
Lecture 7
A Special Class of TU games: Voting Games

The formation of coalitions is usual in parliaments or assemblies. It is therefore in-
teresting to consider a particular class of coalitional games that models voting in an
assembly. For example, we can represent an election between two candidates as a vot-
ing game where the winning coalitions are the coalitions of size at least equal to the
half the number of voters.

7.1 Definitions
We start by providing the definition of a voting game, which can be viewed as a special
class of TU games. Then, we will formalize some known concepts used in voting. We
will see how we can define what a dictator is,

7.1.1. DEFINITION. [voting game] A game (N, v) is a voting game when

• the valuation function takes only two values: 1 for the winning coalitions, 0
otherwise.

• v satisfies unanimity: v(N) = 1

• v satisfies monotonicity: S ⊆ T ⊆ N ⇒ v(S) ≤ v(T ).

Unanimity and monotonicity are natural assumptions in most cases. Unanimity
reflects the fact that all agents agree; hence, the coalition should be winning. Mono-
tonicity tells that the addition of agents in the coalition cannot turn a winning coalition
into a losing one, which is reasonable for voting: more supporters should not harm
the coalition. A first way to represent a voting game is by listing all winning coali-
tions. Using the monotonicity property, a more succinct representation is to list only
the minimal winning coalitions.

7.1.2. DEFINITION. [Minimal winning coalition] A coalition C ⊆ N is a minimal
winning coalition iff v(C) = 1 and ∀i ∈ C v(C \ {i}) = 0.

73
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For example, we consider the game ({1, 2, 3, 4}, v) such that v(C) = 1 when
|C| ≥ 3 or (|C| = 2 and 1 ∈ C) and v(C) = 0 otherwise. The set of winning coali-
tions is {{1, 2}, {1, 3}, {1, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}, {1, 2, 3, 4}}. We
can represent the game more succinctly by just writing the set of minimal winning
coalitions, which is {{1, 2}, {1, 3}, {1, 4}, {2, 3, 4}}.

We can now see how we formalize some common terms in voting. We can first
express what a dictator is.

7.1.3. DEFINITION. [Dictator] Let (N, v) be a simple game. A player i ∈ N is a
dictator iff {i} is a winning coalition.

Note that with the requirements of simple games, it is possible to have more than
one dictator! The next notion is the notion of veto player, in which a player can block
a decision on its own by opposing to it (e.g. in the United Nations Security Council,
China, France, Russia, the United Kingdom, and the United States are veto players).

7.1.4. DEFINITION. [Veto Player] Let (N, v) be a simple game. A player i ∈ N is a
veto player if N \ {i} is a losing coalition. Alternatively, i is a veto player iff for all
winning coalition C, i ∈ C.

It also follows that a veto player is member of every minimal winning coalitions.
Another concept is the concept of a blocking coalition: it is a coalition that, on its own,
cannot win, but the support of all its members is required to win. Put another way, the
members of a blocking coalition do not have the power to win, but they have the power
to lose.

7.1.5. DEFINITION. [blocking coalition] A coalition C ⊆ N is a blocking coalition iff
C is a losing coalition and ∀S ⊆ N \ C, S \ C is a losing coalition.

7.2 Stability
We can start by studying what it means to have a stable payoff distribution in these
games. The following theorem characterizes the core of simple games.

7.2.1. THEOREM. Let (N, v) be a simple game. Then

Core(N, v) =
{
x ∈ Rn x is an imputation xi = 0 for each non-veto player i

}

Proof.

⊆ Let x ∈ Core(N, v). By definition x(N) = 1. Let i be a non-veto player.
x(N \ {i}) ≥ v(N \ {i}) = 1. Hence x(N \ {i}) = 1 and xi = 0.
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⊇ Let x be an imputation and xi = 0 for every non-veto player i. Since x(N) = 1,
the set V of veto players is non-empty and x(V ) = 1.

Let C ⊆ N . If C is a winning coalition then V ⊆ C, hence x(C) ≥ v(C).
Otherwise, v(C) is a losing coalition (which may contain veto players), and
x(C) ≥ v(C). Hence, x is group rational.

�

We can also study the class of simple convex games. The following theorem shows
that they are the games with a single minimal winning coalition.

7.2.2. THEOREM. A simple game (N, v) is convex iff it is a unanimity game (N, vV )
where V is the set of veto players.

Proof. A game is convex iff ∀S, T ⊆ N v(S) + v(T ) ≤ v(S ∩ T ) + v(S ∪ T ).

⇒ Let us assume (N, v) is convex.

If S and T are winning coalitions, S ∪T is a winning coalition by monotonicity.
Then, we have 2 ≤ 1 + v(S ∩ T ) and it follows that v(S ∩ T ) = 1. The
intersection of two winning coalitions is a winning coalition. Moreover, from
the definition of veto players, the intersection of all winning coalitions is the set
V of veto players. Hence, v(V ) = 1. By monotonicity, if V ⊆ C, v(C) = 1.
Otherwise, V * C. Then there must be a veto player i /∈ C, and it must be the
case that v(C) = 0. Hence, for all coalition C ⊆ N , v(C) = 1 iff V ⊆ C.

⇐ Let (N, vV ) a unanimity game. Let us prove it is a convex game. Let S ⊆ N and
T ⊆ N , and we want to prove that v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ).

– case V ⊆ S ∩ T : Then V ⊆ S and V ⊆ T , and we have 2 ≤ 2

– case V * S ∩ T ∧ V ⊆ S ∪ T :

∗ if V ⊆ S then V * T and 1 ≤ 1

∗ if V ⊆ T then V * S and 1 ≤ 1

∗ otherwise V * S and V * T , and then 0 ≤ 1

– case V * S ∪ T : then 0 ≤ 0

For all cases, v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), hence a unanimity game is
convex. In addition, all members of V are veto players.

�
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7.3 Weighted voting games
We now define a class of voting games that has a more succinct representation: each
agent has a weight and a coalition needs to achieve a threshold (i.e. a quota) to be
winning. This is a much more compact representation as we only use to define a vector
of weights and a threshold. The formal definition follows.

7.3.1. DEFINITION. [weighted voting game] A game (N, v, q, w) is a weighted voting
game when

• w = (w1, w2 . . . , wn) ∈ Rn
+ is a vector of weights, one for each voter

• A coalition C is winning (i.e., (v(C) = 1) iff
∑

i∈C wi ≥ q, it is losing otherwise
(i.e., (v(C) = 0)

• v satisfies monotonicity:
∑

i∈N wi ≥ q

The fact that each agent has a positive (or zero) weight ensures that the game is
monotone. We will note a weighted voting game (N,wi∈N , q) as [q; w1, . . . , wn]. In its
early days, the European Union was using a weighted voted games. Now a combination
of weighted voting games are used (a decision is accepted when it is supported by 55%
of Member States, including at least fifteen of them, representing at the same time at
least 65% of the Union’s population).

Weighted voting games is a succinct representation of a simple game. However, not
all the simple games can be represented by a weighted voting game. We say that the
representation is not complete. For example, consider the voting game ({1, 2, 3, 4}, v)
such that the set of minimal winning coalitions is {{1, 2}, {3, 4}}. Let us assume we
can represent (N, v) with a weighted voting game [q; w1, w2, w3, w4]. We can form
the following inequalities:

v({1, 2}) = 1 then w1 + w2 ≥ q
v({3, 4}) = 1 then w3 + w4 ≥ q
v({1, 3}) = 0 then w1 + w3 < q
v({2, 4}) = 0 then w2 + w4 < q

But then, w1 +w2 +w3 +w4 < 2q and w1 +w2 +w3 +w4 ≥ 2q, which is impossible.
Hence, (N, v) cannot be represented by a weighted voting game.

Not all simple games can be represented by a weighted voting game. However,
many weighted voting games represent the same simple game: two weigthed vot-
ing games may have different quotas and weights, but they may have exactly the
same winning coalitions. Two weighted voting games G = [q, w1, ..., wn] and G′ =
[q′, w′1, ..., w

′
n] are said to be equivalent when ∀C ⊆ N , w(C) ≥ q iff w′(C) ≥ q′.

The definition of weighted voting games allows to choose the weights and the quota
as a real number. From a computational point of view, storing and manipulating real
number is challenging. However, one do not need to use real numbers. The following
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result shows that any weighted voting game is equivalent to a weighted voting game
with small integer weights and quota.

7.3.2. THEOREM. For any weighted voting gameG, there exists an equivalent weighted
voting game [q, w1, ..., wn] with q ∈ N and ∀i ∈ N wi ∈ N and wi = O(2nlogn).

Without loss of generality, we can now study weighted voting games with only
integer weights and integer quota, which allows us to represent a weighted voting game
with a polynomial number of bits.

We now turn to the question about the meaning of the weight. One intuition may
be that the weight represents the importance or the strength of a player. Let us consider
some examples to check this intuition.

• [10; 7, 4, 3, 3, 1]: The set of minimal winning coalitions is {{1, 2}{1, 3}{1, 4}{2, 3, 4}}.
Player 5, although it has some weight, is a dummy. Player 2 has a higher weight
than player 3 and 4, but it is clear that player 2, 3 and 4 have the same influence.

• [51; 49, 49, 2]: The set of winning coalition is {{1, 2}, {1, 3}, {2, 3}}. It seems
that the players have symmetric roles, but it is not reflected in their weights.

These examples shows that the weights can be deceptive and may not represent the
voting power of a player. Hence, we need different tools to measure the voting power
of the voters, which is the goal of the following section.

7.4 Power Indices
The examples raise the subject of measuring the voting power of the agents in a vot-
ing game. Multiple indices have been proposed to answer these questions. In the
following, we introduce few of them, and we will discuss some weaknesses (some
paradoxical situations may occur). Finally, we briefly describe some applications.

7.4.1 Definitions
One central notion to define the power of a voter is the notion of being a Swing or
Pivotal Voter. Informally, when a coalition C is losing, a pivotal voter for that coalition
is a voter that makes the coalition C ∪ {i} win. The presence of the members of C is
not sufficient to win the election, but with the presence of i, C ∪ {i} wins and i can be
seen as an important voter.

7.4.1. DEFINITION. [Swing or Pivotal Voter] A voter i is pivotal or swing for a coali-
tion C when i turns the coalition from a losing to a wining one, i.e., v(C) = 0 and
v(C ∪ {i}) = 1.
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In the following, w is the number of winning coalitions and for a voter i, ηi is the
number of coalitions for which i is pivotal, i.e., ηi =

∑

S⊆N\{i}
v(S ∪ {i})− v(S). We

are now ready to define some power indices.

Shapley-Shubik index: it is the Shapley value of the voting game, its interpretation
in this context is the percentage of the permutations of all players in which i is
pivotal.

ISS(N, v, i) =
∑

C⊆N\{i}

|C|!(n− |C| − 1)!

n!
(v(C ∪ {i})− v(C)) .

“For each permutation, the pivotal player gets one more point.”. One issue is
that the voters do not trade the value of the coalition, though the decision that the
voters vote about is likely to affect the entire population.

Banzhaff index: For each coalition, we determine which agent is a swing agent (more
than one agent may be pivotal). The raw Banzhaff index of a player i is

βi =

∑
C⊆N\{i} v(C ∪ {i})− v(C)

2n−1
.

The interpretation is that the Banzhaff index is the percentage of coalitions for
which a player is pivotal. The raw Banzhaff index does not necessarily sum up
to one. However, for a simple game (N, v), v(N) = 1 and v(∅) = 0, at least one
player i has a power index βi 6= 0. Hence, B =

∑
j∈N βj > 0. The normalized

Banzhaff index of player i for a simple game (N, v) is defined as

IB(N, v, i) =
βi
B
.

Coleman index: Coleman defines three indices [1]: the power of the collectivity to act
A = w

2n
(A is the probability of a winning vote occurring); the power to prevent

action Pi = ηi
w

(it is the ability of a voter to change the outcome from winning
to losing by changing its vote); the power to initiate action Ii = ηi

2n−w (it is the
ability of a voter to change the outcome from losing to winning by changing its
vote, the numerator is the same as in P , but the denominator is the number of
losing coalitions, i.e., the complement of the one of P )

We provide in Table 7.1 an example of computation of the Shapley-Schubik and
Banzhaff indices. This example shows that both indices may be different. There is
a slight difference in the probability model between the Banzhaf βi and Coleman’s
index Pi: in Banzhaf’s, all the voters but i vote randomly whereas in Coleman’s, the
assumption of random voting also applies to the voter i. Hence, the Banzhaf index can
be written as βi = 2Pi · A = 2Ii · (1− A).
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{1, 2, 3, 4} {3, 1, 2, 4}
{1, 2, 4, 3} {3, 1, 4, 2}
{1, 3, 2, 4} {3, 2, 1, 4}
{1, 3, 4, 2} {3, 2, 4, 1}
{1, 4, 2, 3} {3, 4, 1, 2}
{1, 4, 3, 2} {3, 4, 2, 1}
{2, 1, 3, 4} {4, 1, 2, 3}
{2, 1, 4, 3} {4, 1, 3, 2}
{2, 3, 1, 4} {4, 2, 1, 3}
{2, 3, 4, 1} {4, 2, 3, 1}
{2, 4, 1, 3} {4, 3, 1, 2}
{2, 4, 3, 1} {4, 3, 2, 1}
In red and underlined, the pivotal agent

1 2 3 4
Sh 7

12
1
4

1
12

1
12

winning coalitions:
{1, 2}
{1, 2, 3}
{1, 2, 4}
{1, 3, 4}
{1, 2, 3, 4}
In red and underlined, the pivotal agents

1 2 3 4

β 5
8

3
8

1
8

1
8

IB(N, v, i) 1
2

3
10

1
10

1
10

Table 7.1: Shapley-Schubik and the Banzhaff indices for the weighted voting game
[7; 4, 3, 2, 1].

7.4.2 Paradoxes
The power indices may behave in an unexpected way if we modify the game. For
example, we might expect that adding voters to a game would reduce the power of
those voters that are present in the original game, but this may not be the case.

Consider the game [4; 2, 2, 1]. Player 3 is a dummy in this game, so her Shapley
Shubik or Banzhaff indices are zero. Now assume that a voter joins the game with
a weight of 1. In the resulting game G′, player 3 becomes pivotal for a coalition
consisting of one of the two voters of the original game and the new player. Hence, her
index must now be positive. This situation is known as the paradox of new player.

Another unexpected behaviour may occur when a voter i splits her identity and
weight between two voters. The sum of the new identities’ Shapley value may be quite
different from the Shapley value of voter i. This situation is known as the paradox of
size.

• increase of power by splitting identities Consider a game with |N | = n voters
[n+1; 2, 1, . . . , 1]. In this game, the only winning coalition is the grand coalition,
so ISS(N, v, i) = 1

n
. Now suppose that voter 1 splits into two voters of weight

one. We have a new game game with n+1 voters [n + 1; 1, . . . , 1]. Using a
similar argument, the Shapley Shubik index for each voter is 1

n+1
. Hence, the

joint power of the new identities is 2
n+1

, almost twice the power of agent 1 by
herself!

• decrease of power by splitting identities Consider an n-voter voting game in
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which all voters have a weight of 2 and the quota is 2n − 1, i.e., we have the
game [2n−1; 2, . . . , 2]. All the players being symmetric, the Shapley value is 1

n
.

If player 1 splits into two voters of weight 1, each of her identities has a Shapley
value of 1

n(n+1)
in the new game. Hence, the sum of the Shapley values of the

two identities is smaller than the value in the original game, by a factor of n+1
2

.

7.4.3 Applications
When designing a weighted voting game, for example to decide on the weights for
a vote for the European Union or at the United Nations, one needs to choose which
weights are to be attributed to each nation. The problem of choosing the weights so
that they corresponds to a given power index has been tackled in [2]. If the number
of country changes, you do not want to re-design and negotiate over a new game each
time. Each citizen vote for a representative and the representatives for each country
vote. It may be desirable that each citizen, irrespective of her/his nationality, has the
same voting power. If βx is the normalized Banzhaf index for a person in a country i
in EU with population ni, and βi is the normalized Banzhaf index of a representative
for country i, then Felsenthal and Machover have shown that βx ∝ βi

√
2
πni

. Thus the
Banzhaf index of each representative βi should be proportional to ni for each person
in the EU to have equal power.

7.4.4 Complexity
The computational complexity of voting and weighted voting games have been studied
in [3, 4]. For example, the problem of determining whether the core is empty is poly-
nomial. The argument for this result is the following theorem: the core of a weighted
voting game is non-empty iff there exists a veto player. When the core is non-empty,
the problem of computing the nucleolus is also polynomial, otherwise, it is an NP-
hard problem.
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