
Lecture 2
The Core

Let us assume that we have a TU game (N, v) and that we want to form the grand
coalition. We model cooperation between all the agents in N and we focus on the
sharing problem: how to distribute the payoff v(N) to all agents. The idea for defining
one solution is to consider a payoff distribution in which no agent has an incentive to
change coalition to gain additional payoff. This is what is called stability.

The Core, which was first introduced by Gillies [2], is the most attractive and natu-
ral way to define stability. A payoff distribution is in the Core when no group of agents
has any incentive to form a different coalition. This is a strong condition for stability,
so strong that some games may have an empty core. In this lecture, we will first intro-
duce the definition of the core and consider some graphical representations for games
with up to three players. Then, we will present some games that are guaranteed to have
a non-empty core. Finally, we will present a theorem that characterizes games with
non-empty core: the Bondareva-Shapley theorem. We will give some intuition about
the proof, relying on results from linear programming, and we will use this theorem to
show that market games have a non-empty core.

2.1 Definition and graphical representation for games
with up to three players

We consider a TU game (N, v). We assume that all the agents cooperate by forming
the grand coalition and that they receive a payoff distribution x. We want the grand
coalition to be stable, i.e., no agent should have an incentive to leave the grand coali-
tion. We will say that x is in the core of the game (N, v) when no group of agents has
an incentive to leave the grand coalition and form a separate coalition.

2.1.1. DEFINITION. [Core] A payoff distribution x ∈ Rn is in the Core of a TU game
(N, v) iff x is an imputation that is group rational, i.e.,

Core(N, v) = {x ∈ Rn | ∑i∈N xi = v(N) ∧ ∀C ⊆ N x(C) ≥ v(C)}.
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12 Lecture 2. The Core

A payoff distribution is in the Core when no group of agents has any interest in
rejecting it, i.e., no group of agents can gain by forming a different coalition. Note
that this condition has to be true for all subsets of N (group rationality). As a special
case, this ensures individual rationality. Another way to define the Core is in terms of
excess:

2.1.2. DEFINITION. [Core] The Core of a TU game (N, v) is the set of payoff distri-
butions x ∈ Rn, such that ∀C ⊆ N , e(C, x) ≤ 0.

In other words, a PC is in the Core when there exists no coalition that has a positive
excess. This definition is attractive as it shows that no coalition has any complaint:
each coalition’s demand can be granted.

To be in the core, a payoff distribution must satisfy a set of 2n weak linear inequal-
ities: for each coalition C ⊆ N , we have v(C) ≤ x(C). The Core is therefore closed
and convex, and we can try to represent it geometrically.

Let us consider the following two-player game ({1, 2}, v) where v({1}) = 5,
v({2}) = 5, and v({1, 2}) = 20. The core of the game is a segment defined as follows:
core(N, v) = {(x1, x2) ∈ R2 | x1 ≥ 5, x2 ≥ 5, x1 + x2 = 20} and is represented
in Figure 2.1. This example shows that, although the game is symmetric, most of the
payoffs in the core are not fair. Core allocations focus on stability only and they may
not be fair.
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Figure 2.1: Example of a core allocation

It is possible to represent the core for game with three agents. For a game ({1, 2, 3}, v),
the efficiency condition is v({1, 2, 3}) = x1 + x2 + x3, which is a plane in a 3-
dimensional space. On this plane, we can draw the conditions for individual rationality
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and for group rationality. Each of these conditions partitions the space into two regions
separated by a line: one region is compatible with a core allocation, the other region
is not. The core is the intersection of all the compatible regions. Figure 2.2 represents
the core of a three-player game.
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(2, 0, 6)

(3, 0, 5)

(4, 0, 4)

(5, 0, 3)

(6, 0, 2)

v({1}) = 1 v({1, 2}) = 4
v({2}) = 0 v({1, 3}) = 3
v({3}) = 1 v({2, 3}) = 5
v(∅) = 0 v({1, 2, 3}) = 8

Figure 2.2: Example of a three-player game: The core is the area in green

There are, however, multiple concerns associated with using the notion of the Core.
First and foremost, the Core can be empty: the conflicts captured by the characteristic
function cannot satisfy all the players simultaneously. When the Core is empty, at least
one player is dissatisfied by the utility allocation and therefore blocks the coalition.
Let us consider the following example from [3]: v({A,B}) = 90, v({A,C}) = 80,
v({B,C}) = 70, and v(N) = 120. In this case, the Core is the PC where the grand
coalition forms and the associated payoff distribution is (50, 40, 30). If v(N) is in-
creased, the size of the Core also increases. But if v(N) decreases, the Core becomes
empty.

Exercise: How can you modify the game in Figure 2.2 so that the core becomes empty?

2.2 Games with non-empty core
In the previous section, we saw that some games have an empty core. In this section,
we provide examples of some classes of games that are guaranteed to have a non-empty
core. In the following we will show that convex games and minimum cost spanning
tree games have a non empty core.

We start introducing an example that models bankruptcy: individuals have claims
in a resource, but the value of the resource is not sufficient to meet all of the claims
(e.g., a man leaves behind an estate worth less than the value of its debts). The problem
is then to share the value of the estate among all the claimants. The value of a coalition
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C is defined as the amount of the estate which is not claimed by the complement of
C, in other words v(C) is the amount of the estate that the coalition C is guaranteed to
obtain.

2.2.1. DEFINITION. Bankruptcy game A Bankruptcy game (N,E, v) where N is the
set of claimants, E ∈ R+ is the estate and c ∈ Rn

+ is the claim vector (i.e., ci is the
claim of the ith claimant. The valuation function v : 2N → R is defined as follows.
For a coalition of claimants C, v(C) = max

{
0, E −∑i∈N\C ci

}
.

First, we show that a bankruptcy game is convex.

2.2.2. THEOREM. Every bankruptcy game is convex.

Proof. Let (N,E, c) be a bankruptcy game. Let S ⊆ T ⊆ N , and i /∈ T . We want to
show that

v(S ∪ {i})− v(S) ≤ v(T ∪ {i})− v(T ),

or equivalently that

v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S).

For all C ⊆ N , we note c(C) =
∑

j∈C
cj , then we can write:

E −
∑

j∈N\C
cj = E −

∑

j∈N
cj +

∑

j∈C
ci = E − c(N) + c(C).

Let ∆ = E −∑j∈N cj = E − c(N). We have E −
∑

j∈N\C
cj = ∆ + c(C).

First, observe that ∀(x, y) ∈ R2, max{0, x}+ max{0, y} = max{0, x, y, x+ y}.

v(S ∪ {i}) + v(T ) = max



0, E −

∑

j∈N\(S∪{i})
cj



+ max



0, E −

∑

j∈N\T
cj





= max {0, ∆ + c(S) + ci}+ max {0, ∆ + c(T )}
= max {0, ∆ + c(S) + ci, ∆ + c(T ), 2∆ + c(S) + ci + c(T )}

v(T ∪ {i}) + v(S) = max



0, E −

∑

j∈N\(T∪{i})
cj



+ max



0, E −

∑

j∈N\S
cj





= max {0, ∆ + c(T ) + ci}+ max {0, ∆ + c(S)}
= max {0, ∆ + c(T ) + ci, ∆ + c(S), 2∆ + c(T ) + ci + c(S)}

Then, note that since S ⊆ T , c(S) ≤ c(T ). Then
max {0, ∆ + c(T ) + ci, ∆ + c(S), 2∆ + c(T ) + ci + c(S)} =

max {0, ∆ + c(T ) + ci, 2∆ + c(T ) + ci + c(S)}.
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We also have:
∆ + c(S) + ci ≤ ∆ + c(T ) + ci.
∆ + c(T ) ≤ ∆ + c(T ) + ci.

It follows that max {0, ∆ + c(S) + ci, ∆ + c(T ), 2∆ + c(S) + ci + c(T )}
≤ max {0, ∆ + c(T ) + ci, 2∆ + c(T ) + ci + c(S)}

which proves that v(S ∪ {i}) + v(T ) ≤ v(T ∪ {i}) + v(S). 4 �

Now, we show an important property of convex games: they are guaranteed to have
a non-empty core. We define a payoff distribution where each agent gets its marginal
contribution, given that the agents enter the grand coalition one at a time in a given
order, and we show that this payoff distribution is an imputation that is group rational.

2.2.3. THEOREM. A convex game has a non-empty core.

Proof. Let us assume a convex game (N, v). Let us define a payoff vector x in the
following way: x1 = v({1}) and for all i ∈ {2, . . . , n}, xi = v({1, 2, . . . , i}) −
v({1, 2, . . . , i − 1}). In other words, the payoff of the ith agent is its marginal contri-
bution to the coalition consisting of all previous agents in the order {1, 2, . . . , i− 1}.

Let us prove that the payoff vector is efficient by writing up and summing the payoff
of all agents:

x1 = v({1})
x2 = v({1, 2} − v({1})

. . .
xi = v({1, 2, . . . , i})− v({1, 2, . . . , i− 1})

. . .
xn = v({1, 2, . . . , n})− v({1, 2, . . . , n− 1})∑

i∈N xn = v({1, 2, . . . , n}) = v(N)

By summing these n equalities, we obtain the efficiency condition:∑
i∈N xn = v({1, 2, . . . , n}) = v(N).4

Let us prove that the payoff vector is individually rational. By convexity, we have
v({i})− v(∅) ≤ v({1, 2, . . . , i})− v({1, 2, . . . , i− 1}), hence v({i}) ≤ xi. 4

Finally, let us prove that the payoff vector is group rational. Let C ⊆ N , C =
{a1, a2, . . . , ak} and let us consider that a1 < a2 < . . . < ak. It is obvious that
{a1, a2, . . . , ak} ⊆ {1, 2, . . . , ak}. Using the convexity assumption, we obtain the fol-
lowing:
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v({a1})− v(∅) ≤ v({1, 2, . . . , a1})− v({1, 2, . . . , a1 − 1}) = xa1
v({a1, a2})− v({a1}) ≤ v({1, 2, . . . , a2})− v({1, 2, . . . , a2 − 1}) = xa2

. . .
v({a1, a2, . . . , al})− v({a1, a2, . . . , al−1}) ≤ v({1, 2, . . . , al})− v({1, 2, . . . , al − 1}) = xal

. . .
v({a1, a2, . . . , ak})− v({a1, a2, . . . , ak−1}) ≤ v({1, 2, . . . , ak})− v({1, 2, . . . , ak − 1}) = xak

v(C) = v({a1, a2, . . . , ak}) ≤ ∑k
i=1 xak = x(C)

By summing these k inequalities, we obtain:
v(C) = v({a1, a2, . . . , ak}) ≤

∑k
i=1 xak = x(C), which is the group rationality con-

dition. 4 �

Consequently, if a game is convex, we know that we can guarantee a stable payoff
distribution. Moreover, we now know one easy way to compute one of these stable
payoffs.

Another example of games that have a non-empty core are the class of minimum
cost spanning tree game. This game features a set of houses that have to be connected
to a power plant. The houses can be directly linked to the power plant, or to another
house. Let N be the set of houses, and let P be the power plant. Let us define N∗ =
N∪{0}. For (i, j) ∈ N2

∗ , i 6= j, the cost of connecting i and j by the edge eij is ci,j . For
a coalition of houses C ⊆ N , let Γ(C) be a minimum cost spanning tree over the set of
edges C∩{P}. In other words, when the houses form a coalition C, they try to minimize
the cost of connected them to the power plant. Let (N, c) be the corresponding cost
game in which the cost of coalition C ⊆ N is defined as c(C) =

∑
(i,j)∈Γ(C) cij .

1

2
3

4

5
0

2.2.4. THEOREM. Every minimum cost spanning tree game has a non-empty core.

Proof. Let us define a cost distribution x and then we will show that x is in the core.
Let T = (N,EN) a minimum cost spanning tree for the graph

(
N∗, c{ij}⊆N2∗

)
. Let

i be a customer. Since T is a tree, there is a unique path (0, a1, . . . , ak, i) from 0 to i.
The cost paid by agent i is defined by xi = cak,i.

This cost allocation is efficient by construction of x.
We need to show the cost allocation is group rational, i.e., for all coalition S, we

have x(S) ≤ v(S) (it is a cost, which explains the inequality).
Let S ⊂ N and TS = (S ∪ {0}, Es) be a minimum cost spanning tree of the graph(
S ∪ {0}, c{ij}∈S∪{0}

)
. Let extand the tree TS to a graph T+

S = (N∗, E
+
N) by adding
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the remaining customers N \ S, and for each customer i ∈ N \ S, we add the edge of
EN ending in i, i.e., we add the edge (ak, i). The graph T+

S has |S| + |N \ S| edges
an is connected. Hence, T+

S is a spanning tree. Now, we note that c(S) + x(N \ S) =∑
eij⊆E+

N
cij ≥

∑
eij⊆EN

= c(N) = x(N). The inequality is due to the fact that T+
S is

a spanning tree, and T is a minimum spanning tree. It follows that x(S) ≤ v(S). 4 �

2.3 Characterization of games with a non-empty core

We saw that the core may be empty, but that some classes of games have a non-empty
core. The next issue is whether we can characterize the games with non-empty core.
It turns out that the answer is yes, and the characterization has been found indepen-
dently by Bondareva (1963) and Shapley (1967), resulting in what is now known as
the Bondareva–Shapley theorem. This result connects results from linear program-
ming with the concept of the core. In the following, we will first write the definition
of elements in the core as an optimization problem. Then, we will briefly introduce
linear programming and we will use a result to charaterize the games with non-empty
core, which is the Bondareva-Shapley theorem. Finally, we will apply the Bondareva-
Shapley theorem to market games.

2.3.1 Expressing the core as an optimization problem

The main idea is to consider that the core can be expressed as a solution of a con-
straint linear optimization problem where the condition imposed by group rationality
are the constraints of the optimization problem and the objective function is the sum
of the payoffs of the agents. Let us consider a TU game (N, v), let x denote a payoff
distribution and let us consider the following optimization problem:

(LP )

{
minx(N)
subject to x(C) ≥ v(C) for all C ⊆ N , S 6= ∅

The linear constraints are the constraints of group rationality: for each coalition C ⊆
N , we want x(C) ≥ v(C). Satisfying these constraints only is easy: one simply needs
to choose large enough values for each xi. If an element y ∈ Rn satisfies all these
constraints (this is called a feasible solution), then y is group rational. The group
rationality assumption for the grand coalition guarantees that we have y(N) ≥ v(N).
For y to be in the core, it also needs to be efficient. This forces us to choose values that
are not too large for the yi. The idea is then to search for the elements that minimize
y(N) =

∑
i∈N yi.

When solving this optimization problem, two things may happen. Either the mini-
mum value found is v(N), or it is a value strictly greater.
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• In the first case, the solutions x of the optimization problems are elements of the
core: they satisfy the constraints – hence, they are group rational – and since the
minimum is v(N), x is efficient as well.

• In the second case, it is not possible to satisfy both group rationality and effi-
ciency, and the core of the game is empty.

• there is no other cases as a solution of the optimization problem would satisfy
all the constraints, in particular the one for the grand coalition.

The optimization problem we wrote is called a linear program. It minimizes a
linear function of a vector x subject to a set of constraints where each constraint is an
inequality: a linear combination of x is larger than a constant. This problem is a well
established problem in optimization and in the following, we give a brief introduction
to such problems.

2.3.2 A very brief introduction to linear programming
The goal of this section is to briefly introduce linear programming, which is a special
kind of optimization problems: the problem is about maximizing a linear function
subject to linear constraints. More formally, a linear program has the following form:





max cTx

subject to
{
Ax ≤ b,
x ≥ 0

where

• x ∈ Rn is a vector of n variables

• c ∈ Rn is the objective function

• A is a m× n matrix

• b ∈ Rn is a vector of size n

A and b represent the linear constraints. Let us look at a simple example:




maximize 8x1 + 10x2 + 5x3

subject to
{

3x1 + 4x2 + 2x3 ≤ 7 (1)
x1 + x2 + x3 ≤ 2 (2)

In this example, we can recognize the different components A, B and C to be:

A =

(
3 4 2
1 1 1

)
b =

(
7
2

)
c =




8
10
5


 .

We say that a solution is feasible when it satisfies the constraints. For our example,
we have:
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• 〈0, 1, 1〉 is feasible, with objective function value 15.

• 〈1, 1, 0〉 is feasible, with objective function value 18, hence it is a better solution.

Next, we introduce the notion of the dual of a LP: it is another linear program
which goal is to find an upper bound to the objective function of the original LP. Let us
first look at our example and let us consider the following two linear transformations:

(1)× 1 + (2)× 6 ë 9x1 + 10x2 + 8x3 ≤ 19
(1)× 2 + (2)× 2 ë 8x1 + 10x2 + 6x3 ≤ 18

by taking linear combinations over the constraints, we are able to form a new constraint
that provides an upper bound for the objective function. The reason is that in the new
constraint we formed, the coefficients for x1, x2 and x3 are larger or equal to the ones of
the objective function, hence, it must be the case that the bound is an upper bound for
the objective function. Using the second new constraint, we observe that the solution
cannot be better than 18. But we already found one feasible solution with a value of
18, so we have solved the problem! 4

Hence, one idea of the dual is to find a new constraint that is a linear combination
of all the constraints of the primal: yTA ≤ yT b (where y ∈ Rm). This new constraint
must generate the lowest value – as yT b will be the upper bound of a solution –, and
the coefficient of yTA must be larger than the coefficients of the objective function,
i.e., yTA ≥ cT . Hence, the dual can be written in the following way:

Primal Dual





max cTx

subject to
{
Ax ≤ b,
x ≥ 0





min yT b

subject to
{
yTA ≥ cT ,
y ≥ 0

The following theorems link the solution of the primal and the dual problems.

2.3.1. THEOREM (DUALITY THEOREM). When the primal and the dual are feasible,
they have optimal solutions with equal value of their objective function.

2.3.2. THEOREM (WEAK LP DUALITY). For a pair x, y of feasible solutions of the
primal LP and its dual LP, the objective functions are mutual bounds:

yT b ≤ cTx

If thereby cTx = yT b (equality holds), then these two solutions are optimal for both
LPs.

Proof. We have yTAx ≥ yT b since Ax ≥ b, y ≥ 0, and yTAx ≤ cTx since yTA ≤ c ,
x ≥ 0. It is immediate that equality of the objective functions implies optimality. �
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2.3.3 Linear programming and the core
Now, let us go back to the core. The linear programming problem that corresponds to
the core is:

(LP )

{
minx(N)
subject to x(C) ≥ v(C) for all C ⊆ N , S 6= ∅

First, this formulation is not exactly the one what have just introduced since it is a
minimization and the constraints are of the form: “a linear combination of x is greater
than a constant”. It should not be difficult to get convinced that these two kinds of
optimization problems are symmetrical and have similar properties. In terms of the
conventional way to write the primal, we identify the following components:

• the vector c ∈ Rn is the vector 〈1, 1, . . . , 1〉.

• the vector b ∈ R2n contains the value of each coalition, i.e., we can index the
elements of b by using a coalition and the elements of b are bC = v(C).

• The matrix A has 2n rows (one for each coalition) and n columns (one for each
agent). The entries of A are either 0 or 1. Let us consider one coalition C, the
corresponding constraint for the core is

∑
k∈C xk ≥ v(C). Let us say that the

value of coalition C appears in row i of vector b, i.e. the constraint about C is
expressed in the ith row of Ax ≥ b. Consequently, the ith row of A encodes
which agent are present in coalition C: the entry A(i, j) is 1 if j ∈ C and 0
otherwise.

Now, we write the dual which maximises yT b over all vectors y ∈ R2n

+ .




max yT b

subject to
{
yTA ≤ cT ,
y ≥ 0

Now, let us introduce some notations to help us write the matrix A.

2.3.3. DEFINITION. [Characteristic vector] Let C ⊆ N . The characteristic vector
χC ∈ RN of C is the member of RN defined by

χi
C =

{
1 if i ∈ C
0 if i ∈ N \ C

The characteristic vector of a coalition simply encodes which agents are present in a
coalition. For example, for n = 4, χ{2,4} = 〈0, 1, 0, 1〉. This will be helpful to express
the rows of A.

2.3.4. DEFINITION. [Map] A map is a function 2N \ ∅ → R+ that gives a positive
weight to each coalition.
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A map can be seen as a positive weight that is given to each coalition. Hence, the
solution y of the dual can be called a map.

2.3.5. DEFINITION. [Balanced map] A function λ : 2N \ ∅ → R+ is a balanced map
iff
∑
C⊆N λ(C)χC = χN . For convenience, we will write λ(C) = λC .

We provide an example in Table 2.1 for a three-player game. λC is a scalar and χC is
a vector of Rn, so the condition features the equality between a sum over 2n vectors
of Rn and χN ∈ Rn that is nothing but the vector of Rn containing the value 1 for
each entry. This will be useful to write the constraints of the dual (we will give further
explanation in the following).

i 1 2 3
λ{1,2}χi

{1,2}
1
2

1
2

0
λ{1,3}χi

{1,3}
1
2

0 1
2

λ{2,3}χi
{2,3} 0 1

2
1
2

λC =

{
1
2

if |C| = 2
0 otherwise

Each of the column sums up to 1.
1
2
χ{1,2} + 1

2
χ{1,3} + 1

2
χ{2,3} = χ{1,2,3}

Table 2.1: Example of a balanced map for n = 3

One can interpret a balanced map as a percentage of time spent by each agent in
each possible coalition: for each agent i, the sum of the map for all coalitions contain-
ing agent i must sum up to one.

Given these notational tools, let us re-write the dual.

• for the objective function: yT · b is the dot product of the variable y with the
value of each coalition. If we use a coalition to index the entries of the vector y
– or if we say we are using a map y –, the objective function can be written as∑
C⊆N yCv(C).

• for the constraints, we have yTA ≤ cT . First cT is a vector composed of 1. It is
also the vector χN as all the agents are present in N .

Then we have the dot product between yT and A: the result of this product is
a vector of size n. Let us consider the ith entry of the product: it is the dot
product between yT and the ith column of A (both vectors are of size 2n and we
can indexed them using coalition). We can write this as

∑
C⊆N yCA(C, i) and we

note that A(C, i) = 1 if i ∈ C and 0 otherwise. That is here that our notation
comes handy and we can write

∑
C⊆N yCA(C, i) =

∑
C⊆N yCχ

i
C . Writing for the

entire vector, we finally have yTA =
∑
C⊆N yCχC .

Finally, we have shown that the constraints become
∑
C⊆N yCχC ≤ χN .
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With our notation, we can now write the dual of LP as:

(DLP )





max
∑
C⊆N yCv(C)

subject to
{ ∑

C⊆N yCχC ≤ χN and,
yC ≥ 0 for all C ⊆ N , C 6= ∅.

Let us consider a game (N, v) with a non-empty core. This means that the dual is
feasible (there are payoff distributions that satisfy the constraints) and that the optimal
payoff has a value of v(N), i.e. it is efficient.

Note that the dual is also feasible. Since one can always define a balanced map, we
are guaranteed that there exists some y ∈ R2n

+ such that
∑
C⊆N yCχC ≤ χN ).

Since v(N) is the minimum of the primal, by Theorem 2.3.2 it is an upper bound
of the dual and it follows that max

∑
C⊆N yCv(C) ≤ v(N). With this, we conclude that

if a game has a non-empty core we have max
∑
C⊆N yCv(C) ≤ v(N). To characterize

games with a non-empty core, we need to prove the converse. First, let us give a name
to our condition.

2.3.6. DEFINITION. [Balanced game] A game is balanced iff for each balanced map
λ we have ∑

C⊆N,C6=∅
λ(C)v(C) ≤ v(N).

Let us consider that a game (N, v) is balanced, i.e., for each balanced map λ, we
have

∑
C⊆N λCv(C) ≤ v(N). We know that the dual is feasible (using any balanced

map). With the use of a balanced map, we reach the equality for the constraints (i.e.
each constraint is an inequality, but with the balanced map we reach an equality). Since
the coefficients are positive, we will not be able to improve the optimal value of the
dual. Hence, v(N) is the optimal value.

Now, let us go back to the primal. The vector 〈0, . . . , 0〉 is feasible, so the primal is
feasible. Using theorem 2.3.2, we know that v(N) is a lower bound for the primal, i.e
v(N) ≤ x(N). Applying group rationality to the grand coalition, we also know that
a solution must satisfy x(N) ≥ v(N). Consequently, v(N) is also the solution to the
primal. Hence, the core is non-empty.

We have thus proved a characterization of games with non-empty core. This results
was established independently by Bondareva (1963) and Shapley (1967).

2.3.7. THEOREM (BONDAREVA-SHAPLEY THEOREM). A TU game has a non-empty
core iff it is balanced.

This theorem completely characterizes the set of games with a non-empty core.
However, it is not always easy or computationally feasible to check that it is a balanced
game.
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2.3.4 Application to market games
One example of coalitional games coming from the field of economics is a market
game. This game models an environment where there is a given, fixed quantity of a
set of continuous good. Initially, these goods are distributed among the players in an
arbitrary way. The quantity of each good is called the endowment of the good. Each
agent i has a valuation function that takes as input a vector describing its endowment
for each good and that output a utility for possessing these goods (the agents do not
perform any transformation, i.e., the goods are conserved as they are). To increase their
utility, the agents are free to trade goods. When the agents are forming a coalition, they
are trying to allocate the goods such that the social welfare of the coalition (i.e. the
sum of the utility of each member of the coalition) is maximized. We now provide the
formal definition.

A market is a quadruple (N,M,A, F ) where

• N is a set of traders

• M is a set of m continuous good

• A = (ai)i∈N is the initial endowment vector

• F = (fi)i∈N is the valuation function vector, each fi is continuous and concave.

• v(S) = max

{∑

i∈S
fi(xi)

∣∣∣ xi ∈ Rm
+ ,
∑

i∈S
xi =

∑

i∈S
ai

}

• we further assume that the fi are continuous and concave.

Let us assume that the players form the grand coalition: all the players are in the
market and try to maximize the sum of utility of the market. How should this utility be
shared amond the players? One way to answer this question is by using an allocation
that is in the core. One interesting property is that the core of such game is guaranteed
to be non-empty, and one way to prove it is to use the Bondareva-Shapley theorem.

2.3.8. THEOREM. Every Market Game is balanced.

Proof.
f : Rn → R is concave iff ∀α ∈ [0, 1], ∀(x, y) ∈ Rn, f(αx + (1 − α)y) ≥

αf(x) + (1 − α)f(y). It follows from this definition that for f : R → R, ∀x ∈ Rn,
∀λ ∈ Rn

+ such that
∑n

i=1 λi = 1, we have f(
∑n

i=1 λixi) ≥
∑n

i=1 λif(xi).
Since the fis are continuous,

∑
i∈S fi(xi) is a continuous mapping from

T=
{

(xi)i∈S | ∀i ∈ Rk
+, ∀xi ∈ Rk

+,
∑

i∈S xi =
∑

i∈S ai
}

to R. Moreover, T is compact
(it is closed and bounded). Thanks to the extreme value theorem from calculus, we
conclude that

∑
i∈S fi(xi) attains a maximum.
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For a coalition S ⊆ N , let xS = 〈xS1 , . . . , xSn〉 be the endowment that achieves
the maximum value for the coalition S, i.e., v(S) =

∑
i∈S fi(x

S
i ). In other words, the

members of S have made some trades that have improved the value of the coalition S
up to its maximal value.

Let λ be a balanced map. Let y ∈ Rn
+ defined as follows: yi =

∑
S∈Ci λSx

S
i where

Ci is the set of coalitions that contains agent i.
First, note that y is a feasible payoff function.

∑

i∈N
yi =

∑

i∈N

∑

S∈Ci
λSx

S
i =

∑

S⊆N

∑

i∈S
λSx

S
i =

∑

S⊆N
λS
∑

i∈S
xSi

=
∑

S⊆N
λS
∑

i∈S
ai since xSi was achieved by a sequence of trades within the members of S

=
∑

i∈N
ai
∑

S∈Ci
λS

=
∑

i∈N
ai as λ is balanced,

(
i.e., the sum of the weights over all coalitions
of one agent sums up to 1

)

Then, by definition of v, we have v(N) ≥∑i∈N fi(yi). 4

The fi are concave and since
∑

S∈Ci λS = 1, we have

fi(
∑

S∈Ci
λSx

S
i ) ≥

∑

S∈Ci

λSfi(x
S
i ).

It follows:

v(N) ≥
∑

i∈N
fi(yi) ≥

∑

i∈N
fi(
∑

S∈Ci
λSx

S
i ) ≥

∑

i∈N

∑

S∈Ci
λSfi(x

S
i ) ≥

∑

S⊆N
λS
∑

i∈S
fi(x

S
i ) ≥

∑

S⊆N
λSv(S).

This inequality proves that the game is balanced. 4 �

2.4 Extension of the core
There are few extensions to the concept of the Core. As discussed above, one main is-
sue of the Core is that it can be empty. In particular, a member of a coalition may block
the formation so as to gain a very small payoff. When the cost of building a coalition is
considered, it can be argued that it is not worth blocking a coalition for a small utility
gain. The strong and weak ε-Core concepts model this possibility. The constraints
defining the strong (respectively the weak) ε-Core become ∀T ⊆ N, x(T ) ≥ v(T )− ε,
(respectively ∀T ⊆ N, x(T ) ≥ v(T )−|T | ·ε). In the weak Core, the minimum amount
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of utility required to block a coalition is per player, whereas for the strong Core, it is a
fixed amount. If one picks ε large enough, the strong or weak ε-core will exist. When
decreasing the value of ε, there will be a threshold ε? such that for ε < ε? the ε core
ceases to be non-empty. This special ε-core is then called the the least core.

2.5 Games with Coalition Structure
Thus far, we stated that the grand coalition is formed. With this definition, checking
whether the core is empty amounts to checking whether the grand coalition is stable.
In many studies in economics, the superadditivity of the valuation function is not ex-
plicitly stated, but it is implicitly assumed and hence, it makes sense to consider only
the grand coalition. But when the valuation function is not superadditive, agents may
have an incentive to form a different partition.

We recall that a coalition structure (CS) is a partition of the grand coalitions. If S
is a CS, then S = {C1, . . . , Cm} where each Ci is a coalition such that ∪m

i=1Ci = N and
i 6= j ⇒ Ci ∩ Cj = ∅.

Aumann and Drèze discuss why the coalition formation process may generate a
CS that is not the grand coalition [1]. One reason they mention is that the valuation
may not be superadditive (and they provide some discussion about why it may be
the case). Another reason is that a CS may “reflect considerations that are excluded
from the formal description of the game by necessity (impossibility to measure or
communicate) or by choice” [1]. For example, the affinities can be based on location,
or trust relations, etc.

2.5.1. DEFINITION. [Game with coalition structure] A game with coalition structure
is a triplet (N, v, S), where (N, v) is a TU game, and S is a particular CS. In addition,
transfer of utility is only permitted within (not between) the coalitions of S, i.e., ∀C ∈
S, x(C) ≤ v(C).

Another way to understand this definition is to consider that the problems of decid-
ing which coalition forms and how to share the coalition’s payoff are decoupled: the
choice of the coalition is made first and results in the CS. Only the payoff distribution
choice is left open. The agents are allowed to refer to the value of coalition with agents
oustide of their coalition (i.e., opportunities they would get outside of their coalition)
to negotiate a better payoff. Aumann and Drèze use an example of researchers in game
theory that want to work in their own country, i.e., they want to belong to the coalition
of game theorists of their country. They can refer to offers from foreign countries in
order to negotiate their salaries. Note that the agents’ goal is not to change the CS, but
only to negotiate a better payoff for themselves.

First, we need to define the set of possible payoffs: the payoff distributions such
that the sum of the payoff of the members of a coalition in the CS does not exceed the
value of that coalition. More formally:
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2.5.2. DEFINITION. [Feasible payoff] Let (N, v,S) be a TU game with CS. The set of
feasible payoff distributions is X(N,v,S) = {x ∈ Rn | ∀C ∈ Sx(C) ≤ v(C)}.

A payoff distribution x is efficient with respect to a CS S when ∀C ∈ S,
∑

i∈C xj =
v(C). A payoff distribution is an imputation when it is efficient (with respect to the
current CS) and individually rational (i.e., ∀i ∈ N , xi ≥ v({i})). The set of all
imputations for a CS S is denoted by Imp(S). We can now state the definition of the
core:

2.5.3. DEFINITION. [Core] The core of a game (N, v,S) is the set of all PCs (S, x)
such that x ∈ Imp(S) and ∀C ⊆ N ,

∑
i∈C xj ≥ v(C), i.e.,

core(N, v,S) = {x ∈ Rn | (∀C ∈ S, x(C) ≤ v(C)) ∧ (∀C ⊆ N, x(C) ≥ v(C))}.

We now provide a theorem by Aumann and Drèze which shows that the core satisfies
a desirable properties: if two agents can be substituted, then a core allocation must
provide them identical payoffs.

2.5.4. DEFINITION. [Substitutes] Let (N, v) be a game and (i, j) ∈ N2. Agents i and
j are substitutes iff ∀C ⊆ N \ {i, j}, v(C ∪ {i}) = v(C ∪ {j}).

Since the agents have the same impact on all coalitions that do not include them, it
would be fair if they obtained the same payoff. For the core of a game in CS, this is
indeed the case.

2.5.5. THEOREM. Let (N, v,S) be a game with coalition structure, let i and j be sub-
stitutes, and let x ∈ core(N, v,S). If i and j belong to different members of S, then
xi = xj .

Proof. Let (i, j) ∈ N2 be substitutes, C ∈ S such that i ∈ C and j /∈ C. Let
x ∈ Core(N, v,S). Since i and j are substitutes, we have

v((C \ {i}) ∪ {j}) = v((C \ {i}) ∪ {i}) = v(C).

Since x ∈ Core(N, v,S), we have ∀C ⊆ N , x(C) ≥ v(C), we apply this to the
coalition (C \ {i}) ∪ {j}:
0 ≥ v((C \ {i}) ∪ {j})− x((C \ {i}) ∪ {j}) = v(C)− x(C) + xi − xj . Since C ∈ S
and x ∈ Core(N, v,S), we have x(C) = v(C). We can then simplified the previous
expression and we obtain xj ≥ xi.

Since i and j play symmetric roles, we have also xi ≥ xj and finally, we obtain
xi = xj . 4 �

Aumann and Drèze made a link from a game with CS to a special superadditive
game (N, v̂) called the superadditive cover [1].
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2.5.6. DEFINITION. [Superadditive cover] The superadditive cover of (N, v) is the
game (N, v̂) defined by



v̂(C) = max
P∈SC

{∑

T∈P
v(T )

}
∀C ⊆ N \ ∅

v̂(∅) = 0

In other words, v̂(C) is the maximal value that can be generated by any partition of
C1. The superadditive cover is a superadditive game. The following theorem, from [1]
shows that a necessary condition for (N, v,S) to have a non empty core is that S is an
optimal CS.

2.5.7. THEOREM. Let (N, v,S) be a game with coalition structure. Then

a) Core(N, v,S) 6= ∅ iff Core(N, v̂) 6= ∅ ∧ v̂(N) =
∑

C∈S
v(C)

b) if Core(N, v,S) 6= ∅, then Core(N, v,S) = Core(N, v̂)

Proof. Proof of part a)

⇒ Let x ∈ Core(N, v,S). We show that x ∈ Core(N, v̂) as well. Let C ⊆ N \ ∅
and PC ∈ SC be a partition of C. By definition of the core, for every S ⊆ N we
have x(S) ≥ v(S). The payoff of coalition C is

x(C) =
∑

i∈C
xi =

∑

S∈PC
x(S) ≥

∑

S∈PC
v(S),

which is valid for all partitions of C. Hence, x(C) ≥ max
PC∈SC

∑

S∈PC
v(S) = v̂(C).

We have just proved ∀C ⊆ N \ ∅, x(C) ≥ v̂(C), and so x is group rational. 4

We now need to prove that v̂(N) =
∑

C∈S
v(C).

x(N) =
∑
C∈S v(C) since x is in the core of (N, v,S) (efficient). Applying the

inequality above, we have x(N) =
∑
C∈S v(C) ≥ v̂(N).

Applying the definition of the valuation function v̂, we have v̂(N) ≥∑C∈S v(C).
Consequently, v̂(N) =

∑
C∈S v(C) and it follows that x is efficient for the game

(N, v̂)4

Hence x ∈ Core(N, v̂).

1Note that for the grand coalition, we have v̂(N) = max
P∈SN

{∑

T∈P
v(T )

}
, i.e., v̂(N) is the maximum

value that can be produced by N . We call it the value of the optimal coalition structure. For some
application, on issue (that will be studied later) is to find this value.
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⇐ Let’s assume x ∈ Core(N, v̂) and v̂(N) =
∑

C∈S
v(C). We need to prove that

x ∈ Core(N, v,S).

For every C ⊆ N , x(C) ≥ v̂(C) since x is in the core of Core(N, v̂). Then
x(C) ≥ max

PC∈SC

∑

S∈PC
v(S) ≥ v(C) using {C} as a partition of C, which proves x is

group rational. 4

x(N) = v̂(N) =
∑
C∈S v(C) since x is efficient. It follows that ∀C ∈ S, we

must have x(C) = v(C), which proves x is feasible for the CS S, and that x is
efficient.4

Hence, x ∈ Core(N, v,S). 4

proof of part b):

We have just proved that x ∈ Core(N, v̂) implies that x ∈ Core(N, v,S) and x ∈
Core(N, v,S) implies that x ∈ Core(N, v̂). This proves that if Core(N, v,S) 6= ∅,
Core(N, v̂) = Core(N, v,S).

�
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