then we have either $s_{k l}(x) \geqslant s_{l k}(x)$ or $x_{k}=v(\{k\})$.
$s_{k l}(x)<s_{l k}(x)$ calls for a transfer of utility from k to l unless it is prevented by individual rationality, i.e., by the fact that $x_{k}=v(\{k\})$.

Properties

Theorem

Let (N, v, S) a game with coalition structure, and let J $m p \neq \emptyset$. Then we have:

- (i) $N u(N, v, S) \subseteq K(N, v, S)$
- (ii) $K(N, v, \mathcal{S}) \subseteq B S(N, v, \mathcal{S})$

Properties

Theorem

Let (N, v, \mathcal{S}) a game with coalition structure, and let J $m p \neq \emptyset$. Then we have:

- (i) $N u(N, v, S) \subseteq K(N, v, \mathcal{S})$
- (ii) $K(N, v, \mathcal{S}) \subseteq B S(N, v, \mathcal{S})$

Theorem
Let (N, v, \mathcal{S}) a game with coalition structure, and let Jmp $\neq \emptyset$. The kernel $K(N, v, S)$ and the bargaining set $B S(N, v, S)$ of the game are non-empty.

Proof
Since the Nucleolus is non-empty when $\operatorname{J} m p \neq \emptyset$, the proof is immediate using the theorem above.

Proof of (i)

Let $x \notin K(N, v, \mathcal{S})$, we want to show that $x \notin N u(N, v, \mathcal{S})$.

Proof of (i)

Let $x \notin K(N, v, \mathcal{S})$, we want to show that $x \notin N u(N, v, \mathcal{S})$.
$x \notin K(N, v, \mathcal{S})$, hence, there exists $\mathcal{C} \in C S$ and $(k, l) \in \mathcal{C}^{2}$ such that $s_{l k}(x)>s_{k l}(x)$ and $x_{k}>v(\{k\})$.

Proof of (i)

Let $x \notin K(N, v, \mathcal{S})$, we want to show that $x \notin N u(N, v, \mathcal{S})$.
$x \notin K(N, v, S)$, hence, there exists $\mathcal{C} \in C S$ and $(k, l) \in \mathcal{C}^{2}$ such that $s_{l k}(x)>s_{k l}(x)$ and $x_{k}>v(\{k\})$.
Let y be a payoff distribution corresponding to a transfer of utility
$\epsilon>0$ from k to $l: y_{i}=\left\{\begin{array}{l}x_{i} \text { if } i \neq k \text { and } i \neq l \\ x_{k}-\epsilon \text { if } i=k \\ x_{l}+\epsilon \text { if } i=l\end{array}\right.$

Proof of (i)

Let $x \notin K(N, v, \mathcal{S})$, we want to show that $x \notin N u(N, v, \mathcal{S})$.
$x \notin K(N, v, \mathcal{S})$, hence, there exists $\mathcal{C} \in C S$ and $(k, l) \in \mathcal{C}^{2}$ such that $s_{l k}(x)>s_{k l}(x)$ and $x_{k}>v(\{k\})$.
Let y be a payoff distribution corresponding to a transfer of utility
$\epsilon>0$ from k to $l: y_{i}=\left\{\begin{array}{l}x_{i} \text { if } i \neq k \text { and } i \neq l \\ x_{k}-\epsilon \text { if } i=k \\ x_{l}+\epsilon \text { if } i=l\end{array}\right.$
Since $x_{k}>v(\{k\})$ and $s_{l k}(x)>s_{k l}(x)$, we can choose $\epsilon>0$ small enough s.t.

- $x_{k}-\epsilon>v(\{k\})$
- $s_{l k}(y)>s_{k l}(y)$

Proof of (i)

Let $x \notin K(N, v, \mathcal{S})$, we want to show that $x \notin N u(N, v, \mathcal{S})$.
$x \notin K(N, v, S)$, hence, there exists $\mathcal{C} \in C S$ and $(k, l) \in \mathcal{C}^{2}$ such that $s_{l k}(x)>s_{k l}(x)$ and $x_{k}>v(\{k\})$.
Let y be a payoff distribution corresponding to a transfer of utility
$\epsilon>0$ from k to $l: y_{i}=\left\{\begin{array}{l}x_{i} \text { if } i \neq k \text { and } i \neq l \\ x_{k}-\epsilon \text { if } i=k \\ x_{l}+\epsilon \text { if } i=l\end{array}\right.$
Since $x_{k}>v(\{k\})$ and $s_{l k}(x)>s_{k l}(x)$, we can choose $\epsilon>0$ small enough s.t.

- $x_{k}-\epsilon>v(\{k\})$
- $s_{l k}(y)>s_{k l}(y)$

We need to show that $e(y) \leqslant_{l e x} e(x)$.

Proof of (i)

Let $x \notin K(N, v, \mathcal{S})$, we want to show that $x \notin N u(N, v, \mathcal{S})$.
$x \notin K(N, v, S)$, hence, there exists $\mathcal{C} \in C S$ and $(k, l) \in \mathcal{C}^{2}$ such that $s_{l k}(x)>s_{k l}(x)$ and $x_{k}>v(\{k\})$.
Let y be a payoff distribution corresponding to a transfer of utility
$\epsilon>0$ from k to $l: y_{i}=\left\{\begin{array}{l}x_{i} \text { if } i \neq k \text { and } i \neq l \\ x_{k}-\epsilon \text { if } i=k \\ x_{l}+\epsilon \text { if } i=l\end{array}\right.$
Since $x_{k}>v(\{k\})$ and $s_{l k}(x)>s_{k l}(x)$, we can choose $\epsilon>0$ small enough s.t.

- $x_{k}-\epsilon>v(\{k\})$
- $s_{l k}(y)>s_{k l}(y)$

We need to show that $e(y) \leqslant_{l e x} e(x)$.
Note that for any coalition $S \subseteq N$ s.t. $e(S, x) \neq e(S, y)$ we have either

- $k \in S$ and $l \notin S(e(S, x)>e(S, y)$ since $e(S, y)=e(S, x)+\epsilon>e(S, x))$
- $k \notin S$ and $l \in S \quad(e(S, x)<e(S, y)$ since $e(S, y)=e(S, x)-\epsilon<e(S, x))$

Proof of (i)

Let $\left\{B_{1}(x), \ldots, B_{M}(x)\right\}$ a partition of the set of all coalitions s.t.

- $(S, T) \in B_{i}(x)$ iff $e(S, x)=e(T, x)$. We denote by $e_{i}(x)$ the common value of the excess in $B_{i}(x)$, i.e. $e_{i}(x)=e(S, x)$ for all $S \in B_{i}(x)$.
- $e_{1}(x)>e_{2}(x)>\cdots>e_{M}(x)$

Proof of (i)

Let $\left\{B_{1}(x), \ldots, B_{M}(x)\right\}$ a partition of the set of all coalitions s.t.

- $(S, T) \in B_{i}(x)$ iff $e(S, x)=e(T, x)$. We denote by $e_{i}(x)$ the common value of the excess in $B_{i}(x)$, i.e. $e_{i}(x)=e(S, x)$ for all $S \in B_{i}(x)$.
- $e_{1}(x)>e_{2}(x)>\cdots>e_{M}(x)$

In other words, $e(x)=\langle\underbrace{\left\langle e_{1}(x), \ldots, e_{1}(x)\right.}_{\left|B_{1}(x)\right| \text { times }}, \ldots, \underbrace{e_{M}(x), \ldots, e_{M}(x)}_{\left|B_{M}(x)\right| \text { times }}\rangle$.

Proof of (i)

Let $\left\{B_{1}(x), \ldots, B_{M}(x)\right\}$ a partition of the set of all coalitions s.t.

- $(S, T) \in B_{i}(x)$ iff $e(S, x)=e(T, x)$. We denote by $e_{i}(x)$ the common value of the excess in $B_{i}(x)$, i.e. $e_{i}(x)=e(S, x)$ for all $S \in B_{i}(x)$.
- $e_{1}(x)>e_{2}(x)>\cdots>e_{M}(x)$

In other words, $e(x)=\langle\underbrace{e_{1}(x), \ldots, e_{1}(x)}_{\left|B_{1}(x)\right| \text { times }}, \ldots, \underbrace{e_{M}(x), \ldots, e_{M}(x)}_{\left|B_{M}(x)\right| \text { times }}\rangle$.
Let i^{*} be the minimal value of $i \in\{1, \ldots, M\}$ such that there is $\mathcal{C} \in B_{i^{*}}(x)$ with $e(\mathcal{C}, x) \neq e(\mathcal{C}, y)$.
For all $i<i^{*}$, we have $B_{i}(x)=B_{i}(y)$ and $e_{i}(x)=e_{i}(y)$.

Proof of (i)

Since $s_{l k}(x)>s_{k l}(x) B_{i^{*}}$ contains

- at least one coalition S that contains l but not k, for such coalition, we must have $e(S, x)>e(S, y)$
- no coalition that contains k but not l.

Proof of (i)

Since $s_{l k}(x)>s_{k l}(x) B_{i^{*}}$ contains

- at least one coalition S that contains l but not k, for such coalition, we must have $e(S, x)>e(S, y)$
- no coalition that contains k but not l.

If $B_{i^{*}}$ contains either

- coalitions that contain both k and l
- or coalitions that do not contain both k and l

Then, for any such coalitions S, we have $e(S, x)=e(S, y)$, and it follows that $B_{i^{*}}(y) \subset B_{i^{*}}(x)$.

Proof of (i)

Since $s_{l k}(x)>s_{k l}(x) B_{i^{*}}$ contains

- at least one coalition S that contains l but not k, for such coalition, we must have $e(S, x)>e(S, y)$
- no coalition that contains k but not l.

If $B_{i^{*}}$ contains either

- coalitions that contain both k and l
- or coalitions that do not contain both k and l

Then, for any such coalitions S, we have $e(S, x)=e(S, y)$, and it follows that $B_{i^{*}}(y) \subset B_{i^{*}}(x)$.

Otherwise, we have $e_{i^{*}}(y)<e_{i^{*}}(x)$.

Proof of (i)

Since $s_{l k}(x)>s_{k l}(x) B_{i^{*}}$ contains

- at least one coalition S that contains l but not k, for such coalition, we must have $e(S, x)>e(S, y)$
- no coalition that contains k but not l.

If $B_{i^{*}}$ contains either

- coalitions that contain both k and l
- or coalitions that do not contain both k and l

Then, for any such coalitions S, we have $e(S, x)=e(S, y)$, and it follows that $B_{i^{*}}(y) \subset B_{i^{*}}(x)$.

Otherwise, we have $e_{i^{*}}(y)<e_{i^{*}}(x)$.
In both cases, we have $e(y)$ is lexicographically less than $e(x)$, and hence y is not in the nucleolus of the game (N, v, \mathcal{S}).

Proof of (ii)

Let (N, v, \mathcal{S}) a TU game with coalition structure. Let $x \in K(N, v, \mathcal{S})$. We want to prove that $x \in B S(N, v, S)$.

Proof of (ii)

Let (N, v, \mathcal{S}) a TU game with coalition structure. Let $x \in K(N, v, \mathcal{S})$. We want to prove that $x \in B S(N, v, \mathcal{S})$. To do so, we need to show that for any objection (P, y) from any player i against any player j at x, there is a counter objection (Q, z) to (P, y).

Proof of (ii)

Let (N, v, \mathcal{S}) a TU game with coalition structure. Let $x \in K(N, v, \mathcal{S})$. We want to prove that $x \in B S(N, v, \mathcal{S})$. To do so, we need to show that for any objection (P, y) from any player i against any player j at x, there is a counter objection (Q, z) to (P, y). For the bargaining set, An objection of i against j is a pair (P, y) where

- $P \subseteq N$ is a coalition such that $i \in P$ and $j \notin P$.
- $y \in \mathbb{R}^{p}$ where p is the size of P
- $y(P) \leqslant v(P)$ (y is a feasible payoff for members of P)
- $\forall k \in P, y_{k} \geqslant x_{k}$ and $y_{i}>x_{i}$

Proof of (ii)

Let (N, v, \mathcal{S}) a TU game with coalition structure. Let $x \in K(N, v, \mathcal{S})$. We want to prove that $x \in B S(N, v, \mathcal{S})$. To do so, we need to show that for any objection (P, y) from any player i against any player j at x, there is a counter objection (Q, z) to (P, y). For the bargaining set, An objection of i against j is a pair (P, y) where

- $P \subseteq N$ is a coalition such that $i \in P$ and $j \notin P$.
- $y \in \mathbb{R}^{p}$ where p is the size of P
- $y(P) \leqslant v(P)$ (y is a feasible payoff for members of P)
- $\forall k \in P, y_{k} \geqslant x_{k}$ and $y_{i}>x_{i}$

An counter-objection to (P, y) is a pair (Q, z) where

- $Q \subseteq N$ is a coalition such that $j \in Q$ and $i \notin Q$.
- $z \in \mathbb{R}^{q}$ where q is the size of Q
- $z(Q) \leqslant v(Q) \quad(z$ is a feasible payoff for members of $Q)$
- $\forall k \in Q, z_{k} \geqslant x_{k}$
- $\forall k \in Q \cap P z_{k} \geqslant y_{k}$

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, \mathcal{S})$ we have

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$.

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$.

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, S)$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have

$$
v(Q) \geqslant y(P)+x(Q)-x(P)
$$

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, \mathcal{S})$ we have $s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$. Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have

$$
\begin{aligned}
v(Q) & \geqslant y(P)+x(Q)-x(P) \\
& \geqslant y(P \cap Q)+y(P \backslash Q)+x(Q \backslash P)-x(P \backslash Q)
\end{aligned}
$$

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, \mathcal{S})$ we have
$s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.
Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have

$$
\begin{aligned}
v(Q) & \geqslant y(P)+x(Q)-x(P) \\
& \geqslant y(P \cap Q)+y(P \backslash Q)+x(Q \backslash P)-x(P \backslash Q) \\
& >y(P \cap Q)+x(Q \backslash P) \text { since } i \in P \backslash Q, y(P \backslash Q)>x(P \backslash Q)
\end{aligned}
$$

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, \mathcal{S})$ we have
$s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.
Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have

$$
\begin{aligned}
v(Q) & \geqslant y(P)+x(Q)-x(P) \\
& \geqslant y(P \cap Q)+y(P \backslash Q)+x(Q \backslash P)-x(P \backslash Q) \\
& >y(P \cap Q)+x(Q \backslash P) \text { since } i \in P \backslash Q, y(P \backslash Q)>x(P \backslash Q)
\end{aligned}
$$

Let us define z as follows $\left\{\begin{array}{l}x_{k} \text { if } k \in Q \backslash P \\ y_{k} \text { if } k \in Q \cap P\end{array}\right.$

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, \mathcal{S})$ we have
$s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.
Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have

$$
\begin{aligned}
v(Q) & \geqslant y(P)+x(Q)-x(P) \\
& \geqslant y(P \cap Q)+y(P \backslash Q)+x(Q \backslash P)-x(P \backslash Q) \\
& >y(P \cap Q)+x(Q \backslash P) \text { since } i \in P \backslash Q, y(P \backslash Q)>x(P \backslash Q)
\end{aligned}
$$

Let us define z as follows $\left\{\begin{array}{l}x_{k} \text { if } k \in Q \backslash P \\ y_{k} \text { if } k \in Q \cap P\end{array}\right.$ (Q, z) is a counter-objection to (P, y).

Proof of (ii)

Let (P, y) be an objection of player i against player j to $x . i \in P$, $j \notin P, y(P) \leqslant v(P)$ and $y(P)>x(P)$. We choose $y(P)=v(P)$.

- $x_{j}=v(\{j\})$: Then $(\{j\}, v(\{j\}))$ is a counter objection to (P, y).
- $x_{j}>v(\{j\})$: Since $x \in K(N, v, \mathcal{S})$ we have
$s_{j i}(x) \geqslant s_{i j}(x) \geqslant v(P)-x(P) \geqslant y(P)-x(P)$ since $i \in P, j \notin P$.
Let $Q \subseteq N$ such that $j \in Q, i \notin Q$ and $s_{j i}(x)=v(Q)-x(Q)$. We have $v(Q)-x(Q) \geqslant y(P)-x(P)$. Then, we have

$$
\begin{aligned}
v(Q) & \geqslant y(P)+x(Q)-x(P) \\
& \geqslant y(P \cap Q)+y(P \backslash Q)+x(Q \backslash P)-x(P \backslash Q) \\
& >y(P \cap Q)+x(Q \backslash P) \text { since } i \in P \backslash Q, y(P \backslash Q)>x(P \backslash Q)
\end{aligned}
$$

Let us define z as follows $\left\{\begin{array}{l}x_{k} \text { if } k \in Q \backslash P \\ y_{k} \text { if } k \in Q \cap P\end{array}\right.$ (Q, z) is a counter-objection to (P, y).

Finally $x \in B S(N, v, \mathcal{S})$.

Computing a kernel-stable payoff distribution

- There is a transfer scheme converging to an element in the kernel.
- It may require an infinite number of small steps.
- We can consider the ϵ-kernel where the inequality are defined up to an arbitrary small constant ϵ.
R. E. Stearns. Convergent transfer schemes for n-person games. Transactions of the American Mathematical Society, 1968.

Computing a kernel-stable payoff distribution

```
Algorithm 1: Transfer scheme converging to a \(\epsilon\)-Kernel- stable payoff distribution for the CS \(\mathcal{S}\)
compute- \(\epsilon-\operatorname{Kernel}-\operatorname{Stable}(N, v, \mathcal{S}, \epsilon)\)
repeat
    for each coalition \(\mathcal{C} \in \mathcal{S}\) do
        for each member \((i, j) \in \mathcal{C}, i \neq j\) do // compute the maximum surplus
            // for two members of a coalition in \(\mathcal{S}\)
            \(s_{i j} \leftarrow \max _{R \subseteq N \mid(i \in R, j \notin R)} v(R)-x(R)\)
    \(\delta \leftarrow \max _{(i, j) \in \mathcal{C}^{2}, \mathfrak{e} \in \mathcal{S}} s_{i j}-s_{j i} ;\)
    \(\left(i^{\star}, j^{\star}\right) \leftarrow \operatorname{argmax}_{(i, j) \in N^{2}}\left(s_{i j}-s_{j i}\right) ;\)
    if \(\left(x_{j \star}-v(\{j\})<\frac{\delta}{2}\right)\) then // payment should be individually rational
        \(d \leftarrow x_{j^{\star}}-v\left(\left\{j^{\star}\right\}\right) ;\)
    else
        \(\left\lfloor d \leftarrow \frac{\delta}{2} ;\right.\)
    \(x_{i^{\star}} \leftarrow x_{i^{\star}}+d ;\)
    \(x_{j^{\star}} \leftarrow x_{j^{\star}}-d ;\)
until \(\frac{\delta}{v(S)} \leqslant \epsilon\);
```

- The complexity for one side-payment is $O\left(n \cdot 2^{n}\right)$.
- Upper bound for the number of iterations for converging to an element of the ϵ-kernel: $n \cdot \log _{2}\left(\frac{\delta_{0}}{\epsilon \cdot v(S)}\right)$, where δ_{0} is the maximum surplus difference in the initial payoff distribution.
- To derive a polynomial algorithm, the number of coalitions must be bounded. For example, only consider coalitions which size is bounded in $\left[K_{1}, K_{2}\right]$. The complexity of the truncated algorithm is $O\left(n^{2} \cdot n_{\text {coalitions }}\right)$ where $n_{\text {coalitions }}$ is the number of coalitions with size $\operatorname{in}\left[K_{1}, K_{2}\right]$, which is a polynomial of order K_{2}.
- M. Klusch and O. Shehory. A polynomial kernel-oriented coalition algorithm for rational information agents. In Proceedings of the Second International Conference on Multi-Agent Systems, 1996.
- O. Shehory and S. Kraus. Feasible formation of coalitions among autonomous agents in non-superadditve environments. Computational Intelligence, 1999.

Summary

- We saw another way to use the excess to make objections and counter-objections.
- We defined the kernel.
- We proved that both the kernel and the bargaining set are non-empty if the set of imputations is non-empty.
pros: - If the set of imputations is non-empty, the nucleolus, kernel, bargaining set are non-empty.
- There is an algorithm to compute a payoff in the kernel.
cons: The algorithm is not polynomial

Coming next

- The Shapley value.

It is not a stability concept, but it tries to guarantee fairness. We will see it can be defined axiomatically or using the concept of marginal contributions.

