Cooperative Games

M2 ISI 2015-2016 Systèmes MultiAgents

Stéphane Airiau

Why study coalitional games?

Cooperative games are a branch of game theory that models cooperation or collaboration between agents.

Coalitional games can also be studied from a computational point of view (e.g., the problem of succint representation).

A coalition may represent a set of :

- persons or group of persons (labor unions, towns)
- objectives of an economic project
- artificial agents

We have a population N of n agents.
Definition (Coalition)
A coalition \mathcal{C} is a set of agents : $\mathcal{C} \in 2^{N}$.

The classic problem

- N is the set of all agents (or players)
- $v: 2^{N} \rightarrow \mathbb{R}$ is the valuation function. For $\mathcal{C} \subseteq N, v(\mathcal{C})$ is the value obtained by the coalition \mathcal{C}
problem : a game (N, v), and we assume all agents in N want to cooperate.
solution : a payoff distribution $x \in \mathbb{R}^{n}$ that provides a value to individual agents.

What are the interesting properties that x should satisfy?
How to determine the payoff vector x ?

Example

Sharing a water supply system : n towns consider building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

B

C

A

D
no coalition, no facility

Example

Sharing a water supply system : n towns consider building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

D

$\{A, B\}$ forms

Example

Sharing a water supply system : n towns consider building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

Example

Sharing a water supply system : n towns consider building a common water treatment facility. The cost of a coalition is the minimum cost of supplying the coalition members by the most efficient means.

Today

- Two out of many solutions :
- One solution that focuses on stability
- One solution that focuses on fairness
- Application to voting power
- Some issues with representation

The main problem

In the game (N, v) we want to form the grand coalition.
Each agent i will get a personal payoff x_{i}.
What are the interesting properties that x should satisfy?
How to determine the payoff vector x ?
problem : a game (N, v) in which v is a worth of a coalition solution : a payoff vector $x \in \mathbb{R}^{n}$

Some properties

Let x, y be two solutions of a TU-game (N, v).
Efficiency : $x(N)=v(N)$
\Rightarrow the payoff distribution is an allocation of the entire worth of the grand coalition to all agents.

Individual rationality: $\forall i \in N, x(i) \geqslant v(\{i\})$
\Rightarrow agent obtains at least its self-value as payoff.
Group rationality: $\forall \mathbb{C} \subseteq N, \sum_{i \in \mathbb{C}^{x}(i)=v(\mathcal{C})}$

The core

D Gillies, Some theorems in n-person games. PhD thesis, Department of Mathematics, Princeton, N.J., 1953.

- A condition for a coalition to form : all participants prefer to be in it. i.e., none of the participants wishes she were in a different coalition or by herself \Rightarrow Stability.
- Stability is a necessary but not sufficient condition, (e.g., there may be multiple stable coalitions).
- The core is a stability concepts where no agents prefer to deviate to form a different coalition.
- For simplicity, we will only consider the problem of the stability of the grand coalition:
\Rightarrow Is the grand coalition stable? \Leftrightarrow Is the core non-empty?

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".
- 1 can say to 2 and 3, "fine ! Let it be $\{1,2,3\}$ with $\langle 33,47,25\rangle$ "

Example of bargaining

$$
\begin{gathered}
N=\{1,2,3\} \\
v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \\
v(\{1,2\})=90 \\
v(\{1,3\})=80 \\
v(\{2,3\})=70 \\
v(\{1,2,3\})=105
\end{gathered}
$$

What should we do?

- form $\{1,2,3\}$ and share equally $\langle 35,35,35\rangle$?
- 3 can say to 1 "let's form $\{1,3\}$ and share $\langle 40,0,40\rangle$ ".
- 2 can say to 1 "let's form $\{1,2\}$ and share $\langle 45,45,0\rangle$ ".
- 3 can say to 2 "OK, let's form $\{2,3\}$ and share $\langle 0,46,24\rangle$ ".
- 1 can say to 2 and 3 , "fine ! Let it be $\{1,2,3\}$ with $\langle 33,47,25\rangle$ "
- ... is there a "good" final solution?

The core relates to the stability of the grand coalition :
No group of agents has any incentive to change coalition.
Definition (core of a game (N, v))
Let (N, v) be a TU game, and assume we form the grand coalition N. The core of (N, v) is the set:

$$
\operatorname{Core}(N, v)=\left\{x \in \mathbb{R}^{n} \mid x(N) \leqslant v(N) \wedge x(\mathcal{C}) \geqslant v(\mathcal{C}) \forall \mathbb{C} \subseteq N\right\}
$$

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left.\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right|_{x_{2}} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{x_{2}} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{x_{2}} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left.\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}\right|_{x_{2}} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{x_{2}} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

The core may not be fair : the core only considers stability.

Example : a two-player game

$$
\begin{gathered}
N=\{1,2\} \\
v(\{1\})=5, v(\{2\})=5 \\
v(\{1,2\})=20
\end{gathered}
$$

$\operatorname{core}(N, v)=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2} \mid x_{1} \geqslant 5, x_{2} \geqslant 5, x_{1}+x_{2}=20\right\}$

if $v(\{1\})=11, v(\{2\})=11$, and $v(\{1,2\})=20$, the core becomes empty!

Definition (Convex games)

A game (N, v) is convex iff $\forall \mathcal{C} \subseteq \mathcal{T}$ and $i \notin \mathcal{T}, v(\mathcal{C} \cup\{i\})-v(\mathcal{C}) \leqslant v(\mathcal{T} \cup\{i\})-v(\mathcal{T})$.

TU-game is convex if the marginal contribution of each player increases with the size of the coalition he joins.

Theorem

A TU game (N, v) is convex iff for all coalition S and $T v(S)+v(T) \leqslant$ $v(S \cup T)+v(S \cap T)$.

Theorem

A convex game has a non-empty core.

Linear Programming and the core

We consider the following linear programming problem :
$(L P)\left\{\begin{array}{l}\min x(N) \\ \text { subject to } x(\mathcal{C}) \geqslant v(\mathcal{C}) \text { for all } \mathcal{C} \subseteq N, S \neq \emptyset\end{array}\right.$
(N, v) has a non-empty core iff the value of $(L P)$ is $v(N)$.

Theorem (Bondareva Shapley)

A TU game has a non-empty core iff it is balanced.

- The core may not always be non-empty.
- When the core is not empty, it may not be 'fair'.
- It may not be easy to compute.
- There are classes of games that have a non-empty core.
- It is possible to characterize the games with non-empty core.

The Shapley value

Lloyd S. Shapley. A Value for n-person Games. In Contributions to the Theory of Games, volume II (Annals of Mathematical Studies), 1953.

Definition (marginal contribution)

The marginal contribution of agent i for a coalition

$$
\mathcal{C} \subseteq N \backslash\{i\} \text { is } m c_{i}(\mathcal{C})=v(\mathcal{C} \cup\{i\})-v(\mathcal{C})
$$

$\left\langle m c_{1}(\emptyset), m c_{2}(\{1\}), m c_{3}(\{1,2\})\right\rangle$ is an efficient payoff distribution for any game $(\{1,2,3\}, v)$. This payoff distribution may model a dynamic process in which 1 starts a coalition, is joined by 2, and finally 3 joins the coalition $\{1,2\}$, and where the incoming agent gets its marginal contribution.

An agent's payoff depends on which agents are already in the coalition. This payoff may not be fair. To increase fairness, one could take the average marginal contribution over all possible joining orders.

Let σ represent a joining order of the grand coalition N, i.e., σ is a permutation of $\langle 1, \ldots, n\rangle$.
We write $m c(\sigma) \in \mathbb{R}^{n}$ the payoff vector where agent i obtains $m c_{i}(\{\sigma(j) \mid j<i\})$. The vector mc is called a marginal vector.

Shapley value : version based on marginal contributions
Let (N, v) be a TU game. Let $\Pi(N)$ denote the set of all permutations of the sequence $\langle 1, \ldots, n\rangle$.

$$
\operatorname{Sh}(N, v)=\frac{\sum_{\sigma \in \Pi(N)} m c(\sigma)}{n!}
$$

the Shapley value is a fair payoff distribution based on marginal contributions of agents averaged over joining orders of the coalition.

$$
\begin{aligned}
& N=\{1,2,3\}, v(\{1\})=0, v(\{2\})=0, v(\{3\})=0 \text {, } \\
& v(\{1,2\})=90, v(\{1,3\})=80, v(\{2,3\})=70 \text {, } \\
& v(\{1,2,3\})=120 \text {. }
\end{aligned}
$$

This example shows that the Shapley value may not be in the core (as $v\left(\{1,2\}-x_{1}-x_{2}=5>0\right)$.

The Shapley value $S h_{i}(N, v)$ of the TU game (N, v) for player i can also be written

$$
S h_{i}(N, v)=\sum_{\mathcal{C} \subseteq N \backslash\{i\}} \frac{|\mathcal{C}|!(|N|-|\mathcal{C}|-1)!}{|N|!}(v(\mathcal{C} \cup\{i\})-v(\mathcal{C})) .
$$

Proof

- There are $|\mathcal{C}|$! permutations in which all members of \mathcal{C} precede i.
- There are $|N \backslash(\mathcal{C} \cup\{i\})|$! permutations in which the remaining members succede i, i.e. $(|N|-|\mathcal{C}|-1)$!.

Using definition, the sum is over $2^{|N|-1}$ instead of $|N|$!.

Some interesting properties

Let (N, v) and (N, u) be TU games and $\phi=\left(\phi_{1}, \ldots, \phi_{n}\right)$ be function that takes as input a valution function over n players.

- Symmetry or substitution (SYM) : If $\forall(i, j) \in N, \forall \mathcal{C} \subseteq N \backslash\{i, j\}$, $v(\mathcal{C} \cup\{i\})=v(\mathcal{C} \cup\{j\})$ then $\phi_{i}(N, v)=\phi_{j}(N, v)$
- Dummy (DUM) : If $\forall \mathcal{C} \subseteq N \backslash\{i\} v(\mathcal{C})=v(\mathcal{C} \cup\{i\})$, then $\phi_{i}(N, v)=0$.
- Additivity (ADD) : Let $(N, u+v)$ be a TU game defined by $\forall \mathcal{C} \subseteq N$, $(u+v)(N)=u(N)+v(N) . \phi(u+v)=\phi(u)+\phi(v)$.

Theorem

The Shapley value is the unique value function ϕ that satisfies (SYM), (DUM) and (ADD).

Discussion about the axioms

- SYM : it is desirable that two subsitute agents obtain the same value \checkmark
- DUM : it is desirable that an agent that does not bring anything in the cooperation does not get any value.
- What does the addition of two games mean?
+ if the payoff is interpreted as an expected payoff, ADD is a desirable property.
+ for cost-sharing games, the interpretation is intuitive : the cost for a joint service is the sum of the costs of the separate services.
- there is no interaction between the two games.
- the structure of the game $(N, v+w)$ may induce a behavior that has may be unrelated to the behavior induced by either games (N, v) or (N, w).
- The axioms are independent. If one of the axiom is dropped, it is possible to find a different value function satisfying the remaining two axioms.

Some properties

Note that other axiomatisations are possible.

Theorem

For superadditive games, the Shapley value is an efficient and individually rational.

Lemma
For convex game, the Shapley value is in the core.

Simple games

Simple Game

Definition (Simple games)

A game (N, v) is a Simple game when
the valuation function takes two values

- 1 for a winning coalitions
- 0 for the losing coalitions
v satisfies unanimity : $v(N)=1$
v satisfies monotonicity : $S \subseteq T \Rightarrow v(S) \leqslant v(T)$

Definition (Dictator)

Let (N, v) be a simple game. A player $i \in N$ is a dictator iff $\{i\}$ is a winning coalition.

Note that with the requirements of simple games, it is possible to have more than one dictator!

Definition (Veto Player)

Let (N, v) be a simple game. A player $i \in N$ is a veto player if $N \backslash\{i\}$ is a losing coalition. Alternatively, i is a veto player iff for all winning coalition $\mathcal{C}, i \in \mathcal{C}$.

It also follows that a veto player is member of every minimal winning coalitions.
Definition (blocking coalition)
A coalition $\mathcal{C} \subseteq N$ is a blocking coalition iff \mathcal{C} is a losing coalition and $\forall S \subseteq N \backslash \mathcal{C}, S \backslash \mathcal{C}$ is a losing coalition.

Theorem

Let (N, v) be a simple game. Then
$\operatorname{Core}(N, v)=\left\{\begin{array}{l|l}x \in \mathbb{R}^{n} & \begin{array}{l}x \text { is an imputation } \\ x_{i}=0 \text { for each non-veto player } i\end{array}\end{array}\right\}$

Shapley-Shubik power index

Definition (Pivotal or swing player)

Let (N, v) be a simple game. A agent i is pivotal or a swing agent for a coalition $\mathcal{C} \subseteq N \backslash\{i\}$ if agent i turns the coalition \mathcal{C} from a losing to a winning coalition by joining \mathcal{C}, i.e., $v(\mathcal{C})=0$ and $v(\mathcal{C} \cup\{i\})=1$.

Given a permutation σ on N, there is a single pivotal agent.
The Shapley-Shubik index of an agent i is the percentage of permutation in which i is pivotal, i.e.
$I_{S S}(N, v, i)=\sum_{\mathcal{C} \subseteq N \backslash\{i\}} \frac{|\mathcal{C}|!(|N|-|C|-1)!}{|N|!}(v(\mathcal{C} \cup\{i\})-v(\mathcal{C}))$.
"For each permutation, the pivotal player gets a point."
The Shapley-Shubik power index is the Shapley value.
The index corresponds to the expected marginal utility assuming all join orders to form the grand coalitions are equally likely.

Banzhaff power index

Let (N, v) be a TU game.

- We want to count the number of coalitions in which an agent is a swing agent.
- For each coalition, we determine which agent is a swing agent (more than one agent may be pivotal).
- The raw Banzhaff index of a player i is
$\beta_{i}=\frac{\sum_{\mathbb{C} \subseteq N \backslash\{i\}} v(\mathcal{C} \cup\{i\})-v(\mathcal{C})}{2^{n-1}}$.
- For a simple game $(N, v), v(N)=1$ and $v(\emptyset)=0$, at least one player i has a power index $\beta_{i} \neq 0$. Hence, $B=\sum_{j \in N} \beta_{j}>0$.
- The normalized Banzhaff index of player i for a simple game (N, v) is defined as $I_{B}(N, v, i)=\frac{\beta_{i}}{B}$.
The index corresponds to the expected marginal utility assuming all coalitions are equally likely.

Examples: [7; 4,3,2,1]

$\{1,2,3,4\}$
$\{1,2,4,3\}$
$\{1,3,2,4\}$
$\{1,3,4,2\}$
$\{1,4,2,3\}$
$\{1,4,3,2\}$
$\{2,1,3,4\}$
$\{2,1,4,3\}$
$\{2,3,1,4\}$
$\{2,3,4,1\}$
$\{2,4,1,3\}$
$\{2,4,3,1\}$
$\{3,1,2,4\}$
$\{3,1,4,2\}$
$\{3,2,1,4\}$
$\{3,2,4,1\}$
$\{3,4,1,2\}$
$\{3,4,2,1\}$
$\{4,1,2,3\}$
$\{4,1,3,2\}$
$\{4,2,1,3\}$
$\{4,2,3,1\}$
$\{4,3,1,2\}$
$\{4,3,2,1\}$
winning coalitions:
\{1,2\}
$\{1,2,3\}$
$\{1,2,4\}$
$\{1,3,4\}$
\{1,2,3,4\}

	1	2	3	4
β	$\frac{5}{8}$	$\frac{3}{8}$	$\frac{1}{8}$	$\frac{1}{8}$
$I_{B}(N, v, i)$	$\frac{1}{2}$	$\frac{3}{10}$	$\frac{1}{10}$	$\frac{1}{10}$

	1	2	3	4
$S h$	$\frac{7}{12}$	$\frac{1}{4}$	$\frac{1}{12}$	$\frac{1}{12}$

The Shapley-Shubik index and Banzhaff index may be different.

Representation and Complexitity issues

Representation by enumeration

- Let us assume we want to write a program for computing a solution concept.
- How do we represent the input of a TU game?
- Straighforward representation by enumeration requires exponential space.
- Brute force approach may appear good as complexity is measured in term of the input size.
\Rightarrow we need compact or succinct representation of coalitional games.
\Rightarrow e.g., a representation so that the input size is a polynomial in the number of agents.
- In general, the more succinct a representation is, the harder it is to compute, hence we look for a balance between succinctness and tractability.

An induced subgraph game is a coalitional game defined by an undirected weighted graph $\mathcal{G}=(V, W)$ where V is the set of vertices and $W: V \rightarrow V$ is the set of edges weights. For $(i, j) \in V^{2}, w_{i j}$ is the weight of the edge between i and j.

- $N=V$, i.e., each agent is a node in the graph.
- for all $\mathcal{C} \subseteq N, v(\mathcal{C})=\sum_{(i, j) \in \mathcal{C}} w_{i j}$.

It is a succinct representation : using an adjacency matrix, we need to provide n^{2} entries.
However, it is not complete. Some TU games cannot be represented by a induced subgraph game (e.g., a majority voting game).

Proposition

Let (V, W) be a induced subgraph game. If all the weights are nonnegative then the game is convex.

Proposition

Let (V, W) be a induced subgraph game. If all the weights are nonnegative then membership of a payoff vector in the core can be tested in polynomial time.

Theorem

Let (V, W) be an induced subgraph game. Testing the nonemptyness of the core is NP-complete.

Subgraph Game and the Shapley Value

Theorem

Let (V, W) an induced subgraph game. The Shapley value of an agent $i \in V$ is $S h_{i}(N, v)=\frac{1}{2} \sum_{(i, j) \in N^{2}} w_{i j}$.
The Shapley value can be computed in $O\left(n^{2}\right)$ time.

Conclusion

- Game theory proposes many solution concepts (some of which were not introduced : nucleolus, bargaining sets, kernel, ϵ-core, least-core, Owen value). Each solution concept has pros and cons.
- There are many extensions: NTU games, games with coalition structures.
- Work in AI has dealt with representation issues, finding optimal partition of agents, games with overlaping coalitions, games under different types of uncertainty, and practical coalition formation protocols.

