Learning in Multiagent Systems Reinforcement learning and some issues

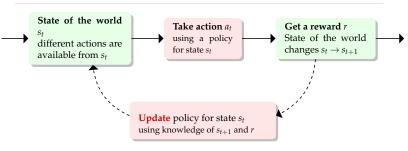
Stéphane Airiau

Université Paris Dauphine

- Reinforcement Learning (single agent)
 Learning/solving a Markov decision process (MDP)
- Competitive interactions between two (or more) agents: learning to play a game (a game as in game theory)
 Game and some solution concepts
 Btw, what are we solving exactly?
- Cooperative interaction: learning to coordinate in a (potentially) large society of agents to reach a collective goal.

Reinforcement learning – single agent learning

Learning from interaction



- Goal: obtain as much reward as possible assumes that the agent's goals are modeled using utility function,
 → flexible but may be difficult to elicit
- Reinforcement Learning: specify how to update the policy.

After taking an action *a* in a state *s*:

- the reward *r* obtained
- or the state s' reached

could in principle depend on everything that happened earlier.

However, we assume they depend on the **current state only**: this is called the Markov assumption.

ex: in chess – the state of the game does not depend on the history.

A Markov Decision Process is defined by

- States of the world S
- Action set A
- Transition probabilities: probibility of reaching state $s' \in S$ when one takes action $a \in A$ in state $s \in S$ \Rightarrow we write $Pr(s_{t+1} = s | s_t = s, a_t = a)$.
- Expected reward: the reward obtained after taking action *a* in state *s* when the agent ended up in state *s'* $E\{r_{t+1} | s_t = s, a_t = a, s_{t+1} = s'\}.$

Example: robot looking for gold in a grid world

- state of the world: a grid $n \times n$
 - some states are walls: if the agent tries to get there, it bumps and remain in the same position.
 - some states are pits (holes): if the agent enters that state, it is the end of the episode and the game restarts
 - one state contain a pot of gold
- actions are moving one cell up, down, left or right. The actions are not deterministic: e.g. wheels may be blocked and the robot may end up in a different neighbouring cell
 we have a transition probabilities *Pr*
- reward: if the agent reached the gold, it gets a reward of 100, otherwise, it gets a reward of -1.

A **policy** π : $S \times A \rightarrow [0,1]$ is a probability distribution over the action set *A* telling the probability of taking action $a \in A$ when the agent is in state $s \in S$.

A solution to a Markov Decision process is a policy that "maximises reward".

- for episodic tasks:
 - there are some terminal states
 - when an agent reaches a terminal state: reset to a starting state and the agent starts to act

 \Rightarrow maximise the expected return $R_T = r_1 + r_2 + \cdots + r_T$

• for continuing tasks

rightarrow maximise a discounted return $R_t = \sum_{k=0}^{\infty} \gamma^k r_{t+k+1}$

- γ is called the discounted rate.
 - γ = 0 the agent is myopic: she cares only about the immediate reward
 - 0 < γ < 1 when {*r*_t, *t* ∈ ℕ} is bounded, *R*_T is well defined.
 → The agent cares about the immediate reward but also for future ones (but cares more about reward in the near future than in the far one)
- we use continuing tasks

(one can represent episodic tasks using continuing tasks.)

How good it is to be in state $s \in S$ when the agent follows policy π ?

rightarrow expected return when starting in *s* and following π thereafter.

$$V^{\pi}(s) = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \, | \, s_{t} = s \right\}.$$

Similarly, how good is it to take action *a* in state *s* following policy π ?

$$Q^{\pi}(s,a) = E_{\pi} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s, a_{t} = a \right\}$$

(

notation:
$$P_{s \to s'}^{a} = E\{s_{t+1} = s \mid s_{t} = s, a_{t} = a\}$$
$$R_{s \to s'}^{a} = E\{r_{t+1} \mid s_{t} = s, a_{t} = a, s_{t+1} = s'\}$$
$$V^{\pi}(s) = E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s\right\}$$
$$= E_{\pi}\left\{r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s\right\}$$
$$= \sum_{a \in A} \pi(s, a) \sum_{s' \in S} P_{s \to s'}^{a} \left[R_{s \to s'}^{a} + \gamma E_{\pi}\left\{\sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s\right\}\right]$$
$$= \sum_{a \in A} \pi(s, a) \sum_{s' \in S} P_{s \to s'}^{a} \left[R_{s \to s'}^{a} + \gamma V^{\pi}(s')\right]$$

we can define a partial order \succeq over policies: $\pi \succeq \pi'$ iff $\forall s \in S \ V^{\pi}(s) \ge v^{\pi'}(s)$

 π^* is an optimal policy if it is not dominated by othe policies.

All optimal policies share the same

- state-value function, thus called optimal value function $V^{\star} = \max_{\pi} V^{\pi}(s)$
- action-value function $Q^* = \max_{\pi} Q^{\pi}(s, a)$

Bellman optimality equation

$$V^{\pi}(s) = \max_{a \in A} Q^{\pi^{\star}}(s, a)$$

=
$$\max_{a \in A} E_{\pi^{\star}} \left\{ \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+1} \mid s_{t} = s, a_{t} = a \right\}$$

=
$$\max_{a \in A} E_{\pi^{\star}} \left\{ r_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} r_{t+k+2} \mid s_{t} = s, a_{t} = a \right\}$$

=
$$\max_{a \in A} E_{\pi^{\star}} \{ r_{t+1} + \gamma V^{\star}(s_{t+1}) \mid s_{t} = s, a_{t} = a \}$$

=
$$\max_{a \in A} \sum_{s' \in S} P^{a}_{s \to s'} \left[R^{a}_{s \to s'} + \gamma V^{\star}(s') \right]$$

Similarly, we have

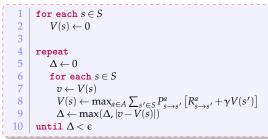
$$Q^{\star}(s,a) = \sum_{s' \in S} P^{a}_{s \to s'} \left[R^{a}_{s \to s'} + \gamma \max_{a' \in A} Q^{\star}(s',a') \right]$$

For finite MDPs, the Bellman optimality equation has a **unique** solution independent of the policy.

- \Rightarrow system of *n* equations with *n* unknowns
- \Rightarrow many ways to solve for V^*
 - dynamic programming (policy iteration, value iteration)
 - use of Monte Carlo methods for approximations
 - temporal difference learning → combine dynamic programming with Monte Carlo methods (Sarsa, Q-learning)

 \Rightarrow once V^* is known, it is easy to compute Q^*

Value Iteration (dynamic programming)



Not very useful in practice:

- need to know the dynamics of the environment
- requires large computational resources
- Markov property

RL typically uses an approximation method.

- We want to estimate the value *Q*(*s*,*a*) of taking action *a* in a state *s*.
- The update rule for Q-learning is:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \left(r_t + \gamma \max_{a \in A(s)} Q(s_t, a) - Q(s_t, a_t) \right),$$

where α is called the learning rate.

do not require a model of the environment, only experience.

Suppose you estimate the value Q(s,a) of taking an action a in state s. What should you do?

- **exploitation**: choose action $a^* = \operatorname{argmax}_{a \in A(s)} Q(s, a)$
- **exploration**: choose action $a \neq a^*$
- you cannot exploit all the time (maybe your experience is not enough to make a good choice)
- you cannot explore all the time (at some point, you should use your knowledge), but can never stop exploring (as you are never sure you are doing well)

- ϵ -greedy $a_t = \begin{cases} a^* = \operatorname{argmax}_{a \in A(s)} Q(s, a) \text{ with probability } 1 - \epsilon \\ \text{ pick a random action in } A(s) \text{ with probability } \epsilon \\ \epsilon \text{ may decrease during learning.} \end{cases}$
- Boltzmann softmax

uses a temperature parameter *T* pick an action using the distribution in which the probability of picking action *a* is proportional to $e^{\frac{Q(s,a)}{T}}$. *T* can be decreased during learning.

Only **partial** information about the current state is available. *→* the agent is uncertain about what the current state is.

the agent senses observations (responses, perceptions, views, etc) that provide some clues about the current state

- many states may share the same observation
- noisy or faulty sensors provide incomplete information from which the agent cannot infer the current state
- combinaison of both

POMDP

A Partially Observable Markov Decision Process is defined by

- States of the world $S \checkmark$
- Action set $A \checkmark$
- Observation set Ω
- Transition probabilities: probability of reaching state s' ∈ S when one takes action a ∈ A in state s ∈ S
 we write Pr(s_{t+1} = s | s_t = s, a_t = a).
- Expected reward: the reward obtained after taking action *a* in state *s* when the agent ended up in state *s'* E{*r*_{t+1} | *s*_t = *s*, *a*_t = *a*, *s*_{t+1} = *s'*}.
- Observation probability: probability of observing *o* ∈ Ω when action *a* was taken in state *s* 0 : *S* × *A* × Ω → [0,1]
- \Rightarrow the agent builds a belief about the current state and tries to find the optimal policy.
- \Rightarrow quite complex, active area of research.

Learning to play a game against another learning agent

interlude about game theory

- Agents have goals, they want to bring about some states of the world, they can take actions in their environment.
- In a multiagent system, agents interact, the actions of one may affect many other agents.
- How can we formally model such interactions?

Game theory is one way.

Two partners in crime, Row (\mathbf{R}) and Column (\mathbf{C}), are arrested by the police and are being interrogated in separate rooms. From Row's point of view, four different outcomes can occur:

- only R confesses \rightleftharpoons R gets 1 year.
- only C confesses \Rightarrow R spends 4 years in jail
- neither one confesses \Rightarrow both get 2 years in prison

The utility of an agent is (5 - number of years in prison).

	Column confesses	Column does not
Row confesses	2,2	4,1
Row does not	1,4	3,3

We can abstract this game and provide a generic game representation as follows:

Definition (Normal form game)

A normal form game (NFG) is $(N, (S_i)_{i \in N}, (u)_{i \in N})$ where

- *N* is the set of *n* players
- *S_i* is the set of strategies available to agent *i*.
- $u_i: S_1 \times \cdots \times S_n \to \mathbb{R}^n$ is the **payoff function** of agent *i*. It maps a **strategy profile** to a **utility**.

Terminology:

- an element $s = \langle s_1, ..., s_n \rangle$ of $S_1 \times \cdots \times S_n$ is called a strategy profile or a joint-strategy.
- Let s∈ S₁×···×S_n and s'_i ∈ S_i. We write (s'_i,s_{-i}) the joint-strategy which is the same as s except for agent i which plays strategy s'_i, i.e., (s'_i,s_{-i}) = ⟨s₁,...,s_{i-1},s'_i,s_{i+1},...,s_n⟩

- $N = \{Row, Column\}$
- $S_{Row} = S_{Column} = \{cooperate, defect\}$
- u_{Row} and u_{Column} are defined by the following bi-matrix.

$Row \setminus Column$	defect	cooperate
defect	2,2	4,1
cooperate	1,4	3,3

- 1. Wait to know the other action?
- 2. Not confess?
- 3. Confess?
- 4. Toss a coin?

Can you use some general principles to explain your choice?

Definition (strong dominance)

A strategy $x \in S_i$ for player *i* (strongly) dominates another strategy $y \in S_i$ if independently of the strategy played by the opponents, agent *i* (strictly) prefers *x* to *y*, i.e. $\forall s \in S_1 \times \cdots \times S_n$, $u_i(x, s_{-i}) > u_i(y, s_{-i})$

Prisoner's dilemma

	C confesses	C does not
R confesses	2,2	4,1
R does not	1,4	3,3

Both players have a dominant strategy: to confess! From Row's point of view:

- if C confesses: R is better off confessing as well.
- if C does not: R can exploit and confess.

Battle of the sexes

	L	R
Т	2,2	4,3
В	3,4	1,1

- **Problem:** Where to go on a date: Soccer or Opera?
- Requirements:
 - have a date!
 - be at your favourite place!

Do players have a dominant strategy?

Definition (Best response)

A strategy s_i of a player *i* is a **best response** to a jointstrategy s_{-i} of its opponents iff

$$\forall s_i' \in S_i, \ u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i}).$$

Definition (Nash equilibrium)

A joint-strategy $s \in S_1 \times \cdots \times S_n$ is a **Nash equilibrium** if each s_i is a best response to s_{-i} , that is

$$(\forall i \in N) \left(\forall s_i' \in S_i \right) \ u_i(s_i, s_{-i}) \ge u_i(s_i', s_{-i})$$

Battle of the sexes possesses two Nash equilibria $\langle T, R \rangle$ and $\langle B, L \rangle$.

A **Nash equilibrium** is a joint-strategy in which no player could improve their payoff by unilaterally deviating from their assigned strategy.

Prisoner's dilemma

	C confesses	C does not
R confesses	2,2	4,1
R does not	1,4	3,3

Unique Nash equilibrium: both players confess!

• if R changes unilaterally, R loses!

• if C changes unilaterally, C loses!

Definition (Pareto optimal outcome)

A joint-strategy *s* is a **Pareto optimal outcome** if for no jointstrategy *s'* $\forall i \in N u_i(s') \ge u_i(s)$ and $\exists i \in N u_i(s') > u_i(s)$

A joint-strategy is a Pareto optimal outcome when there is no outcome that is better for all players.

Prisoner's dilemma: Remaining silent is Pareto optimal.

discussion: It would be **rational** to confess! This seems counterintuitive, as both players would be better off by keeping silent.

 \Rightarrow There is a conflict: the **stable** solution (i.e., the Nash equilibrium) is not **efficient**, as the outcome is not Pareto optimal.

In *Rebel Without a Cause*, James Dean's character's, Jim, is challenged to a "Chickie Run" with Buzz, racing stolen cars towards an abyss. The one who first jumps out of the car loses and is deemed a "chicken" (coward).

	Jim drives on	Jim turns
Buzz drives on	-10,-10	5,0
Buzz turns	0,5	1,1

Dominant Strategy?

Nash equilibrium ?

- When there is no dominant strategy, an equilibrium is the next best thing.
- A game may not have a Nash equilibrium.
- If a game possesses a Nash equilibrium, it may not be unique.
- Any combinations of dominant strategies is a Nash equilibrium.
- A Nash equilibrium may not be Pareto optimal.
- Two Nash equilibria may not have the same payoffs

Definition (Mixed strategy)

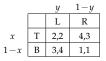
A mixed strategy p_i of a player *i* is a probability distribution over its strategy space S_i .

Assume that there are three strategies: $S_i = \{1, 2, 3\}$. Player *i* may decide to play strategy 1 with a probability of $\frac{1}{3}$, strategy 2 with a probability of $\frac{1}{2}$ and strategy 3 with a probability of $\frac{1}{6}$. The mixed strategy is then denoted as $\left\langle \frac{1}{3}, \frac{1}{2}, \frac{1}{6} \right\rangle$. Given a mixed strategy profile $n = \langle n, \dots, n \rangle$ the expected utility.

Given a mixed strategy profile $p = \langle p_1, ..., p_n \rangle$, the expected utility for agent *i* is computed as follows:

$$E_i(p) = \sum_{s \in S_1 \times \dots \times S_n} \left(\left(\prod_{j \in N} p_j(s_j) \right) \times u_i(s) \right)$$

Battle of the sexes

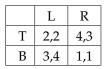


The expected utility for the Row player is: $xy \cdot 2 + x(1-y) \cdot 4 + (1-x)y \cdot 3 + (1-x)(1-y) \cdot 1$ = -4xy + 3x + 2y + 1 Given a mixed strategy profile $p = \langle p_1, ..., p_n \rangle$, we write (p'_i, p_{-i}) the mixed strategy profile which is the same as p except for player i which plays mixed strategy p'_i , i.e., $(p'_i, p_{-i}) = \langle p_1, ..., p_{i-1}, p'_i, p_{i+1}, ..., p_n \rangle$.

Definition (Mixed Nash equilibrium)

A **mixed Nash equilibrium** is a mixed strategy profile p such that $E_i(p) \ge E_i(p'_i, p_i)$ for every player i and every possible mixed strategy p'_i for i.

Battle of the sexes



Let us consider that each player plays the mixed strategy $\langle \frac{3}{4}, \frac{1}{4} \rangle$. None of the players have an incentive to deviate:

$$E_{row}(T) = \frac{3}{4} \cdot 2 + \frac{1}{4} \cdot 4 = \frac{5}{2} \qquad E_{row}(B) = \frac{3}{4} \cdot 3 + \frac{1}{4} \cdot 1 = \frac{5}{2}$$
(players are indifferent)

Theorem (J. Nash, 195))

Every finite strategic game has got at least one mixed Nash equilibrium.

note: The proofs are non-constructive and use Brouwer's or Kakutani's fixed point theorems.

J.F. Nash. Equilibrium points in *n*-person games. in *Proc. National* Academy of Sciences of the United States of America, 36:48-49, 1950.

Complexity: In general, it is a hard problem. It is a PPAD-complete problem.

Daskalakis, Goldberg, Papadimitriou: **The complexity of computing a Nash equilibrium**, in *Proc. 38th Ann. ACM Symp. Theory of Computing* (STOC), 2006

There are complexity results and algorithms for different classes of games. We will not treat then in this tutorial.

Y. Shoham & K. Leyton-Brown: Multiagent Systems, Cambridge University Press, 2009. (Chapter 4)
Nisan, Roughgarden, Tardos & Vazirani: Algorithmic Game Theory, Cambridge University Press, 2007. (chapters 2, 3)

Other types of solution concepts for NFGs

Safety strategy

With Nash equilibrium, we assumed that the opponents were **rational agents**. What if the opponents are potentially **malicious**, i.e., their goal could be to minimize the payoff of the player?

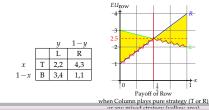
Definition (Maxmin)

For player *i*, the maxmin strategy is argmax $\min_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$, and its maxmin value or safety level is $\max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$.

1) player *i* chooses a (possibly mixed) strategy.

2) the opponents -i choose a (possible mixed) strategy that minimize i's payoff.

 \Rightarrow the maxmin strategy maximizes *i*'s **worst case** payoff.



Whatever Column does, Row can guarantee itself a payoff of 2.5 by playing the mixed strategy $\langle \frac{1}{2}, \frac{1}{2} \rangle$.

Minimax regret

Instead of assuming the opponents are rational (Nash equilibrium) or malicious (minimax), one can assume the **opponent is unpredictable** \rightleftharpoons avoid **costly mistakes**/minimize their worst-case losses.

	L	R	
Т	100,100	0,0	
В	0,0	1,1	

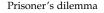
(T,L) is preferred by both agents. However, (B,R) is also a NE. There is no dominance. How to explain that (T,L) should be preferred?

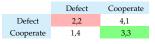
One can build a **regret-recording** game where the payoff function r_i is defined by $r_i(s_i, s_{-i}) = u_i(s_i^*, s_{-i}) - u_i(s_i, s_{-i})$, where s_i^* is *i*'s best response to s_{-i} , i.e., $r_i(s_i, s_{-i})$ is *i*'s **regret to have chosen** s_i **instead of** s_i^* .

$r_i \backslash r_j$	L	R	
Т	0,0	1,100	
В	100,1	0,0	

We define $regret_i(s_i)$ as the maximal regret *i* can have from choosing s_i . A **regret minimization strategy** is one that **minimizes the** $regret_i$ **function**.

Repeated games





When players are **rational**, both players confess!

If they trusted each other, they could both not confess and obtain $\langle 3,3 \rangle$. If the same players have to repeatedly play the game, then it could be rational not to confess.

- One shot games: there is no tomorrow.
 This is the type of games we have studied thus far.
- **Repeated games**: model a likelihood of playing the game again with the same opponent. The NFG (N, S, u) being repeated is called the **stage game**.
 - finitely repeated games
 ← represent using a EFG and use backward induction to solve the game.
 - infinitely repeated games: the game tree would be infinite, use different techniques.

What is a strategy? In a repeated game, a pure strategy depends also on the history of play thus far.

- ex: Tit-for-Tat strategy for the prisoner's dilemma: Start by not confessing. Then, play the action played by the opponent during the previous iteration.
- What is the players' objective?
 - Average criterion: Average payoff received throughout the game by player *i*: $\lim_{t\to\infty} \frac{\sum_{t=1}^{k} u_i(s^t)}{k}$, where s^t is the joint-strategy played during iteration *t*.
 - **Discounted-sum criterion:** Discounted sum of the payoff received throughout the game by player *i*: $\sum_{i=1}^{\infty} \gamma^{t} u_{i}(s^{t}), \text{ where } \gamma \text{ is the discount factor } (\gamma \text{ models how } \gamma^{t})$

 $\sum_{t=0}^{\infty} 1$ much the agent cares about the near term compared to long term).

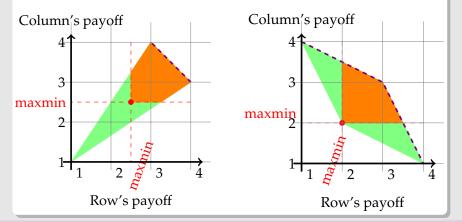
Theorem (A Folk theorem)

Using the average criterion, any payoff vector v such that

• v is feasible, i.e., $\exists \lambda \in [0,1]^{\prod_{j \in N} |S_j|}$ s.t. $v_i = \sum_{s \in \prod_{j \in N} S_j} \lambda_s v_i(s)$

• v is enforceable $v_i \ge \max_{s_i \in S_i} \min_{s_{-i} \in S_{-i}} u_i(s_i, s_{-i})$

can be sustained by a Nash equilibrium.



- In repeated games, the <u>same</u> <u>stage game</u> was played repeatedly.
- A **Stochastic game** is a set of NFGs. The agents **repeatedly** play games from this set. The next game is chosen with a probability which depends on the current game and the joint-action of the players.

Definition (Stochastic games)

A stochastic game is tuple $(N, (S_i)_{i \in N}, Q, P, (u_i)_{i \in N})$ where

- *N* is the set of players
- *S_i* is the strategy space of player *i*
- *Q* is a set of NFGs $q = (N, (S_i)_{i \in N}, (v_i^q)_{i \in N})$
- *P*: *Q*×∏_{*i*∈*N*} *S_i*×*Q*→ [0,1] is the transition function.
 P(*q*,*s*,*q'*) is the probability that game *q'* is played after game *q* when the joint-strategy *s* was played in game *q*.
- *u_i*: *Q*×∏_{*i*∈N}*S_i* is the payoff function *u_i(q,s)* is the payoff obtained by agent *i* when the joint-strategy *s* was played in game *q*.

- For stochastic games, the players know which game is currently played, i.e., they know the players of the game, the actions available to them, and their payoffs.
- In Bayesian games,
 - there is **uncertainty** about the game currently being played.
 - players have private information about the current game. The definition uses **information set**.

Back to Learning! (finally!)

Learning to play a repeated game

	Soccer	Opera		Defect	Cooperate
Soccer	3,4	1,1	Defect	2,2	4,1
Opera	2,2	3,4	Cooperate	1,4	3,3
Battle of the sexes		Prisoners' dilemma			

Assumptions:

- each player can observe the action taken by its opponent (perfect information)
- a player may not know the payoff of the other agent (incomplete information)
- the game is played repeatedly

we could make it more complex using a stochastic game.

 \sim all theoretical results about solving single-agent MDPs no longer apply!

What are we trying to do?

- descriptive approach: study the way learning takes place in real life
 - → show similarities between the formal model and nature
 - it is interesting if the formal model possesses some nice properties (e.g. convergence to a solution concept)
 - convergence to Nash equilibrium of the stage game?
 - frequency of play converges to Nash equilibrium
 - convergence to a special Nash equilibrium of the repeated game (e.g. that is also Pareto efficient).
- Prescriptive theory: how (artificial) agents should learn.
 - a learning rule should guarantee at least its maxmin payoff (safety/Individual rationality)
 - if the opponent(s) play a stationary strategy, the learning rule should play a best-response to that strategy.
 - a learning strategy should have no regret.
 - learning rule should converge in self play.

The learner believes its opponent is playing a fixed mixed strategy given by the empirical distribution of the opponents previous action.

 \Rightarrow the learner plays a best response to this mixed strategy.

intialize frequencies of the actions played by the opponent
repeat
play a best response to p
observe the action played by the opponent
and update frequencies

Theorem

2

3

4

If the empirical distribution of each player's strategies converges in fictitious play, the it converges to a Nash equilibrium

- the play converges to a NE, but the players may not play a NE and may not receive a NE expected payoff (ex anti-coordination game)
- convergence is not always guaranteed (ex Rock-paper-cisors)

- consider cooperative games
- observing its own payoff is enough
 - learns Q values for joint-actions
 - update of Q-learning is $Q(a) \leftarrow Q(a) + \alpha(r Q(a))$

- assumes a stochastic game
- must observe payoff of all players
- learns Q values for joint-actions
- update of Q-learning is $Q(s,a_1,...,a_n) \leftarrow (1-\alpha)Q(s,a_1,...,a_n) + \alpha(r + \beta NashQ(s'))$ where *NashQ* is the payoff of a selected Nash equilibrium
- converges to Nash equilibrium under some conditions
- improvements with Friend of Foe Q-learning [Littman 01]

- *Infinitesimal Gradient Ascent* (IGA) policy gradient ascent (convergence not guaranteed for all games)
- Generalized IGA → use regret based learning IGA converges to a Nash equilibrium when the game has a pure Nash equilibrium.
- *Win or Lose Fast* IGA (WoLF-IGA) Converges to NE for two-agent two action games
- Policy Hill Climber (PHC) and WoLF-PHC

It is difficult to compare these algorithms

- may have guarantee in self play
- some algorithms do better on certain games, against some opponents
- What criteria to use for comparison? On what testbed? What ranking method to use?

Powers and Shoham 05, Airiau & Sen 05

Application to controlling a multiagent system

- Collection of autonomous learning agents (e.g. robots, uavs, traffic controllers) works for a system designer
- The system designer wants to optimize a **collective criterion** (e.g. some objective function)
- The utility function of the agents can be set up by the system designer.
 - Agents cannot explicitly reason and communicate to reach the goal (system is too large, too difficult to compute).
 - Agents only use their own experience

How to set up the individual utility functions so that, when each agents optimize its personal utility, the system converges to a good state?

- $N = \{1, ..., n\}$ is the set of agents
- $A = \{a_1, \dots, a_k\}$ is the set of actions available to each agent
- *z* ∈ *A^N* is the joint-action of the agents in the system (this may contain many entries)
 → *z_i* is the action of agent *i*
- G: A^N → ℝ is the collective utility function (set by the system designer).

The difference reward for agent i is of the form:

$$D_i = G(z) - G(z - z_i \cdot e_i + c_i \cdot e_i),$$

where $e_i \in A^n$ such that $e_i(j) = 0$ if $i \neq j$ and $e_i(i) = 1$.

$$D_i = G(z) - G(z - z_i \cdot e_i + c_i \cdot e_i),$$

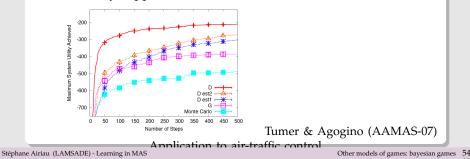
the action of agent $i z_i$ is replaced by c_i

Sometimes, it is possible to choose c_i such that $z - z_i \cdot e_i + c_i \cdot e_i$ is **as if** *i* left the system.

 \Rightarrow *D* evaluates the contribution of agent *i*

- better signal ("learnability")
- As $G(z-z_i \cdot e_i + c_i \cdot e_i)$ does not depend on *i*, any action that improves D_i also improves G! ("factoredness")

The form of *G* may be complex, but sometimes, each agent can "easily" approximate its D_i .



- Multiagent learning is an active area of research
- Has the potential to be useful in many applications
- In this talk, I focused on learning repeated games. There are more general classes of games (e.g. stochastic games) for which there are some algorithms.
- There are also games for which a game theoretic approach may not be feasible (e.g. RoboCup soccer)

Some events

- Workshop at AAMAS (ALA Adaptive and Learning Agents)
- Tutorial this year at AAMAS