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Why study coalitional games ?

Cooperative games are a branch of game theory that models cooperation or
collaboration between agents.

Coalitional games can also be studied from a computational point of view
(e.g., the problem of succint representation).

A coalition may represent a set of :
persons or group of persons (labor unions, towns)
objectives of an economic project
artificial agents

We have a population N of n agents.
Definition (Coalition)

A coalition C is a set of agents : C ∈ 2N .
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The classic problem

N is the set of all agents (or players)
v : 2N → R is the valuation function. For C⊆N , v(C) is the value
obtained by the coalition C

problem : a game (N,v), and we assume all agents in N want to
cooperate.
solution : a payoff distribution x ∈ Rn that provides a value to
individual agents.

What are the interesting properties that x should satisfy ?

How to determine the payoff vector x ?
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Example

Sharing a water supply system : n towns consider building a common water
treatment facility. The cost of a coalition is the minimum cost of supplying
the coalition members by the most efficient means.

A

B
C

D

E no coalition, no facility
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Example

Sharing a water supply system : n towns consider building a common water
treatment facility. The cost of a coalition is the minimum cost of supplying
the coalition members by the most efficient means.

A

B
C

D

E

F

{A,B} forms
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Example

Sharing a water supply system : n towns consider building a common water
treatment facility. The cost of a coalition is the minimum cost of supplying
the coalition members by the most efficient means.

A

B
C

D

E

F

{B,C ,D} forms
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Example

Sharing a water supply system : n towns consider building a common water
treatment facility. The cost of a coalition is the minimum cost of supplying
the coalition members by the most efficient means.

A

B
C

D

E

F

{A,B,C ,D,E} forms
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Today

Two out of many solutions :
One solution that focuses on stability
One solution that focuses on fairness

Application to voting power
Some issues with representation
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The main problem

In the game (N,v) we want to form the grand coalition.

Each agent i will get a personal payoff xi .

What are the interesting properties that x should satisfy ?

How to determine the payoff vector x ?

problem : a game (N,v) in which v is a worth of a coalition
solution : a payoff vector x ∈ Rn
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Some properties

Let x , y be two solutions of a TU-game (N,v).
Efficiency : x(N) = v(N)

ê the payoff distribution is an allocation of the entire worth of the grand
coalition to all agents.

Individual rationality : ∀i ∈N, x(i)> v({i})
ê agent obtains at least its self-value as payoff.

Group rationality : ∀C⊆N ,
∑

i∈C x(i) = v(C)
ê if

∑
i∈C x(i)< v(C) some utility is lost.

ê if
∑

i∈C x(i)> v(C) is not possible.
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The core

D Gillies, Some theorems in n-person games. PhD thesis, Department of Mathematics,
Princeton, N.J., 1953.

The core– (Stéphane Airiau) Cooperative Games 11



A condition for a coalition to form :
all participants prefer to be in it.

i.e., none of the participants wishes she were in a different coalition or
by herself ë Stability.
Stability is a necessary but not sufficient condition,
(e.g., there may be multiple stable coalitions).
The core is a stability concepts where no agents prefer to deviate to
form a different coalition.
For simplicity, we will only consider the problem of the stability of the
grand coalition :

ë Is the grand coalition stable ? ⇔ Is the core non-empty ?
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Example of bargaining

N = {1,2,3}
v({1}) = 0, v({2}) = 0, v({3}) = 0

v({1,2}) = 90
v({1,3}) = 80
v({2,3}) = 70

v({1,2,3}) = 105

What should we do ?

form {1,2,3} and share equally 〈35,35,35〉 ?
3 can say to 1 “let’s form {1,3} and share 〈40,0,40〉”.
2 can say to 1 “let’s form {1,2} and share 〈45,45,0〉”.
3 can say to 2 “OK, let’s form {2,3} and share 〈0,46,24〉”.
1 can say to 2 and 3, “fine ! Let it be {1,2,3} with 〈33,47,25〉”
... is there a “good” final solution ?
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The core relates to the stability of the grand coalition :
No group of agents has any incentive to change coalition.

Definition (core of a game (N,v))
Let (N,v) be a TU game, and assume we form the grand coalition N .
The core of (N,v) is the set :

Core(N,v) = {x ∈ Rn | x(N)6 v(N) ∧ x(C)> v(C) ∀C⊆N}
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Example : a two-player game
N = {1,2}

v({1}) = 5, v({2}) = 5
v({1,2}) = 20

core(N,v) = {(x1,x2) ∈ R2 | x1 > 5, x2 > 5, x1 + x2 = 20}

x1

x2

0 5 10 15 20
0

5

10

15

20

The core may not be fair : the core only considers stability.
if v({1}) = 11, v({2}) = 11, and v({1,2}) = 20, the core becomes empty !
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Definition (Convex games)
A game (N,v) is convex iff
∀C⊆ T and i /∈ T, v(C∪ {i})− v(C)6 v(T∪ {i})− v(T).

TU-game is convex if the marginal contribution of each player increases
with the size of the coalition he joins.

Theorem
A TU game (N,v) is convex iff for all coalition S and T v(S)+ v(T )6
v(S∪T )+ v(S∩T ).

Theorem
A convex game has a non-empty core.
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Linear Programming and the core

We consider the following linear programming problem :

(LP)

{
minx(N)
subject to x(C)> v(C) for all C⊆N , S 6= ∅

(N,v) has a non-empty core iff the value of (LP) is v(N).

Theorem (Bondareva Shapley)
A TU game has a non-empty core iff it is balanced.
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Issues with the core

The core may not always be non-empty.
When the core is not empty, it may not be ’fair’.
It may not be easy to compute.
There are classes of games that have a non-empty core.
It is possible to characterize the games with non-empty core.
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The Shapley value

Lloyd S. Shapley. A Value for n-person Games. In Contributions to the Theory of Games,
volume II (Annals of Mathematical Studies), 1953.
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Definition (marginal contribution)
The marginal contribution of agent i for a coalition
C⊆N \ {i} is mci(C) = v(C∪ {i})− v(C).

〈mc1(∅),mc2({1}),mc3({1,2})〉 is an efficient payoff distribution for any game
({1,2,3},v). This payoff distribution may model a dynamic process in which 1 starts a
coalition, is joined by 2, and finally 3 joins the coalition {1,2}, and where the incoming
agent gets its marginal contribution.

An agent’s payoff depends on which agents are already in the coalition.
This payoff may not be fair. To increase fairness, one could take the average
marginal contribution over all possible joining orders.

Let σ represent a joining order of the grand coalition N , i.e., σ is a permu-
tation of 〈1, . . . ,n〉.
We write mc(σ)∈Rn the payoff vector where agent i obtains mci({σ(j) | j < i}).
The vector mc is called a marginal vector.
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Shapley value : version based on marginal contributions

Let (N,v) be a TU game. Let Π(N) denote the set of all permutations of the
sequence 〈1, . . . ,n〉.

Sh(N,v) =

∑
σ∈Π(N)

mc(σ)

n!
the Shapley value is a fair payoff distribution based on marginal contribu-
tions of agents averaged over joining orders of the coalition.
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An example

N = {1,2,3}, v({1}) = 0, v({2}) = 0, v({3}) = 0,
v({1,2}) = 90, v({1,3}) = 80, v({2,3}) = 70,

v({1,2,3}) = 120.

1 2 3
1← 2← 3 0 90 30
1← 3← 2 0 40 80
2← 1← 3 90 0 30
2← 3← 1 50 0 70
3← 1← 2 80 40 0
3← 2← 1 50 70 0
total 270 240 210
Shapley value 45 40 35

This example shows that the Shapley value may not be in the core (as
v({1,2}− x1 − x2 = 5> 0).
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The Shapley value Shi(N,v) of the TU game (N,v) for player i can also be
written

Shi(N,v) =
∑

C⊆N\{i}

|C|!(|N |− |C|−1)!
|N |!

(v(C∪ {i})− v(C)) .

Proof

There are |C|! permutations in which all members of C precede i.
There are |N \ (C∪ {i})|! permutations in which the remaining
members succede i, i.e. (|N |− |C|−1)!.

�

Using definition, the sum is over 2|N|−1 instead of |N |!.
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Some interesting properties

Let (N,v) and (N,u) be TU games and φ = (φ1, . . . ,φn) be function that
takes as input a valution function over n players.

Symmetry or substitution (SYM) : If ∀(i, j) ∈N , ∀C⊆N \ {i, j},
v(C∪ {i}) = v(C∪ {j}) then φi(N,v) = φj(N,v)
Dummy (DUM) : If ∀C⊆N \ {i} v(C) = v(C∪ {i}), then φi(N,v) = 0.
Additivity (ADD) : Let (N,u+ v) be a TU game defined by ∀C⊆N ,
(u+ v)(N) = u(N)+ v(N). φ(u+ v) = φ(u)+φ(v).

Theorem
The Shapley value is the unique value function φ that satisfies (SYM),
(DUM) and (ADD).
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Discussion about the axioms

SYM : it is desirable that two subsitute agents obtain the same value
4

DUM : it is desirable that an agent that does not bring anything in
the cooperation does not get any value. 4

What does the addition of two games mean ?
+ if the payoff is interpreted as an expected payoff, ADD is a desirable

property.
+ for cost-sharing games, the interpretation is intuitive : the cost for a joint

service is the sum of the costs of the separate services.
- there is no interaction between the two games.
- the structure of the game (N,v +w) may induce a behavior that has may

be unrelated to the behavior induced by either games (N,v) or (N,w).
The axioms are independent. If one of the axiom is dropped, it is
possible to find a different value function satisfying the remaining two
axioms.

Shapley Value– (Stéphane Airiau) Cooperative Games 37



Some properties

Note that other axiomatisations are possible.

Theorem
For superadditive games, the Shapley value is an efficient and indivi-
dually rational.

Lemma
For convex game, the Shapley value is in the core.
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Simple games
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Simple Game

Definition (Simple games)
A game (N,v) is a Simple game when

the valuation function takes two values
1 for a winning coalitions
0 for the losing coalitions

v satisfies unanimity : v(N) = 1
v satisfies monotonicity : S ⊆ T ⇒ v(S)6 v(T )
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Formal definition of common terms in voting

Definition (Dictator)
Let (N,v) be a simple game. A player i ∈ N is a dictator iff {i} is a
winning coalition.

Note that with the requirements of simple games, it is possible to have more
than one dictator !

Definition (Veto Player)
Let (N,v) be a simple game. A player i ∈ N is a veto player if N \ {i}
is a losing coalition. Alternatively, i is a veto player iff for all winning
coalition C, i ∈ C.

It also follows that a veto player is member of every minimal winning coali-
tions.
Definition (blocking coalition)

A coalition C⊆N is a blocking coalition iff C is a losing coalition and
∀S ⊆N \C, S \C is a losing coalition.

Simple Games– (Stéphane Airiau) Cooperative Games 41



Theorem
Let (N,v) be a simple game. Then

Core(N,v) =
{

x ∈ Rn x is an imputation
xi = 0 for each non-veto player i

}
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Shapley-Shubik power index

Definition (Pivotal or swing player)
Let (N,v) be a simple game. A agent i is pivotal or a swing agent for
a coalition C ⊆ N \ {i} if agent i turns the coalition C from a losing to
a winning coalition by joining C, i.e., v(C) = 0 and v(C∪ {i}) = 1.

Given a permutation σ on N , there is a single pivotal agent.

The Shapley-Shubik index of an agent i is the percentage of permutation in
which i is pivotal, i.e.

ISS(N,v , i) =
∑

C⊆N\{i}

|C|!(|N |− |C |−1)!
|N |!

(v(C∪ {i})− v(C)).

“For each permutation, the pivotal player gets a point.”

The Shapley-Shubik power index is the Shapley value.
The index corresponds to the expected marginal utility assuming all join orders to
form the grand coalitions are equally likely.
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Banzhaff power index

Let (N,v) be a TU game.
We want to count the number of coalitions in which an agent is a
swing agent.
For each coalition, we determine which agent is a swing agent (more
than one agent may be pivotal).
The raw Banzhaff index of a player i is

βi =

∑
C⊆N\{i} v(C∪ {i})− v(C)

2n−1 .

For a simple game (N,v), v(N) = 1 and v(∅) = 0, at least one player i
has a power index βi 6= 0. Hence, B =

∑
j∈N βj > 0.

The normalized Banzhaff index of player i for a simple game (N,v) is
defined as IB(N,v , i) = βi

B .
The index corresponds to the expected marginal utility assuming all coalitions are
equally likely.
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Examples : [7; 4,3,2,1]

{1,2,3,4}
{1,2,4,3}
{1,3,2,4}
{1,3,4,2}
{1,4,2,3}
{1,4,3,2}
{2,1,3,4}
{2,1,4,3}
{2,3,1,4}
{2,3,4,1}
{2,4,1,3}
{2,4,3,1}
{3,1,2,4}
{3,1,4,2}
{3,2,1,4}
{3,2,4,1}
{3,4,1,2}
{3,4,2,1}
{4,1,2,3}
{4,1,3,2}
{4,2,1,3}
{4,2,3,1}
{4,3,1,2}
{4,3,2,1}

1 2 3 4
Sh 7

12
1
4

1
12

1
12

winning coalitions :
{1,2}
{1,2,3}
{1,2,4}
{1,3,4}
{1,2,3,4}

1 2 3 4
β 5

8
3
8

1
8

1
8

IB(N,v , i) 1
2

3
10

1
10

1
10

The Shapley-Shubik index and Banzhaff index may be different.
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Representation and Complexitity issues

Simple Games– (Stéphane Airiau) Cooperative Games 46



Representation by enumeration

Let us assume we want to write a program for computing a solution
concept.
How do we represent the input of a TU game ?
Straighforward representation by enumeration requires exponential
space.
Brute force approach may appear good as complexity is measured in
term of the input size.

ë we need compact or succinct representation of coalitional games.
ë e.g., a representation so that the input size is a polynomial in the

number of agents.
In general, the more succinct a representation is, the harder it is to
compute, hence we look for a balance between succinctness and
tractability.
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Induced subgraph games

An induced subgraph game is a coalitional game defined by an undirected
weighted graph G= (V ,W ) where V is the set of vertices and W : V → V
is the set of edges weights. For (i, j) ∈ V 2, wij is the weight of the edge
between i and j .

N = V , i.e., each agent is a node in the graph.
for all C⊆N , v(C) =

∑
(i,j)∈Cwij .

1

2

3

45

w12 w23

w34

w45

w15

w13

w14

w24

It is a succinct representation : using
an adjacency matrix, we need to provide
n2 entries.
However, it is not complete. Some TU
games cannot be represented by a
induced subgraph game (e.g., a majority
voting game).
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Subgraph Game and the Core

Proposition
Let (V ,W ) be a induced subgraph game. If all the weights are nonne-
gative then the game is convex.

Proposition
Let (V ,W ) be a induced subgraph game. If all the weights are nonne-
gative then membership of a payoff vector in the core can be tested in
polynomial time.

Theorem
Let (V ,W ) be an induced subgraph game. Testing the nonemptyness
of the core is NP-complete.
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Subgraph Game and the Shapley Value

Theorem
Let (V ,W ) an induced subgraph game. The Shapley value of an agent
i ∈ V is Shi(N,v) = 1

2
∑

(i,j)∈N2 | i 6=j

wij .

The Shapley value can be computed in O(n2) time.
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Conclusion

Game theory proposes many solution concepts (some of which were
not introduced : nucleolus, bargaining sets, kernel, ε-core, least-core,
Owen value). Each solution concept has pros and cons.
There are many extensions : NTU games, games with coalition
structures.
Work in AI has dealt with representation issues, finding optimal
partition of agents, games with overlaping coalitions, games under
different types of uncertainty, and practical coalition formation
protocols.
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