
Lecture 5
The Kernel

The Kernel is another stability concept that weakens the stability requirements of the
core. It was first introduced by Davis and Maschler [3]. The definition of the kernel is
based on the excess of a coalition. For the nucleolus, a positive excess was interpreted
as an amount of complaint as by forming a coalition with positive excess, some payoff
was lost. In the kernel, a positive excess is interpreted as a measure of threat: in the
current payoff distribution, if some agents deviate by forming coalition with positive
excess, they are able to increase their payoff by redistributing the excess between them.
When any two agents in a coalition have similar threatening powers, the kernel consid-
ers that the payoff is stable. In the following, we will see two definitions of the kernel
and we will see that it is guaranteed to be non-empty.

5.1 Definition of the Kernel
We recall that the excess related to coalition C for a payoff distribution x is defined as
e(C, x) = v(C)− x(C). We saw that a positive excess can be interpreted as an amount
of complaint for a coalition. We can also interpret the excess as a potential to generate
more utility. Let us consider that the agents are forming a CS S = {C1, . . . , Ck}, and
let consider that the excess of a coalition C /∈ S is positive. Agent i ∈ C can view the
positive excess as a measure of his strength: if she leaves its current coalition in S and
forms coalition C ⊆ N , she has the power to generate some surplus e(C, x). When
two agents want to compare their strength, they can compare the maximum excess of
a coalition that contains them and excludes the other agent, and the kernel is based on
this idea.

5.1.1. DEFINITION. [Maximum surplus] For a TU game (N, v), the maximum surplus
sk,l(x) of agent k over agent l with respect to a payoff distribution x is

sk,l(x) = max
C⊆N | k∈C, l /∈C

e(C, x).
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54 Lecture 5. The Kernel

For two agents k and l, the maximum surplus sk,l of agent k over agent l with re-
spect to x is the maximum excess from a coalition that includes k but does exclude l.
This maximum surplus can be used by agent k to show its strength over agent l: as-
suming it is positive and that agent k can claim all of it, she can argue that she will
be better off without agent l; hence she should be compensated with more utility for
staying in the current coalition. When any two agents in a coalition have the same
maximum surplus (except for a special case), the agents are said to be in equilibrium.
A payoff distribution is in the Kernel when all agents are in equilibrium. The formal
definitions follow:

5.1.2. DEFINITION. [kernel] Let (N, v,S) be a TU game with coalition structure. The
kernel is the set of imputations x ∈ Imp(S) such that for every coalition C ∈ S, if
(k, l) ∈ C2, k 6= l, then we have either skl(x) ≥ slk(x) or xk = v({k}).

First, note that the definition of the kernel is for a particular coalition structure. The
agents do not try to change the structure, but they argue about the payoff distribution.
Another observation is that the kernel is a subset of the set of imputations(we could de-
fine a pre-kernel and show this solution does not satisfy individual rationality). Finally,
the stability condition must be satisfied by any two agents that are in the same coali-
tion. This condition may appear to surprising at first as one would expect an equality
between the maximum surpluses of the two agents. The condition skl(x) < slk(x) calls
for a transfer of utility from k to l unless it is prevented by individual rationality, i.e.,
by the fact that xk = v({k}). Hence, it is possible that agent l has a strictly greater
maximum excess than k when the payoff of k is her minimum payoff v({k}).

5.2 Another definition
As for the bargaining set and the nucleolus, the kernel can be defined using objec-
tions and counter objections. For the kernel, objections and counter-objections are
exchanged between two members of the same coalition in S. Objections and counter-
objections take the form of coalitions only (unlike for the the bargaining set and the nu-
cleolus for which a payoff distribution was part of an objection and counter-objection).

Let us consider a game with CS 〈N, v,S〉 and let us consider a coalition C ∈ S
such that both agents k and l are in C.

Objection: A coalition P ⊆ N is an objection of k against l to x iff k ∈ P , l /∈ P and
xl > v({l}).

“P is a coalition that contains k, excludes l and which sacrifices too
much (or gains too little).”

An objection of agent k against agent l is simply a coalition P that has some
issues according to agent k. The only constraint is that agent l is not a member of
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that coalition. A counter-objection of agent l is then a coalition Q that excludes
agent k which has a greater (or equal) excess than e(P, x).

Counter-objection: A coalition Q ⊆ N is a counter-objection to the objection P of k
against l at x iff l ∈ Q, k /∈ Q and e(Q, x) ≥ e(P, x).

“k’s demand is not justified: Q is a coalition that contains l and ex-
cludes k and that sacrifices even more (or gains even less).”

Note that if the inequality is strict, we can view Q as a new objection against agent
l. Remember that the set of feasible payoff vectors for (N, v,S) is X(N,v,S) = {x ∈
Rn | for every C ∈ S : x(C) ≤ v(C)}. We are now ready to define the kernel.

5.2.1. DEFINITION. [Kernel] Let (N, v,S) be a TU game in coalition structure. The
kernel is the set of imputations x ∈ X(N,v,S) s.t. for any coalition C ∈ S , for each
objection P of an agent k ∈ C over any other member l ∈ C to x, there is a counter-
objection of l to P .

This definition using objections and counter-objections is very intuitive compared to
the first definition that was presented. It should be clear that both definitions coincide.

5.3 Properties of the kernel
The Kernel and the nucleolus are linked: the following result shows that the nucleolus
is included in the kernel. As a consequence, this guarantees that the Kernel is non-
empty. The second part of the result is that the kernel is included in the bargaining set.
As a consequence, the nucleolus is also included in the bargaining set and the bargain-
ing set is non-empty, a result we did not prove during the lecture on the bargaining set.
A final observation is that the kernel can be seen as a refinement of the bargaining set.

5.3.1. THEOREM. Let (N, v,S) a game with coalition structure, and let Imp 6= ∅.
Then we have:

• (i) Nu(N, v,S) ⊆ K(N, v,S)

• (ii) K(N, v,S) ⊆ BS(N, v,S)

Proof.
Let us start by proving (i).
Let x /∈ K(N, v,S), we want to show that x /∈ Nu(N, v,S).
Since x /∈ K(N, v,S), there exists a coalition C ∈ CS and two members k and l of

coalition C such that slk(x) > skl(x) and xk > v({k}). Let y be a payoff distribution
corresponding to a transfer of utility ε > 0 from k to l:

yi =





xi if i 6= k and i 6= l
xk − ε if i = k
xl + ε if i = l
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Since xk > v({k}) and slk(x) > skl(x), we can choose ε > 0 small enough such that

• xk − ε > v({k})

• slk(y) > skl(y)

We want to show that e(y)I ≤lex e(x)I. Note that for any coalition S ⊆ N such
that e(S, x) 6= e(S, y) we have either:

• k ∈ S and l /∈ S (e(S, x) > e(S, y) since e(S, y) = e(S, x) + ε > e(S, x))

• k /∈ S and l ∈ S (e(S, x) < e(S, y) since e(S, y) = e(S, x)− ε < e(S, x))

Let {B1(x), . . . , BM(x)} a partition of the set of all coalitions such that

• (S, T ) ∈ Bi(x) iff e(S, x) = e(T, x). We denote by ei(x) the common value of
the excess in Bi(x), i.e. ei(x) = e(S, x) for all S ∈ Bi(x).

• e1(x) > e2(x) > . . . > eM(x)

In other words, e(x)I = 〈e1(x), . . . , e1(x)︸ ︷︷ ︸
|B1(x)|times

, . . . , eM(x), . . . , eM(x)︸ ︷︷ ︸
|BM (x)|times

〉.

Let i∗ be the minimal value of i ∈ {1, . . . ,M} such that there is a coalition C ∈
Bi∗(x) with e(C, x) 6= e(C, y). For all i < i∗, we have Bi(x) = Bi(y) and ei(x) =
ei(y). Since slk(x) > skl(x), Bi∗ contains

• at least one coalition S that contains l but not k, for such coalition, we must have
e(S, x) > e(S, y)

• no coalition that contains k but not l.

If Bi∗(x) contains either

• coalitions that contain both k and l

• or coalitions that do not contain both k and l

Then, for any such coalitions S, we have e(S, x) = e(S, y), and it follows thatBi∗(y) ⊂
Bi∗(x).
Otherwise, we have ei∗(y) < ei∗(x).

In both cases, we have e(y) is lexicographically less than e(x), and hence y is not
in the nucleolus of the game (N, v,S). 4

We now turn to proving (ii).
Let (N, v,S) a TU game with coalition structure. Let x ∈ K(N, v,S). We want to

prove that x ∈ BS(N, v,S). To do so, we need to show that for any objection (P, y)
from any player i against any player j at x, there is a counter objection (Q, z) to (P, y).
For the bargaining set, An objection of i against j is a pair (P, y) where
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• P ⊆ N is a coalition such that i ∈ P and j /∈ P .

• y ∈ Rp where p is the size of P

• y(P ) ≤ v(P ) (y is a feasible payoff for members of P )

• ∀k ∈ P , yk ≥ xk and yi > xi

An counter-objection to (P, y) is a pair (Q, z) where

• Q ⊆ N is a coalition such that j ∈ Q and i /∈ Q.

• z ∈ Rq where q is the size of Q

• z(Q) ≤ v(Q) (z is a feasible payoff for members of Q)

• ∀k ∈ Q, zk ≥ xk

• ∀k ∈ Q ∩ P zk ≥ yk

Let (P, y) be an objection of player i against player j to x. i ∈ P , j /∈ P , y(P ) ≤
v(P ) and y(P ) > x(P ). We choose y(P ) = v(P ).

• xj = v({j}): Then ({j}, v({j})) is a counter objection to (P, y). 4

• xj > v({j}): Since x ∈ K(N, v,S) we have sji(x) ≥ sij(x) ≥ v(P )− x(P ) ≥
y(P )− x(P ) since i ∈ P , j /∈ P .

Let Q ⊆ N such that j ∈ Q, i /∈ Q and sji(x) = v(Q)− x(Q).

We have v(Q)− x(Q) ≥ y(P )− x(P ). Then, we have

v(Q) ≥ y(P ) + x(Q)− x(P )

≥ y(P ∩Q) + y(P \Q) + x(Q \ P )− x(P \Q)

> y(P ∩Q) + x(Q \ P ) since i ∈ P \Q, y(P \Q) > x(P \Q)

Let us define z as follows
{
xk if k ∈ Q \ P
yk if k ∈ Q ∩ P

(Q, z) is a counter-objection to (P, y). 4

Finally x ∈ BS(N, v,S).
�

These properties allow us to conclude that when the set of imputation is non-empty,
both the kernel and the bargaining set are non-empty.

5.3.2. THEOREM. Let 〈N, v,S〉 a game with coalition structure such that the set of
imputations Imp 6= ∅. The kernel K(N, v,S) and the bargaining set BS(N, v,S) are
non-empty.
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5.4 Computational Issues
One method for computing the Kernel is the Stearns method [7]. The idea is to build
a sequence of side-payments between agents to decrease the difference of surpluses
between the agents. At each step of the sequence, the agents with the largest maxi-
mum surplus difference exchange utility so as to decrease their surplus: the agent with
smaller surplus makes a payment to an agent with higher surplus so as to decrease their
surplus difference. After each side-payment, the maximum surplus over all agents de-
creases. In the limit, the process converges to an element in the Kernel. Computing an
element in the Kernel may require an infinite number of steps as the side payments can
become arbitrarily small, and the use of the ε-Kernel can alleviate this issue. A crite-
ria to terminate Stearns method is proposed in [6], and we present the corresponding
algorithm in Algorithm 1.

Algorithm 1: Transfer scheme to converge to a ε-Kernel-stable payoff distribu-
tion for the CS S

compute-ε-Kernel(ε, S)
repeat

for each coalition C ∈ S do
for each member i ∈ C do

for each member j ∈ C, j 6= i, do // compute the surplus

for two members of a coalition in S
sij ← maxR∈C |(i∈R, j /∈R) v(R)− x(R)

δ ← max(i,j)∈N2 |sij − sji|;
(i?, j?)← argmax(i,j)∈N2 sij − sji;
if
(
xj? − v({j}) < δ

2

)
then // payment should be individually

rational

d← xj? − v({j?});
else

d← δ
2
;

xi? ← xi? + d;
xj? ← xj? − d;

until δ
v(S)
≤ ε;

Computing a Kernel distribution is of exponential complexity. In Algorithm 1,
computing the surpluses is expensive, as we need to search through all coalitions
that contains a particular agent and does not contain another agent. Note that when
a side-payment is performed, it is necessary to recompute the maximum surpluses.
The derivation of the complexity of the Stearns method to compute a payoff in the
ε-Kernel can be found in [4, 6], and the complexity for one side-payment is O(n · 2n).
Of course, the number of side-payments depends on the precision ε and on the initial
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payoff distribution. They derive an upper bound for the number of iterations: con-
verging to an element of the ε-Kernel requires n log2( δ0

ε·v(S)
), where δ0 is the maximum

surplus difference in the initial payoff distribution. To derive a polynomial algorithm,
the number of coalitions must be bounded. The solution used in [4, 6] is to only con-
sider coalitions whose size is bounded in the interval K1, K2. The complexity of the
truncated algorithm is O(n2 · ncoalitions) where ncoalitions is the number of coalitions
with a size between K1 and K2, which is a polynomial of order K2.

5.5 Fuzzy Kernel
In order to take into account the uncertainty in the knowledge of the utility function, a
fuzzy version of stability concept can be used. Blankenburg et al. consider a coalition
to be Kernel-stable with a degree of certainty [2]. This work also presents a side-
payment scheme and shows that the complexity is similar to the crisp Kernel, and the
idea from [4] can be used for ensuring a polynomial coalition formation algorithm.
This approach assumes a linear relationship of the membership and coalition values.

Fuzzy coalitions can also allow agents to be members of multiple coalitions at
the same time, with possibly different degrees of involvement [1]. It can be mutually
beneficial for an agent to be in two different coalitions. It may be beneficial for the
agent to be in both coalition. In addition, the two coalitions may need the competence
of the same agent, though the coalitions do not have any incentive to merge as they may
not have anything to do with each other. This solution may allow to form coalitions
that involve only agents that need to work together. In the previous example, without
the possibility of being member of multiple coalitions, the two coalitions should merge
to benefit from the agent participation, and agents that would not need to be in the same
coalition are forced to be in the same coalition. In [1], the degree of involvement of an
agent in different coalition is a function of the risk involved in being in that coalition.
The risk is quantified using financial risk measures. This work presents a definition
of the Kernel based on partial membership in coalitions and introduces a coalition
formation protocol that runs in polynomial time.
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