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Abstract. In many situations, both in human and artificial societies, co-
operating agents have different status with respect to the activity and it
is not uncommon that certain actions are only allowed to coalitions that
satisfy certain criteria, e.g., to sufficiently large coalitions or coalitions
which involve players of sufficient seniority. Simmons (1988) formalized
this idea in the context of secret sharing schemes by defining the concept
of a (disjunctive) hierarchical access structure. Tassa (2007) introduced
their conjunctive counterpart. From the game theory perspective access
structures in secret sharing schemes are simple games.
In this paper we prove the duality between disjunctive and conjunctive
hierarchical games. We introduce a canonical representation theorem for
both types of hierarchical games and characterize disjunctive ones as
complete games with a unique shift-maximal losing coalition. We give
a short combinatorial proof of the Beimel-Tassa-Weinreb (2008) charac-
terization of weighted disjunctive hierarchical games. By duality we get
similar theorems for conjunctive hierarchical games.

1 Introduction

In many situations cooperating agents have different status with respect to the
activity. In the theory of simple games developed by (Neumann & Morgenstern,
1944) seniority of players is modeled by giving them different weights. Such
situation arise, for example, in the context of corporate voting when different
shareholders have different number of shares. The access structure in secret shar-
ing schemes (Simmons, 1990; Stinson, 1992) can also be modeled by a simple
game, but in this theory a different approach in defining seniority is often used.
To this end (Simmons, 1990) introduced the concept of a hierarchical access
structure. Such an access structure stipulates that agents are partitioned into
m levels, and a sequence of thresholds k1 < k2 < . . . < km is set, such that a
coalition is authorized if it has either k1 agents of the first level or k2 agents
of the first two levels or k3 agents of the first three levels etc. Consider, for
example, the situation of a money transfer from one bank to another. If the
sum to be transferred is sufficiently large, this transaction must be authorized
by three senior tellers or two vice-presidents. However, two senior tellers and a
vice-president can also authorize the transaction. These hierarchical structures



are called disjunctive, since only one of the m conditions must be satisfied for
a coalition to be authorized. If all conditions must be satisfied, then the hierar-
chical access structure is called conjunctive. A typical example of a conjunctive
hierarchical game would be the United Nations Security Council where for the
passage of a resolution all five permanent members must vote for it and also at
least nine members in total.

It has been shown that these two approaches are seldom equivalent since hier-
archical access structures are seldom weighted. Both (Beimel, Tassa, & Weinreb,
2008) and (Farràs & Padró, 2010) characterized weighted disjunctive hierarchi-
cal access structures as a part of their characterization of weighted ideal access
structures. They showed that, beyond two levels, disjunctive hierarchical struc-
tures are normally non-weighted. This is extremely interesting from the game-
theoretic point of view, since we now have a natural class of non-weighted access
structures and hence simple games. However, the proof of this characterization
in both papers was indirect. They used the fact that hierarchical access struc-
tures are ideal (E. F. Brickell, 1990) and the well-known relation between ideal
secret sharing schemes and matroids (E. Brickell & Davenport, 1990). Conjunc-
tive hierarchical access structures, which were introduced in (Tassa, 2007), have
got much less attention. We will use the game-theory methods and terminology,
and we will talk about hierarchical games, not access structures.

Progress in studying hierarchical games was hindered by the absence of any
canonical representation, which is needed since different values of parameters can
give us the same game. In this paper we introduce a canonical representation
of hierarchical games, and give a short combinatorial proof of the Beimel-Tassa-
Weinreb characterization theorem by using the technique of trading transforms
developed in (Taylor & Zwicker, 1999). Our statement is slightly more general,
as it allows for the existence of dummy players. We also characterize disjunctive
hierarchical games as complete games with a unique shift-maximal losing coali-
tions. Then we prove the duality between disjunctive and conjunctive games.
This allows us to characterize weighted conjunctive hierarchical games and ob-
tain their structural characterization as complete games with a unique shift-
minimal winning coalition. The class of complete games with a unique shift-
minimal winning coalition was studied in its own right in (Freixas & Puente,
2008). However, they did not notice that the games which they study are hier-
archical conjunctive games.

2 Preliminaries

The background material on simple games can be found in (Taylor & Zwicker,
1999).

Definition 1. Let P = [n] = {1, 2, . . . , n} be a set of players and let ∅ 6= W ⊆
2P be a collection of subsets of P that satisfies the following property:

if X ∈W and X ⊆ Y , then Y ∈W . (1)



In such case the pair G = (P,W ) is called a simple game and the set W is called
the set of winning coalitions of G. Coalitions that are not in W are called losing.

Due to the monotonic property (1) the subset W is completely determined
by the set Wmin of minimal winning coalitions of G. A player who does not
belong to any minimal winning coalition is called a dummy. Such a player can
be removed from any winning coalition without making it losing.

Definition 2. A simple game G = (P,W ) is called a weighted majority game
if there exist nonnegative weights w1, . . . , wn and a threshold q such that

X ∈W ⇐⇒
∑
i∈X

wi ≥ q. (2)

In secret sharing, weighted threshold access structures were introduced by (Shamir,
1979).

A distinctive feature of many games is that the set of players is partitioned
into subsets, and players in each of the subsets have equal status. We suggest
analyzing such games with the help of multisets. Given a simple gameG we define
a relation ∼G on P by setting i ∼G j if for every set X ⊆ P not containing i
and j

X ∪ {i} ∈W ⇐⇒ X ∪ {j} ∈W. (3)

Lemma 1. ∼G is an equivalence relation.

Example 1. Suppose we have P = {a1, a2, b1, c1} as the full set of players with
weights as follows: a1 and a2 have weights 1, b1 has weight 2 and c1 has weight
3. Then the following is the set of minimal winning coalitions for the game with
q = 3.

Wmin = {{a1, b1}, {a2, b1}, {c1}}.

This gives a1 ∼G a2 and of course a2 ∼G a1 as ∼ is symmetric. Since ∼ is
reflexive, then ai ∼ ai for i = 1, 2, and also b1 ∼G b1. Similarly c1 ∼G c1. It
follows that our equivalence classes are {a1, a2}, {b1} and {c1}.

We need now the notion of a multiset.

Definition 3. A multiset on the set [m] is a mapping µ : [m]→ Z+ of [m] into
the set of non-negative integers. It is often written in the form

µ = {1k1 , 2k2 , . . . ,mkm},

where ki = µ(i) is called the multiplicity of i in µ.

A multiset ν = {1j1 , . . . ,mjm} is a submultiset of a multiset µ = {1k1 , . . . ,mkm},
iff ji ≤ ki for all i = 1, 2, . . . ,m. This is denoted as ν ⊆ µ.

The existence of large equivalence classes relative to ∼G allows us to compress
the information about the game. This is done by the following construction. Let
now G = (P,W ) be a game and ∼G be its corresponding equivalence relation.



Then P can be partitioned into a finite number of equivalence classes P =
P1 ∪ P2 ∪ . . . ∪ Pm relative to ∼G and suppose that |Pi| = ni. Then we put in
correspondence to the set of agents P a multiset P̄ = {1n1 , 2n2 , . . . ,mnm}. We
take our base set P , identify those agents which are equivalent and we do not
distinguish between them any further. We carry over the game structure to P̄ as
well by defining the set of submultisets W̄ ⊆ P̄ by assuming that a submultiset
Q = {1`1 , 2`2 , . . . ,m`m} is winning in Ḡ if a subset of P containing `i agents
from Pi (i = 1, 2, . . . ,m), is winning in G. This definition is correct since the
sets Pi are defined in such a way that it does not matter which `i players from
Pi are involved. We will call Ḡ = (P̄ , W̄ ) the canonical representation of G.

Definition 4. A pair Ḡ = (P̄ , W̄ ) where P̄ = {1n1 , 2n2 , . . . ,mnm} and W̄ is
a system of submultisets of the multiset P̄ is said to be a simple game on P̄ if
X ∈ W̄ and X ⊆ Y implies Y ∈ W̄ .

So the canonical representation of a simple game on a set of players P is
a simple game on the multiset P̄ . We will omit bars when this does not invite
confusion.

Given a game G on a set of players P we may also define a relation �G on
P by setting i �G j if for every set X ⊆ U not containing i and j

X ∪ {j} ∈W =⇒ X ∪ {i} ∈W. (4)

That is known as Isbel’s desirability relation (Taylor & Zwicker, 1999). The game
is called complete if �G is a total (weak) order. We also define the relation i �G j
as i �G j but not j �G i.

Definition 5. We say that Ḡ = (P̄ , W̄ ) is a weighted majority game if there ex-
ist non-negative weights w1, . . . , wm and q ≥ 0 such that Q = {1`1 , 2`2 , . . . ,m`m}
is winning iff

∑m
i=1 `iwi ≥ q.

If G is weighted, then it is well-known (see, e.g., (Taylor & Zwicker, 1999),
p.91) that we can find a weighted representation, for which equivalent players
have equal weights. Hence we obtain

Proposition 1. A simple game G = (P,W ) is a weighted majority game if and
only if the corresponding simple game Ḡ = (P̄ , W̄ ) is.

One of the most interesting classes of complete games is hierarchical games.
They can be of two types ((Beimel et al., 2008), (Tassa, 2007)), and they will
be considered in the next section.

If a game G is complete, then we define shift-minimal (δ-minimal in (Carreras
& Freixas, 1996)) winning coalitions and shift-maximal losing coalitions. By a
shift we mean a replacement of a player of a coalition by a less desirable player
which did not belong to it. Formally, given a coalition X, player p ∈ X and
another player q /∈ X such that q ≺G p, we say that the coalition (X \{p})∪{q}
is obtained from X by a shift. A winning coalition X is shift-minimal if every



coalition contained in it and every coalition obtained from it by a shift are losing.
A losing coalition Y is said to be shift-maximal if every coalition that contains
it is winning and there does not exist another losing coalition from which Y can
be obtained by a shift.

The definition of a shift in the multiset context must be adapted as follows.

Definition 6. Let G be a complete simple game on a multiset P = {1n1 , . . . ,mnm},
where 1 �G 2 �G . . . �G m. Suppose a submultiset

A′ = {. . . , i`i , . . . , j`j , . . .}

has `i ≥ 1 and `j < nj for some i < j. Then we will say that the submultiset

A′ = {. . . , i`i−1, . . . , j`j+1, . . .}

is obtained from A by a shift.

Shift-minimal winning and shift-maximal losing coalitions are then defined straight-
forwardly.

For X ⊂ P we will denote its complement P \X by Xc.

Definition 7. Let G = (P,W ) be a simple game and A ⊆ P . Let us define
subsets

Wsg = {X ⊆ Ac | X ∈W}, Wrg = {X ⊆ Ac | X ∪A ∈W}.

Then the game GA = (Ac,Wsg) is called a subgame of G and GA = (Ac,Wrg)
is called a reduced game of G.

Proposition 2. Every subgame and every reduced game of a weighted majority
game is also a weighted majority game.

Let us discuss briefly duality in games. The dual game of a game G = (P,W )
is defined as G∗ = (P,Lc). Equivalently, the winning coalitions of the game
G∗ dual to G are exactly the complements of losing coalitions of G. We have
G = G∗∗. We note also that, If A ⊆ P , then: (GA)∗ = (G∗)A and (GA)∗ = (G∗)A.
Moreover, the operation of taking the dual is known to preserve weightedness. We
will also use the fact that Isbel’s desirability relation is self-dual, that is x �G y
if and only if x �G∗ y. All these concepts can be immediately reformulated for
the games on multisets.

Let us remind the reader of some more facts from the theory of simple games.
The sequence of coalitions

T = (X1, . . . , Xj ;Y1, . . . , Yj) (5)

is called a trading transform if the coalitions X1, . . . , Xj can be converted into
the coalitions Y1, . . . , Yj by rearranging players. In other words, for any player
p the cardinality of the set {i | p ∈ Xi} is the same as the cardinality of the set
{i | p ∈ Yi}. We say that the trading transform T has length j.



Theorem 1 ((Taylor & Zwicker, 1999)). A game G = (P,W ) is a weighted
majority game if for no j does there exist a trading transform (5) such that
X1, . . . , Xj are winning and Y1, . . . , Yj are losing.

This theorem gives a combinatorial way to prove the existence of weights for
a given game.

Definition 8. Let G = (P,W ) be a simple game. A trading transform (5) where
all X1, . . . , Xj are winning in G and all Y1, . . . , Yj are losing in G is called
certificate of non-weightedness for G.

For complete games the criterion can be made easier to check, by the following
result.

Theorem 2 ((Freixas & Molinero, 2009)). A complete game is a weighted
majority game if and only if it does not have certificates of non-weightedness
(5) such that X1, . . . , Xj are shift-minimal winning coalitions and Y1, . . . , Yj are
losing coalitions.

3 Canonical Representations and Duality of Hierarchical
Games

Definition 9 (Disjunctive Hierarchical Game). Suppose that the set of
players P is partitioned into m disjoint subsets P = ∪mi=1Pi and let k1 <
k2 < . . . < km be a sequence of positive integers. Then we define the game
H = H∃(P,W ) by setting

W = {X ∈ 2P | ∃i
(∣∣X ∩ (∪ij=1Pi

)∣∣ ≥ ki)}.
From the definition it follows that any disjunctive hierarchical game H is

complete, moreover for any i ∈ [m] and u, v ∈ Pi we have u ∼H v. However, for
arbitrary values of parameters we cannot guarantee that the canonical represen-
tation H̄ of H will be defined on the multiset P̄ = {1n1 , 2n2 , . . . ,mnm}, since
it is possible to have less than m equivalence classes. The next theorem shows
when this does not happen.

Theorem 3. Let H be a disjunctive hierarchical game defined on the set of
players P partitioned into m disjoint subsets P = ∪mi=1Pi, where ni = |Pi|,
by a sequence of positive thresholds k1 < k2 < . . . < km. Then the canonical
representation H̄ of H has m equivalence classes, and hence it is defined on
P̄ = {1n1 , 2n2 , . . . ,mnm} if and only if

(a) k1 ≤ n1, and
(b) ki < ki−1 + ni for every 1 < i < m.

When (a) and (b) hold the sequence (k1, . . . , km−1) is determined uniquely. More-
over, H does not have dummies if and only if km < km−1 + nm; in this case km
is determined uniquely as well. If km ≥ km−1 + nm the last mth level consists
entirely of dummies.



Proof. As we know, players within each Pi are equivalent. We note that if k1 >
n1, then P1 ∼H P2. On the other hand, if k1 ≤ n1, then any k1 players from
P1 form a winning coalition M1 which ceases to be winning if we replace one
of them with a player of P2 yielding P1 6∼H P2. Suppose that we know already
that Pi−1 6∼ Pi for some i < m, and that there is a minimal winning coalition
Mi−1 contained in ∪i−1j=1Pj which intersects Pi−1 nontrivially and consists of

ki−1 players. If ki ≥ ki−1 + ni, and a coalition Q ⊆ ∪ij=1Pj is winning and has

a nonzero intersection with Pi, then we also have |Q ∩
(
∪i−1j=1Pj

)
| ≥ ki−1 and

hence Q∩
(
∪i−1j=1Pj

)
is also winning. Then any player of Pi in Q can be replaced

by any player of Pi+1 without Q becoming losing, i.e., Pi �H Pi+1. From the
definition of hierarchical game we have Pi �H Pi+1, this implies Pi ∼H Pi+1.
On the other hand, if ki < ki−1 +ni, we see that a minimal winning coalition in
∪ij=1Pi exists which intersects with Pi nontrivially and consists of ki players. For
constructing it we have to take ki players of the ith level (if they are available)
and, if their number is less than ki add ki−ni players from Mi−1. We note that
the number of players needed to be added is less than ki−1, which makes Mi

minimal. As above, the existence of such coalition this implies Pi 6∼H Pi+1.
The uniqueness of (k1, . . . , km−1) (and also km in case km < km−1 + nm)

follows from the fact that these numbers are exactly the cardinalities of minimal
winning coalitions in H̄.

By H∃(n,k) we will denote the m-level disjunctive hierarchical game canon-
ically represented by n = (n1, . . . , nm) and k = (k1, . . . , km) with km = km−1 +
nm in the case where the last level consists of dummies. Every new level, except
maybe the last one, adds a new class of minimal winning coalitions.

Corollary 1. Let G = H∃(n,k) be an m-level disjunctive hierarchical game.
Then we have ni > 1 for every 1 < i < m.

Proof. If ni = 1 for some 1 < i < m, then (b) cannot hold.

We note that the first and the last mth level are special. If k1 = 1, then
every user of the first level is self-sufficient (passer) and its presence makes any
coalition winning and if km ≥ km−1 + nm, then the mth level consists entirely
of dummies.

Definition 10 (Conjunctive Hierarchical Game). Suppose that the set of
agents P is partitioned into m disjoint subsets P = ∪mi=1Pi, and let k1 < . . . <
km−1 ≤ km be a sequence of positive integers. Then we define the game H∀(P,W )
by setting

W = {X ∈ 2P | ∀i
(∣∣X ∩ (∪ij=1Pi

)∣∣ ≥ ki)}.
The following result was mentioned in (Tassa, 2007, Proposition 4.1) without

a proof. Since it is our main tool here we provide a proof below.

Theorem 4. Let n = (n1, . . . , nm) and k = (k1, . . . , km). Then for an m-level
hierarchical games H∃(n,k)∗ = H∀(n,k

∗) and H∀(n,k)∗ = H∃(n,k
∗), where

k∗ = (n1 − k1 + 1, n1 + n2 − k2 + 1, . . . ,
∑
i∈[m]

ni − km + 1).



Proof. We will prove only the first equality. As Isbel’s desirability relation is
self-dual, the canonical representation of H∃(n,k)∗ will involve the same equiv-
alence classes and hence it will be defined on the same multiset. Let k∗ =
(k∗1 , k

∗
2 , . . . , k

∗
m). It is easy to see that k∗i < k∗i+1 is equivalent to ki+1 < ki +ni+1

so we have k∗1 < . . . < k∗m−1 ≤ k∗m and k∗m−1 = k∗m if and only if km = km−1+nm.
So k∗ is well-defined. Consider a losing in coalition X = {1`1 , 2`2 , . . . ,m`m} in
H∃(n,k). It satisfies

∑
j∈[i] `j < ki for all i ∈ [m]. Then∑

j∈[i]

(nj − `j) >
∑
j∈[i]

nj − ki,

for all i ∈ [m], and the coalition Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} satisfies the
condition

∑
j∈[i](nj − `j) ≥

∑
j∈[i] nj − ki + 1 = k∗i , for all i ∈ [m]. Therefore,

Xc is winning in H∀(n,k
∗).

We need also to show that the complement of every winning in H∃(n,k) coali-
tion is losing in H∀(n,k

∗). Consider a coalition X = {1`1 , 2`2 , . . . ,m`m} which is
winning in H∃(n,k). It means that there is an i ∈ [m] such that

∑
j∈[i] `j ≥ ki.

But then the condition∑
j∈[i]

(nj − `j) ≤
∑
j∈[i]

nj − ki <
∑
j∈[i]

nj − ki + 1 = k∗i

holds. Thus, the complement Xc = {1n1−`1 , 2n2−`2 , . . . ,mnm−`m} is losing in
H∀(n,k

∗).

We note a certain duality for the second parameter as k∗∗ = k.

Theorem 5. Let H be a conjunctive hierarchical game defined on the set of
agents P partitioned into m disjoint subsets P = ∪mi=1Pi, where ni = |Pi|, by
a sequence of positive thresholds k1 < . . . < km−1 ≤ km. Then the canonical
representation H̄ of H has m equivalence classes and, hence, it is defined on
P̄ = {1n1 , 2n2 , . . . ,mnm} if and only if

(a) k1 ≤ n1, and
(b) ki < ki−1 + ni for every 1 < i ≤ m.

When (a) and (b) hold the sequence (k1, . . . , km) is determined uniquely. The
last mth level consists entirely of dummies if and only if km−1 = km.

Proof. This is a direct consequence of duality and Theorem 3. Indeed we have
k∗i < k∗i−1 + ni if and only if ki−1 < ki and k∗1 ≤ n1 is equivalent to k1 > 0,
k∗1 > 0 is equivalent to k1 ≤ n1 and k∗i−1 < k∗i is equivalent to ki < ki−1 + ni.

To prove the second statement we use duality and the fact that k∗∗ = k.

We will need the following two propositions.

Proposition 3. Let n = (n1, . . . , nm), k = (k1, . . . , km) and G = H∃(n,k). If
n′ = (n1, . . . , nm−1), k′ = (k1, . . . , km−1), then H(n′,k′) is a subgame GA of G
for A = {mnm}.



Proposition 4. Let n = (n1, . . . , nm), k = (k1, . . . , km) and G = H∀(n,k).
Suppose k1 = n1, n′ = (n1, . . . , nm), and k′ = (k2 − k1, . . . , km − k1). Then
H∀(n

′,k′) is a reduced game GA, where A = {1n1}.

4 Characterizations of Disjunctive Hierarchical Games

Firstly, we will obtain a structural characterization of hierarchical disjunctive
games.

Theorem 6. The class of disjunctive hierarchical simple games is exactly the
class of complete games with a unique shift-maximal losing coalition.

Proof. Let G = H∃(n,k) be an m-level hierarchical game. If km < km−1 + nm,
then the following coalition is a shift-maximal losing one:

M = {1k1−1, 2k2−k1 , . . . ,mkm−km−1}. (6)

Indeed, for every i = 1, 2, . . . ,m it has ki − 1 players from the first i levels, and
so any replacement of a player with more influential one makes it winning. If
km ≥ km−1 + nm, then it has to be modified as

M = {1k1−1, 2k2−k1 , . . . , (m− 1)km−1−km−2 ,mnm}. (7)

Suppose now that G is complete, has a canonical multiset representation on a
multiset P = {1n1 , 2n2 , . . . ,mnm} and has a unique shift-maximal losing coali-
tion M = {1`1 , 2`2 , . . . ,m`m}. We claim that `i < ni for all 1 ≤ i < m. Suppose
not. We know that there exists a multiset X such that X ∪ {i} is winning but
X ∪{i+ 1} is losing. We first take X to be of maximal possible cardinality first,
and then shift-maximal with this property. This will make X ∪ {i + 1} a shift-
maximal losing coalition. Indeed, we cannot add any more elements to X, and
replacement any element of it with the more influential one makes it winning.
Since X ∪ {i+ 1} is not equal to M (the multiplicity of i is not at full capacity)
we get a contradiction. Hence `i < ni. Then {1`1 , . . . , (i− 1)`i−1 , i`i+1} must be
winning. Then every coalition with ki = `1 + . . .+ `i + 1 player from the first i
levels is winning. Now if `m = nm we set km = km−1 + nm, alternatively we set
km = `1 + . . .+ `m + 1. It is easy to see that G is in fact H∃(n,k).

(Beimel et al., 2008) characterized ideal weighted threshold secret-sharing
schemes. As part of this characterization they characterized hierarchical weighted
games. However, their proof is indirect, and relies heavily upon the connection
between ideal secret-sharing schemes and matroids. Here we will prove the fol-
lowing theorem, which is slightly more general than their Claim 6.5. In secret-
sharing dummies are not allowed to be present, so they have at most three levels,
not four.

Theorem 7. Let G = H∃(n,k) be an m-level hierarchical simple game. Then
G is a weighted majority game iff one of the following conditions is satisfied:



(1) m = 1;
(2) m = 2 and k2 = k1 + 1;
(3) m = 2 and n2 = k2 − k1 + 1;
(4) m ∈ {2, 3} and k1 = 1. When m = 3, G is weighted if and only if the

subgame H∃(n
′,k′), where n′ = (n2, n3) and k′ = (k2, k3) falls under (2) or

(3);
(5) m ∈ {2, 3, 4}, km ≥ km−1 + nm, and the subgame H∃(n

′,k′), where n′ =
(n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls under one of the (1) – (4);

Proof. We will prove this theorem using the combinatorial technique of trading
transforms. If km ≥ km−1 + nm, then users of the last level are dummies and
they never participate in any minimal winning coalition. As a result, if there
exists a certificate of non-weightedness

T = (X1, . . . , Xj ;Y1, . . . , Yj) (8)

with minimal winning coalitions X1, . . . , Xj , which exist by Theorem 2, then no
dummies may be found in any of the X1, . . . , Xj , hence they are not participating
in this certificate. Hence G is weighted if and only if its subgame H∃(n

′,k′),
where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) is weighted. So we reduce
our theorem to the case without dummies, and in this case we have to prove that
G falls under the one of the cases (1)-(4). Let us assume that km < km−1 + nm.

If k1 = 1, then every user of the first level is self-sufficient (passer), that
is, any coalition with participation of this agent is winning. If a certificate of
non-weightedness (8) exists, then a 1 cannot be a member of any set X1, . . . , Xj ,
since then it will have to be also in one of the Y1, . . . , Yj and at least one of them
will not be losing. Hence G is weighted if and only if its subgame H∃(n

′,k′),
where n′ = (n2, . . . , nm) and k′ = (k2, . . . , km) is weighted.

Now we assume k1 ≥ 2. The case m = 1 is trivial. Next we show that if we are
restricted to two levels such that condition (5) is not met but any one of the two
conditions (2) and (3) is met, then G is weighted. So we assume that m = 2 and
k1 ≥ 2. If k2 ≥ k1 +n2 we have case (5); so suppose k1 ≤ n1 and k2 < k1 +n2. If
k2 = k1+1 then this leads to weightedness. Indeed, suppose we have a certificate
of non-weightedness (8) with X1, . . . , Xj winning and Y1, . . . , Yj losing coalitions.
We have then |Xi| ≥ k1 and |Yi| < k2 for all i. Thus we have |Xi| = |Yj | = k1
for all i, j. Since |Xi| = k1 and winning, it must be Xi = {1k1} for all i. But this
will imply that Yi = {1k1} for all i, which is an absurd as Yi must be losing.

Now we show that m = 2 together with n2 = k2 − k1 + 1 (we note that by
Theorem 3 this is the smallest value that n2 can take) implies G is a weighted
majority game. Assume towards a contradiction that G is not weighted, then
there exists a certificate of non-weightedness (8). If k2 = k1 + 1, we know that
G is weighted. So assume that k2 ≥ k1 + 2. The first shift-minimal winning
coalition is {1k1}. As k1 > 1, it follows that n2 < k2, which implies that {2k2} is
not a legitimate coalition. As k2−n2 = k1−1, the second shift-minimal winning
coalition is therefore {1k2−n2 , 2n2} = {1k1−1, 2n2}. There are no other cases.

In the certificate of non-weightedness (8) we may assume that X1, . . . , Xj

are shift-minimal, that is of the two types described earlier. It is obvious that



no {1k1} can be among X1, . . . , Xj . Hence X1 = . . . = Xj = {1k1−1, 2n2}. It is
now clear that we cannot distribute all ones and twos among Y1, . . . , Yj so that
they are all losing.

Conversely, we show that if all conditions (1)-(3) fail, then G is not weighted.
If m = 2, this means that k2 ≥ k1 + 2 and n2 ≥ k2 − k1 + 2. In this case the
game possesses the following certificate of non-weightedness:

({1k1}, {1k1−2, 2k2−k1+2};
{1k1−1, 2b(k2−k1+2)/2c}, {1k1−1, 2d(k2−k1+2)/2e}).

Since n2 ≥ k2 − k1 + 2, all the coalitions are well-defined. Also, the restriction
k2 ≥ k1 + 2 secures that dk2−k1+2

2 e ≤ k2 − k1 and makes both multisets in the
right-hand-side of the trading transform losing.

Now suppose m ≥ 3, k1 ≥ 2 and the condition (5) is not applicable. We may
also assume that k1 ≤ n1, k2 < k1 + n2 and k3 < k2 + n3. Suppose first that
k3 ≤ n3. Then, since k3 ≥ k2 + 1 ≥ k1 + 2 ≥ 4, the following is a certificate of
non-weightedness.

({1k1}, {3k3}; {1k1−1, 32}, {1, 3k3−2}).

Suppose k3 > n3. If at the same time k3 ≤ n2 + n3, then since k3 − n3 < k2 we
have a legitimate certificate of non-weightedness

({1k1}, {2k3−n3 , 3n3}; {1k1−1, 2, 3}, {1, 2k3−n3−1, 3n3−1}).

Finally, if k3 > n3 and k3 > n2 + n3, then the certificate of non-weightedness
will be

({1k1}, {1k3−n2−n3 , 2n2 , 3n3};
{1k1−1, 2, 3}, {1k3−n2−n3+1, 2n2−1, 3n3−1}).

All we have to check is that the second coalition of the losing part is indeed losing.
To show this we note that k3−n3 < k2 and k3−n2−n3 + 1 < k2−n2 + 1 ≤ k1.
This shows that the second coalition of the losing part is indeed losing and proves
the theorem.

5 Characterizations of Conjunctive Hierarchical Games

First we obtain a structural characterization of conjunctive hierarchical games.

Theorem 8. The class of conjuctive hierarchical simple games is exactly the
class of complete games with a unique shift-minimal winning coalition.

Proof. Let H∀(n,k) be a conjunctive hierarchical game. By Theorem 4, the dual
game of H∀(n,k) is a disjunctive hierarchical game H∃(n,k

∗). If we can prove
that the class of complete games with a unique shift-minimal winning coalition is



dual to the class of complete games with a unique shift-maximal losing coalition,
then by Theorem 6 this will be sufficient.

Let G = (P,W ) be a simple game with the unique shift-maximal losing
coalition S. By definition, Sc is winning in G∗. Let us prove that it is a shift-
minimal winning coalition. Consider any other coalition X that can be obtained
from Sc by a shift in G∗. It means that there are players i ∈ X and j /∈ X
such that j ≺G∗ i and X = (Sc \ {i}) ∪ {j}. The complement of X is the set
Xc = (S \ {j}) ∪ {i}. Furthermore, j ≺G i. The coalition Xc is winning in G,
because there does not exist a losing coalition from which S can be obtained by a
shift. Therefore, X is losing in G∗ and Sc is shift-minimal. Consider now a subset
X of Sc. The complement Xc of X is a superset of S. Hence, Xc is winning in
G and X is losing in G∗. Thus, Sc is the shift-minimal winning coalition in G∗.

We claim that Sc is the unique shift-minimal winning coalition in G∗. As-
sume, to the contrary, there is another shift-minimal winning coalition X in G∗.
As we have seen above XcS would be shift-maximal losing coalition in G and it
is different from S, a contradiction.

It is interesting that the class of complete games with a unique shift-minimal
winning coalition was studied before (Freixas & Puente, 2008), without noticing
that this class is actually the class of conjunctive hierarchical games.

Theorem 9. Let G = H∀(n,k) be an m-level conjunctive hierarchical simple
game. Then G is a weighted majority game iff one of the following conditions is
satisfied:

(1) m = 1;
(2) m = 2 and k2 = k1 + 1;
(3) m = 2 and n2 = k2 − k1 + 1;
(4) m ∈ {2, 3} and k1 = n1. When m = 3, G is weighted if and only if the

reduced game H∀(n,k){1
n1} = H∀(n

′,k′), where n′ = (n2, n3) and k′ =
(k2 − k1, k3 − k1) falls under (2) or (3);

(5) m ∈ {2, 3, 4}, km = km−1, and the reduced game H
{mnm}
∀ (n,k) = H∀(n

′,k′),
where n′ = (n1, . . . , nm−1) and k′ = (k1, . . . , km−1) falls under one of the
(1) – (4);

Proof. The theorem straightforwardly follows from Theorem 7, the duality be-
tween conjunctive hierarchical games and disjunctive hierarchical game and
Proposition 4.

6 Further Research

An interesting question in relation to complete simple games is to find how
quickly can dimension grow depending on the number of players (for general
games this growth is exponential). Thus it will be of interest to find the dimension
of disjunctive hierarchical games or get an upper bound for their dimension. It
should be noted that the dimension of conjunctive hierarchical games, as it
follows from results of (Freixas & Puente, 2008) and Theorem 8, is rather well-
understood and has linear growth.
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