
Lecture 1
Introduction and Definition of TU games

1.1 Introduction
The study of the theory of games gained popularity after the publication of the classical
book “Theory of games and economic behaviour” by von Neumann and Morgenstern
in 1944[6]. A game is a mathematical model of an interaction between rational agents.
The model first contains the strategy space of any participants (i.e., the actions that are
available). From these different possible action, one can build the set of all possible
states of the interaction. Then, the model contains the rules of interaction. These rules
describe what happens when participants take some valid action, i.e., they determine
what state is reached when the participants take some actions. Each participant has
her own preferences between the different states, and each participant acts so as to
obtain the best possible outcome (this is what we call rational, and we will come back
to this later). The field of strategic game studies conflicting interactions and has been
made popular with the contributions of Nash. Cooperative games is another field that
analyses cooperation between agents.

The basic framework of cooperative game was introduced by von Neumann and
Morgenstern in [6] and is called the characteristic function. A coalition is simply a
set of agents that interacts. The so called characteristic function provides a payoff to
each coalition. It is important to note that the payoff is given to a coalition, not to
individual agent. The natural question that arises is the following: if all the agents
want to cooperate, how should they share the payoff? Actually, if the agents also need
to decide whether they want to cooperate and with which other agents, we come up
with the following two key questions:

• the selection problem: which coalitions are going to form?

• the sharing problem: once the members have formed a coalition (i.e., they have
self-organized, interacted, and the coalition formed received a payoff), the prob-
lem is then how to distribute it to the different members of the coalition.

The goal of the course is to answer these two questions.
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2 Lecture 1. Introduction and Definition of TU games

In some parts of the course, we will focus only on the sharing problem and we will
assume that all the participants intend to cooperate, forming one coalition containing
all the participants (we will call this coalition the grand coalition).

The solutions to the sharing problem are called solution concepts and they are based
on different interpretations of fairness. Unfortunately, there is no unique and accepted
solution concept. For example, one possible criterion is stability: participants should
not have an incentive to “change” (we will make this notion more formal later, but
for now, let us consider that no participant want to change of coalitions or to ask for a
different share of the payoff). As we will see, not all games can satisfy the most natural
criterion modeling stability. Consequently, many other solution concepts have been
proposed. A large part of the course will be about introducing the different solution
concepts and study their properties.

We will also study some interesting special classes of games (i.e., restrictions of
the model). A class of game may be interested because of its applications. For exam-
ple, the term coalition is often used in political science: parties may form alliances to
obtain more power. Consequently, we will study a class of games that models voting
situation. A classes of game can also be interested because of some special properties
(e.g., a solution with some properties is guaranteed to exist). The properties can also
be computational. However, with cooperative games, one needs to be careful when
dealing with computational issues as the input of the game is by nature exponential.
Indeed, one needs to reason about all possible coalitions, i.e., all possible subset of the
set of agents. Consequently, there are some interesting issues in representing the games
and computing a solution. There are also some interesting issues to use, in practice,
some solution concepts.

Finally, we will study different variations about modeling of cooperation. So far,
we have talked about sharing the value of a coalition. But in some cases, there is not
really a value to share: by forming a coalition, the members are in a specific state of
the world and experience a corresponding satisfaction (e.g. think about which group
of people to talk with at a party).

The course will mainly focus on the game theoretic aspect of cooperative games,
and we will also study AI related issues towards the end of the course. Here is a rough
outline of the course.

Solution concepts

The core
Games with coalition structure and the bargaining set
The nucleolus
The kernel
The Shapley value

Specific class of games Voting games
Representation and complexity

different model NTU games and hedonic games

misc Coalition formation and related issues
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There is no official textbook for this course. There will be provide a lecture note
for each class as this one. Here are some sources I used to prepare the class:

• The last three chapters of book “A course in game theory” by Osborne and Ru-
binstein [3] are devoted to cooperative games. I will use some of this material
for the lectures on the core, the bargaining set, the kernel, the nucleolus and the
Shapley value.

• The book “An introduction to the theory of cooperative games”by Peleg and
Sudhölter [4] contains a rigorous and precise treatment of cooperative games. I
used this book for some precision, but it is a more advanced textbook.

• For computational aspects and some advanced topics, you can read “Computa-
tional Aspects of Cooperative Game Theory” [1] by Chalkiadakis, Elkind and
Wooldridge.

• Whenever appropriate, I will also refer to article from the literature.

1.2 TU games

The game theory community has extensively studied the coalition formation prob-
lem [2, 3]. The literature is divided into two main models, depending on whether
utility can be transferred between individuals. In a transferable utility game (or TU
game), it is assumed that agents can compare their utility and that a common scale of
utility exists. In this case, it is possible to define a value for a coalition as the worth the
coalition can achieve through cooperation. The agents have to share the value of the
coalition, hence utility needs to be transferable. In a so-called non-transferable utility
game (or NTU game), inter-personal comparison of utility is not possible, and agents
have a preference over the different coalitions of which it is a member. In this section,
we introduce the TU games.

1.2.1 Definitions

In the following, we use a utility-based approach and we assume that “everything has a
price”: each agent has a utility function that is expressed in currency units. The use of
a common currency enables the agents to directly compare alternative outcomes, and
it also enables side payments. The definition of a TU game is simple: it involves a
set of players and a characteristic function (a map from sets of agents to real numbers)
which represents the value that a coalition can achieve. The characteristic function
is common knowledge and the value of a coalition depends only on the other players
present in its coalition.
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Notations

We consider a set N of n agents. A coalition is a non-empty subset of N . The set N
is also known as the grand coalition. The set of all coalitions is 2N and its cardinality
is 2n. A coalition structure (CS) S = {C1, · · · , Cm} is a partition of N : each set Ci is a
coalition with ∪mi=1Ci = N and i 6= j ⇒ Ci ∩ Cj = ∅. We will denote SC the set of all
partitions of a set of agnets C ⊆ N . The set of all CSs is then denoted as SN , its size
is of the order O(nn) and ω(n

n
2 ) [5].

TU games

1.2.1. DEFINITION. A transferable utility game (TU game) is defined as a pair (N, v)
where N is the set of agents, and v : 2N → R is a characteristic function.

The characteristic function (or valuation function) v : 2N → R provides the worth or
utility of a coalition. Note that this definition assumes that the valuation of a coalition
C does not depend on the other coalitions present in the population.

Standard Assumptions: It is usually assumed that the value of the empty coalition
∅ is 0 (i,.e. v(∅) = 0; we will make that assumption throughout the class. Moreover,
it is often the case that the value of each coalition is non-negative (when agents make
profits) or else that the value of each coalition is non-posititive (when the members
share some costs). During this class, we will assume that for each coalition C, v(C) ≥
0. However, most of the definitions and results can be easily adapted.

A first example of a TU game is the majority game. Assume that the number of
agents n is odd and that the agents decide between two alternatives using a majority
vote. Also assume that no agent is indifferent, i.e., an agent always strictly prefers one
alternative over the other. We model this by assigning to a “winning coalition” the
value 1 and to the other ones the value 0, i.e.,

v(C) =
{

1 when |C| > n
2

0 otherwise

Some types of TU games

We now describes some types of valuation functions. First, we introduce a notion that
will be useful on many occasion: the notion of marginal contribution. It represent the
contribution of an agent when it joins a coalition.

1.2.2. DEFINITION. The marginal contribution of agent i ∈ N for a coalition
C ⊆ N \ {i} is mci(C) = v(C ∪ {i})− v(C).

The maximal marginal contribution mcmax
i = maxC⊆N\{i}mci(C) can been seen

as a threat that an agent can use against a coalition: the agent can threatens to leave
its current coalition to join the coalition that produces mcmax

i , arguing that it is able to
generate mcmax

i utils. The minimal marginal contribution mcmin
i = minC⊆N\{i}mci(C)
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is a minimum acceptable payoff: if the agent joins any coalition, the coalition will
benefit by at most mcmin

i , hence agent i should get at least this amount.

Additive (or inessential): ∀C1, C2 ⊆ N | C1 ∩ C2 = ∅ , v(C1 ∪ C2) = v(C1) + v(C2).
When a TU game is additive, v(C) =

∑
i∈C v(i), i.e., the worth of each coalition

is the same whether its members cooperate or not: there is no gain in cooper-
ation or any synergies between coalitions, which explains the alternative name
(inessential) used for such games.

Monotone: ∀C1 ⊆ C2 ⊆ N , v(C1) ≤ v(C2). For example, the valuation function of the
majority game is monotone: when more agents join a coalition, they cannot turn
the coalition from a winning to a losing one. Many games are monotone, how-
ever, we can imagine non-monotone games. For instance, the overhead caused
by costs of communication or the effort to cooperate may be such that adding
another agent may decrease the value of a coalition. Another example features
two agents that dislike each other: the productivity of a coalition may decrease
when both of them are members of the coalition.

Superadditive: ∀C1, C2 ⊆ N | C1 ∩ C2 = ∅ , v(C1 ∪ C2) ≥ v(C1) + v(C2), in other
words, any pair of coalitions is best off by merging into one. Many games are
super-additive. As we have assumed that the value of a coalition is positive, su-
peradditivity implies monotonicity (but the converse is not necessarily true). In
such games, social welfare is maximised by forming the grand coalition. Conse-
quently, the agents have incentives to form the grand coalition.

Subadditive: ∀C1, C2 ⊆ N | C1 ∩ C2 = ∅ , v(C1 ∪ C2) ≤ v(C1) + v(C2): the agents are
best off when they are on their own, i.e., cooperation not desirable.

Convex games: A valuation is convex if for all C ⊆ T and i /∈ T v(C ∪ {i})− v(C) ≤
v(T ∪ {i}) − v(T ). So a valuation function is convex when the marginal con-
tribution of each player increases with the size of the coalition he joins. Convex
valuation functions are superadditive.

Unconstrained. The valuation function can be superadditive for some coalitions, and
subadditive for others: some coalitions should merge when others should remain
separated. This is the most difficult and interesting environment.

Solutions

The valuation function provides a value to a set of agents, not to individual agents. The
payoff distribution x = {x1, · · · , xn} describes how the worth of the coalition is shared
between the agents, where xi is the payoff of agent i.

It will be useful to talk about the payoff obtained by the members of a coalition and
we will use the notation x(C) =

∑
i∈C x(i).
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(N, v)

v : 2N → R

(CS, x)

S ∈ SN , i.e.,
S = {C1, . . . , Ck}, Ci ⊆ N , i 6= j ⇒ Ci ∩ Cj = ∅

x ∈ Rn

?

TU game
Payoff configuration

Figure 1.1: What is solving TU games?

We can finally formalize the solution of a TU game (N, v) by introducing the con-
cept of payoff configuration (PC). A payoff configuration (PC) is a pair (S, x) where
S ∈ SN is a CS and x is a payoff distribution. The CS answers the selection prob-
lem when the payoff distribution answers the sharing problem. This is illustrated in
Figure 1.1.

Let us now illustrate all these concepts with the following three-player TU game
described in Table 1.1. In this example, there are three agents named 1, 2 and 3. There
are 7 possible coalitions and the value of each coalition is given in the table. There
are 5 CSs which are the following: {{1}, {2}, {3}}, {{1, 2}, {3}}, {{1}, {2, 3}},
{{2}, {1, 3}}, {{1, 2, 3}}. This game is monotone and superadditive, but it is not
convex.

N = {1, 2, 3}
v({1}) = 0, v({2}) = 0, v({3}) = 0

v({1, 2}) = 90

v({1, 3}) = 80

v({2, 3}) = 70

v({1, 2, 3}) = 105

Table 1.1: An example of a TU game

What PC should be chosen? Should the agents form the grand coalition and share
equally the value? The choice of the coalition can be justified by arguing that it is
the coalition that generates the most utility for the society (the game is superadditive).
However, is an equal share justified? Agent 3 could propose to agent 1 to form {1, 3}
and to share equally the value of this coalition (hence, 40 for each agent). Actually,
agent 2 can make a better offer to agent 1 by proposing an equal share of 45 if they
form {1, 2}. Agent 3 could then propose to agent 1 to form {1, 3} and to let it get
46 (agent 3 would then have 34). Is there a PC that would be preferred by all agents
at the same time? In this course, you will learn different ways to solve this problem.
Unfortunately, as for many other games, we will see that there is not one unique best
solution.
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1.2.2 Rationality concepts
In this section, we discuss some desirable properties that link the coalition values to
the agents’ individual payoff. In other words, these properties are constraints that one
would like to satisfy.

Feasible solution: First, one should not distribute more utility than is available. A
payoff x is feasible when

∑
i∈N xi ≤ v(N).

Anonymity: A solution is independent of the names of the agents. This is a pretty
mild solution that will always be satisfied.

Efficiency: x(N) = v(N) the payoff distribution is an allocation of the whole worth
of the grand coalition to all the players. In other words, no utility is lost at the
level of the population. This is particularly relevant for superadditive games.

Individual rationality: An agent i will be a member of a coalition only when xi ≥
v({i}), i.e., to be part of a coalition, a player must be better off than when it is
on its own.

Group rationality: ∀C ⊆ N , x(C) ≥ v(C), i.e., the sum of the payoff of a coalition
should be at least the value of the coalition (there should not be any loss at the
level of a coalition).

Pareto optimal payoff distribution: It may be desirable to have a payoff distribution
where no agent can improve its payoff without lowering the payoff of another
agent. More formally, a payoff distribution x is Pareto optimal iff @y ∈ Rn | ∃i ∈
N | {yi > xi and ∀j 6= i, yj ≥ xj}.

Reasonable from above: an agent should get at most its maximal threat, i.e., xi ≤
mcmax

i .

Reasonable from below: the agent should get at least its minimum acceptable reward
xi ≥ mcmin

i .

Some more notions will be helpful to discuss some solution concepts. The first is
the notion of imputation, which is a payoff distribution with the minimal acceptable
constraints.

1.2.3. DEFINITION. An imputation is a payoff distribution that is efficient and individ-
ually rational for all agents.

An imputation is a solution candidate for a payoff distribution, and can also be used
to object a payoff distribution.

The second notion is the excess which can be seen as an amount of complaint or as
a potential strength depending on the view point.
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1.2.4. DEFINITION. The excess related to a coalition C given a payoff distribution x is
e(C, x) = v(C)− x(C).

When e(C, x) > 0, the excess can be seen as an amount of complaint for the current
members of C as some part of the value of the coalition is lost. When C is not actually
formed, some agent i ∈ C can also see the excess as a potential increase of its payoff if
C was to be formed. Some stability concepts (the kernel and the nucleolus, see below)
are based on the excess of coalitions. Another stability concept can also be defined in
terms of the excess.
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