
Concise Characteristic Function Representations
in Coalitional Games Based on Agent Types

Suguru Ueda, Makoto Kitaki, Atsushi Iwasaki, and Makoto Yokoo

Kyushu University,
744, Motooka, Nishi-ku,
Fukuoka 819-0395, Japan,

{ueda, kitaki}@agent.is.kyushu-u.ac.jp, {iwasaki, yokoo}@is.kyushu-u.ac.jp

Abstract. Forming effective coalitions is a major research challenge in
AI and multi-agent systems (MAS). Thus, coalitional games, including
Coalition Structure Generation (CSG), have been attracting considerable
attention from the AI research community. Traditionally, the input of a
coalitional game is a black-box function called a characteristic function.
A range of previous studies have found that many problems in coali-
tional games tend to be computationally intractable when the input is a
black-box function. Recently, several concise representation schemes for
a characteristic function have been proposed. Although these schemes
are effective for reducing the representation size, most problems remain
computationally intractable.
In this paper, we develop a new concise representation scheme based on
the idea of agent types. Intuitively, a type represents a set of agents,
which are recognized as having the same contribution. This representa-
tion can be exponentially more concise than existing concise represen-
tation schemes. Furthermore, this idea can be used in conjunction with
existing schemes to further reduce the representation size. Moreover, we
show that most of the problems in coalitional games, including CSG,
can be solved in polynomial time in the number of agents, assuming the
number of possible types is fixed.

1 Introduction

Forming effective coalitions is a major research challenge in AI and multi-agent
systems (MAS). A coalition of agents can sometimes accomplish things that
individual agents cannot or can do things more efficiently. There are two ma-
jor research topics in coalitional games. The first topic involves partitioning a
set of agents into coalitions so that the sum of the rewards of all coalitions is
maximized. This problem is called the Coalition Structure Generation problem
(CSG) [9, 10]. The second topic involves how to divide the value of the coalition
among agents. The theory of coalitional games provides a number of solution
concepts, such as the core, the Shapley value, and the nucleolus.

A range of previous studies have found that many problems in coalitional
games, including CSG, tend to be computationally intractable. Traditionally,

Table 1. Computational complexities of coalition formation problems and CSG using
conventional representations

Representation schemes

Characteristic function SCG MC-nets

Core non-empty exponential NP-complete [4] co-NP-hard [6]

Core membership exponential linear1 [4] co-NP-complete [6]

The Shapley value exponential O(22n)2 linear1 [6]

CSG O(3n) [9] NP-hard [8] NP-hard [8]

Table 2. Computational complexities of coalition formation problems and CSG using
type-based representations

Type-based representation schemes

Characteristic function SCG MC-nets

Core non-empty polynomial (Thm. 2) polynomial (Thm. 7) polynomial (Thm. 12)

Core membership O(nt) (Thm. 3) O(n2t) (Thm. 8) O(n2t) (Thm. 12)

The Shapley value O(nt) (Thm. 4) O(n2t) (Thm. 9) O(|R| · n2t) (Thm. 13)

CSG O(n2t) (Thm. 5) O(n2t) (Thm. 10) O(n2t) (Thm. 14)

the input of a coalitional game is a black-box function called a characteristic
function, which takes a coalition as an input and returns the value of the coalition
(or a coalition structure as a whole). Recently, several concise representation
schemes for a characteristic function have been proposed, e.g., synergy coalition
group (SCG) [4] and marginal contribution nets (MC-nets) [6]. These schemes
represent a characteristic function as a set of rules rather than as a single black-
box function and can effectively reduce the representation size. However, most
problems are still computationally intractable (Table 1).

In this paper, we develop a new concise representation scheme for a charac-
teristic function, which is based on the idea of agent types. Intuitively, a type
represents a set of agents, which are recognized as having the same contribu-
tion. Most of the hardness results in Table 1 are obtained by assuming that
all agents are different types. In practice, however, in many MAS application
problems, while the number of agents grows, the number of different types of
agents remains small. This type-based representation can be exponentially more
concise than existing concise representation schemes. Furthermore, this idea can
be used in conjunction with existing schemes, i.e., SCG and MC-nets, for further
reducing the representation size. We show that most of the problems in coali-
tional games, including CSG, can be solved in polynomial time in the number of
participating agents, assuming the number of possible types t is fixed (Table 2).

1 These problems can be solved in linear time in the input size.
2 This bound is not tight. Examining a tight bound is an open problem.

Our idea of using agent types is inspired by the recent innovative work of
Shrot et al. [11]. They assume that a game is already represented in some con-
cise representation, e.g., SCG. The goal of their work is first to identify agent
types and then to efficiently solve problems in coalitional games by utilizing the
knowledge of agent types. This approach becomes infeasible when a standard
characteristic function representation is used, since there exists no efficient way
for identifying agent types.

In contrast to their study, we assume that agent types are explicitly used for
describing a characteristic function in the first place. Also, we consider a wider
range of problems including CSG. As a result, the overlap between our work
and [11] is very small. In Table 2, only two entries, i.e., Core non-empty and
the Shapley value for SCG, might be considered as somewhat overlapping, while
other topics are not discussed in [11].

Several other works than [11] have also examined the concept of agent types
to represent agent capabilities. Bachrach and Rosenschein [2] introduce coali-
tional skill games, where the capability of an agent is characterized by its skills.
We can consider such skills correspond to agent types. However, they do not
assume that the possible types/skills of an agent are fixed (even if the num-
ber of skills is fixed, the combinations of skills are exponential). Thus, their
algorithms and complexity results are quite different from ours. Chalkiadakis et
al. [3] consider another representation scheme that can represent any characteris-
tic function, as well as ours. However, they examine the complexity of coalition
formation problems only in simple games, where the value of a characteristic
function is either 0 or 1, while we consider general games, where the value can
be arbitrary determined.

Furthermore, the literature of weighted voting games [1, 5] assumes that the
possible types of an agent are bounded. In this game, each agents has a weight
and the value of a coalition is determined by the sum of their weights. The value
of a coalition is 1 if the total weights exceeds a certain quota, and 0 otherwise.
Their works are very similar to our works if we regard each agent’s weight as
the agent type. They showed that the core-related coalition formation problems
and computing the Shapley value and the nucleolus become more tractable when
the number of weights is bounded. However, as well as [3], they concentrate on
only simple games and their type-based representation by using a weight is a
subclass of our proposed one where all types are classified by a cardinal utility.
Thus, we believe that this paper has significant new contributions since it can
handle general characteristic functions.

2 Model

2.1 Coalitional Games and Coalition Structure Generation

Let A = {1, 2, . . . , n} be a set of all agents. The value of a coalition S is given by
a characteristic function v. A characteristic function v : 2A → R assigns a value
to each set of agents (coalition) S ⊆ A. We assume that each coalition’s value is
non-negative.

Let x = (x1, x2, . . . , xn) be a payoff vector. A solution concept assigns to
each coalitional game a set of reasonable payoff vectors. Two of the best-known
ones are the core and the Shapley value.

Definition 1. The core is the set of all payoff vectors x, which satisfy the
feasibility condition:

∑
i∈A xi = v(A), and the non-blocking condition: ∀S ⊆

A,
∑

i∈S xi ≥ v(S).

If there exists a blocking coalition S such that
∑

i∈S xi < v(S) holds, then the
agents in S have an incentive to collectively deviate from the grand coalition
and divide v(S) themselves. In general, the core can be empty or contain a large
set of payoff vectors.

Definition 2. The Shapley value of agent i, ϕi, is defined as:

ϕi =
∑

S⊆A\{i}

|S|!(n− |S| − 1)!

n!
(v(S ∪ {i})− v(S)).

One intuitive interpretation of the Shapley value is that it averages an agent’s
marginal contribution over all possible orders in which the agent may join the
coalition.

A coalition structure CS is a partition of A, into disjoint, exhaustive coali-
tions. More precisely, CS = {S1, S2, . . . } satisfies the following conditions:

∀i, j (i ̸= j), Si ∩ Sj = ϕ,
∪

Si∈CS

Si = A.

In other words, in CS, each agent belongs to exactly one coalition, and some
agents may be alone in their coalitions.

For example, if there exist three agents a, b, and c, then there are seven
possible coalitions: {a}, {b}, {c}, {a, b}, {b, c}, {a, c}, {a, b, c}, and five possi-
ble coalition structures: {{a}, {b}, {c}}, {{a, b}, {c}}, {{a}, {b, c}}, {{b}, {a, c}},
{{a, b, c}}.

The value of a coalition structure CS, denoted as V (CS), is given by:

V (CS) =
∑

Si∈CS

v(Si).

An optimal coalition structure CS∗ is a coalition structure that satisfies the
following condition:

∀CS, V (CS∗) ≥ V (CS).

We say a characteristic function is super-additive, if for any disjoint sets Si, Sj ,
v(Si ∪Sj) ≥ v(Si) + v(Sj) holds. If the characteristic function is super-additive,
solving CSG becomes trivial, i.e., the grand coalition is optimal. In this paper,
we assume a characteristic function can be non-super-additive.

Example 1. Let there be four agents a, b, c, and d. The characteristic function
is given as follows:

v({a}) = 3, v({b}) = 3, v({c}) = 2,
v({d}) = 2, v({a, b}) = 6, v({a, c}) = 5,
v({a, d}) = 5, v({b, c}) = 5, v({b, d}) = 5,
v({c, d}) = 2, v({a, b, c}) = 8, v({a, b, d}) = 8,
v({a, c, d}) = 5, v({b, c, d}) = 5, v({a, b, c, d}) = 5.

In this case, there exist multiple optimal CSs. For example,
{{a, b, c}, {d}} and {{a, b, d}, {c}} are optimal CSs, and the value of these CSs
is 10.

2.2 Agent Types

Shrot et al. [11] introduced the idea of using agent types to reduce the computa-
tional complexity of coalition formation problems. If two agents have the same
type, their marginal contributions are the same. They introduced two different
notions of agent types, i.e., strategic types and representational types. The former
defines types based on the strategic power of the agents, and the latter defines
them based on the representation of the game.

Strategic types are defined based on the strategic power (marginal contribu-
tion) of each agent, i.e., if two agents are strategically equivalent, they belong
to the same (strategic) type.

Definition 3 (Definition 2.1 in [11]). Agents i, j ∈ A are strategically equiv-
alent if for any coalition S, such that i, j /∈ S : v(S ∪ {i}) = v(S ∪ {j}).

The notion called representational type is introduced to check the equiva-
lence of agents more conveniently based on a concise representation. Agents are
representationally equivalent if they only differ in their identifier. If two agents
are representationally equivalent, they are also strategically equivalent, but not
vice versa.

Shrot et al. examined the computational complexity for determining strategic
or representational types for several concise representations. They further showed
that if the number of types is fixed in these representations, most intractable
problems in coalitional games become polynomial.

3 Type-based Characteristic Function Representation

We assume the person who is describing a game has some prior information about
the equivalence of agents. Then the person will describe the game by explicitly
using the information of the agent types of which he/she is aware. We need
another notion of agent types. This is because (i) the information of the person
can be partial and he/she is not necessarily aware of all strategic equivalence,
and (ii) the equivalence that he/she is aware of is representation-independent.
Therefore, we introduce another notion called recognizable types.

Definition 4. Agents i, j ∈ A are recognizably equivalent if the person who is
describing the game (either by a characteristic function or by a concise represen-
tation) knows that for any coalition S, such that i, j /∈ S : v(S∪{i}) = v(S∪{j}).
From this definition, if two agents are recognizably equivalent, they are also
strategically equivalent, but not vice versa. Furthermore, assuming appropriate
representation is chosen, if two agents are recognizably equivalent, they are very
likely to be representationally equivalent.

Let T = {1, 2, . . . , t} be the set of all recognizable types and ni
A be the number

of agents of type i ∈ T in the set of all agents A. Also, nA = ⟨n1
A, n

2
A, . . . , n

t
A⟩

denotes a vector, where each element represents the number of agents of each
type in A.

We represent a characteristic function as follows:

Definition 5. For a coalition S, the coalition type of S is a vector
nS = ⟨n1

S , n
2
S , . . . , n

t
S⟩, where each ni

S is the number of type i agents in S. We
denote the set of all possible coalition types as At = {⟨n1, n2, . . . , nt⟩ | 0 ≤ ni ≤
ni
A}. A type-based characteristic function is defined as vt : A

t → R.

From the definition of recognizable equivalence, ∀S and its type nS , v(S) =
vt(nS) holds.

Theorem 1. A type-based characteristic function requires O(nt) space.

Proof. It is clear from the fact that |At| = (n1
A + 1)× . . .× (nt

A + 1) < nt. ⊓⊔

Example 2. Let agents a, b be type 1 and agents c, d be type 2 in Example 1.
A type-based characteristic function representation for Example 1 is given as
follows:

vt(⟨1, 0⟩) = 3, vt(⟨0, 1⟩) = 2, vt(⟨1, 1⟩) = 5,
vt(⟨2, 0⟩) = 6, vt(⟨0, 2⟩) = 2, vt(⟨2, 1⟩) = 8,
vt(⟨1, 2⟩) = 5, vt(⟨2, 2⟩) = 5.

For example, the type of coalition S = {a, b, c} is ⟨2, 1⟩ because S contains two
agents of type 1 and one agent of type 2. Thus, v(S) = 8. Here, the type-based
representation defines the value for each of eight possible coalition types, while
the standard representation needs to specify the value for each of fifteen possible
coalitions. In general, a type-based representation is exponentially more concise
than a standard representation.

We say a payoff vector is symmetric if all agents with the same type receive
an identical amount. We can restrict our attention to symmetric payoff vectors
without loss of generality (Lemma 3.2 in [11]). A symmetric payoff vector is
represented as ⟨x1, . . . , xt⟩, where all type i agents receive xi. We examine the
computational complexity of coalition formation problems in this restriction and
show that these problems can be solved in polynomial time in the number of
agents.

Theorem 2. If the number of agent types t is fixed, by using a type-based char-
acteristic function, determining whether the core is non-empty can be done in
polynomial time in the number of agents n.

Proof. To check whether the core is non-empty, it is sufficient to confirm whether
there exists a symmetric payoff vector that is feasible and not blocked by any
coalition. To this end, we construct the following linear programming formula
and check whether it has a solution. The variables of the linear program are
elements of a symmetric payoff vector x = ⟨x1, . . . , xt⟩. The program is as follows:∑

1≤i≤t

ni
A · xi = vt(nA); ∀nS ∈ At,

∑
1≤i≤t

ni
S · xi ≥ vt(nS)

From Theorem 1, if the number of agent types t is fixed, the number of con-
straints in this linear programming formula is polynomial in the number of agents
n. Thus, this problem can be solved in polynomial time. ⊓⊔

Theorem 3. By using a type-based characteristic function representation, de-
termining whether a symmetric payoff vector x is in the core can be done in
O(nt) time.

Proof. For a given symmetric payoff vector x = ⟨x1, . . . , xt⟩, we need to check
whether x is feasible, i.e.,

∑
1≤i≤t n

i
A · xi ≥ vt(nA) holds, and ∀nS ∈ At, x

is not blocked by S, i.e.,
∑

1≤i≤t n
i
S · xi ≥ vt(nS) holds. Since |At| = O(nt),

determining whether a symmetric payoff vector x is in the core can be done in
O(nt) time. ⊓⊔

Theorem 4. By using a type-based characteristic function representation, com-
puting the Shapley value of any agent can be done in O(nt) time.

Proof. The Shapley value averages an agent’s marginal contributions over all
possible orders in which the agents may join the coalition. Computing the Shap-
ley value for an agent requires the agent’s marginal contributions over all possible
coalitions that the agent may join. However, the Shapley value of agents with
the same type must be the same, since the Shapley value is symmetric. Also, if
two coalitions are the same type, the marginal contribution of an agent when
joining these coalitions is the same. Thus, we can obtain the Shapley value from
the marginal contribution of each type for each nS ∈ At, which can be done in
O(nt) time. ⊓⊔

4 Coalition Structure Generation with Agent Types

In this section, we develop an algorithm for the CSG problem based on knap-
sack problems [7]. A multidimensional unbounded knapsack problem (MUKP) is
the knapsack problem, where the knapsack has multidimensional constraint and
multiple copies exist for each item. For each item j, we denote the profit as pj ,
the weight of the i-th constraint as wij , and the number of copies packed in the
knapsack as qj . A MUKP with m items and t constraints of knapsack c1, . . . , ct
is formalized as follows:

maximize
∑

j pjqj
subject to

∑
j wijqj ≤ ci, i = 1, . . . , t

qj ≥ 0, j = 1, . . . ,m

Theorem 5. By using a type-based characteristic function representation, find-
ing an optimal coalition structure can be done in O(n2t) time.

Proof. We show that a CSG problem withm = |At| coalition types and t possible
agent types can be formalized as a MUKP with m items and t constraints. Let
us assume that one possible coalition type nSj ∈ At corresponds to item j, where
its value pj is equal to vt(nSj) and its weight for the i-th constraint is equal to
ni
Sj
. The capacity constraint of knapsack ci is determined by ni

A.

Let zj [d1] . . . [dt] be the optimal solution value for the knapsack problem
(CSG) with j coalition types {nS1 , . . . , nSj} and a capacity constraint of knap-
sack ci = di,∀i ∈ T . If zj−1[d1] . . . [dt] is known for all capacity values 0 ≤ di ≤
ni
A, ∀i ∈ T , then we can include another coalition type nSj and compute the

corresponding solutions zj [d1] . . . [dt] using the following recursive formula:

zj [d1][d2] . . . [dt] =

max

zj [d1 − n1

Sj
][d2 − n2

Sj
] . . . [dt − nt

Sj
] + vt(nSj)

(if ∀i ∈ T, di ≥ ni
Sj
)

zj−1[d1][d2] . . . [dt]

We can construct a dynamic programming based algorithm from this recur-
sive formula, which takes O(nt × |At|) = O(n2t) steps (see Section 9.3.2 in [7]).
Thus, for any fixed t, finding an optimal coalition structure can be done in O(n2t)
time. ⊓⊔

A similar argument has been done for the winner determination problem in
combinatorial auctions with a fixed number of types of items [12]. In fact, a
CSG problem can be mapped into that problem by assuming each coalition type
corresponds to a bid and that each type of agent corresponds to a type of item.

5 Combining with Concise Representation Schemes

5.1 Type-based SCG

We first show the original definition of SCG [4].

Definition 6. An SCG consists of a set of pairs of the form: (S, v(S)). For any
coalition S, the value of the characteristic function is: v(S) = max{

∑
Si∈pS

v(Si)},
where pS is a partition of S, i.e., all Si are disjoint and ∪Si∈pSSi = S, and for
all the Si, (Si, v(Si)) ∈ SCG. To avoid senseless cases that have no feasible
partitions, we require that ({a}, 0) ∈ SCG whenever {a} does not receive a value
elsewhere in SCG.

Using this original definition, we can represent only super-additive character-
istic functions. To allow for characteristic functions that are not super-additive,
Ohta et al. [8] slightly modify the definition, i.e., they add the following require-
ment for partition pS : ∀p′S ⊆ pS , where |p′S | ≥ 2, (∪Si∈p′

S
Si, v(∪Si∈p′

S
Si)) is not

an element of SCG. We refer to this modified definition as a standard SCG.
Next, we introduce the definition of a type-based SCG.

Definition 7. A type-based SCG consists of a set of pairs of the form: (nS , vt(nS)).
For any coalition type nS, the value of the characteristic function is defined in
a similar way as a standard SCG.

Theorem 6. A type-based SCG can represent any characteristic function rep-
resented in a standard SCG using at most the same amount of space and is
exponentially more concise than a standard SCG for certain games.

We omit the proofs due to space limitations. Intuitively, the worst case occurs
when the recognizable types of all agents are different. Also, when all agents have
an identical type, the value of a characteristic function is determined only by
the number of agents in a coalition. Then the required size of a type-based SCG
becomes O(n), but the size of a standard SCG can be exponential.

Example 3. A type-based SCG for Example 1 is given as follows:

(⟨1, 0⟩, 3), (⟨0, 1⟩, 2), (⟨0, 2⟩, 2), (⟨2, 2⟩, 5).

In this case, vt(⟨2, 1⟩) = vt(⟨1, 0⟩)+vt(⟨1, 0⟩)+vt(⟨0, 1⟩) = 8. Here, the type-based
SCG defines the value of four coalition types, while the type-based characteristic
function representation needs to describe eight possible coalition types.

Let us examine the complexity of coalition formation problems when we use
the type-based SCG representation. As discussed in [4], core-related coalition
formation problems remain hard in a standard SCG. However, this is due to the
fact that determining the value of the grand coalition is hard. If the value of
the grand coalition is given explicitly, these problems become tractable. We first
prove the following lemma.

Lemma 1. Translating a type-based SCG representation to a type-based charac-
teristic function representation (i.e., obtaining the values of characteristic func-
tion for all coalition types that are not explicitly described in SCG) can be done
in O(n2t) time.

Proof. Let us consider obtaining vt(nA), i.e., the value of the grand coalition.
It can be obtained using a method similar to the DP-based algorithm described
in Theorem 5. More precisely, we consider each coalition type described in the
type-based SCG as an item of the knapsack problem, where the capacity con-
straint of knapsack ci = ni

A for all i ∈ T . By running the DP-based algorithm,
for each possible coalition type nS , we obtain vt(nS), which is represented as
zm[n1

S] . . . [n
t
S]. One slight difference with the DP-based algorithm described in

Theorem 5 is that, if vt(nS) is already described in the type-based SCG explic-
itly, we fix the value of zj [n

1
S] . . . [n

t
S] to v(nS) and do not update. The algorithm

can be done in O(n2t) time. ⊓⊔

Now, since the value of the grand coalition can be obtained in polynomial
time, it is straightforward to show that core-related coalition formation problems
are tractable.

Theorem 7. If the number of agent types t is fixed, by using a type-based SCG
representation, determining whether the core is non-empty can be done in poly-
nomial time in the number of agents n.

Proof. When confirming that a symmetric payoff vector x is not blocked by any
coalition type, it is sufficient to check against coalition types that are explicitly
described in the type-based SCG. Therefore, we construct the following linear
programming formula with the constraint of coalition types described in the
type-based SCG. The program is as follows:∑

1≤i≤t

ni
A · xi = vt(nA); ∀(nS , vt) ∈ SCG,

∑
1≤i≤t

ni
S · xi ≥ vt(nS)

After we obtain vt(nA) (by Lemma 1, this can be done in polynomial time), the
above program can be solved in polynomial time in the number of agents n. ⊓⊔

Theorem 8. By using a type-based SCG representation, determining whether a
symmetric payoff vector x is in the core can be done in O(n2t) time. ⊓⊔

Proof. We first obtain vt(nA). By Lemma 1, this can be done in O(n2t) time.
Next, for a symmetric payoff vector x = ⟨x1, . . . , xt⟩, we check whether

∑
i∈T ni

A ·
xi = vt(nA) holds. Then, we confirm that this symmetric payoff vector is not
blocked by any coalition. It is sufficient to check against coalition types explicitly
described in the type-based SCG. Thus, determining whether a symmetric payoff
vector x is in the core can be done in O(n2t) time. ⊓⊔

Unfortunately, as far as the authors are aware, there is no efficient way to
compute Shapley values using SCG-based representations. However, we can use
a naive translation approach, which can be done in polynomial time.

Theorem 9. If the number of agent types t is fixed, by using a type-based SCG
representation, computing the Shapley value can be done in O(n2t) time.

Proof. From Lemma 1, we can compute the values of all coalition types in O(n2t)
time. Also, Theorem 4 shows that we can compute the Shapley value in O(nt)
time if we know the value of all coalitions. Thus, computing the Shapley value
can be solved in O(n2t) time. ⊓⊔

Theorem 10. By using a type-based SCG representation, finding an optimal
coalition structure can be done in O(n2t) time.

Proof. Ohta et al. showed that there exists a coalition structure CS such that
V (CS) = V (CS∗) and ∀S ∈ CS, (S, v(S)) ∈ SCG (see Theorem 3 in [8]). Using
a similar argument, we can show that when searching CS∗, we need to consider
only the coalition types that are explicitly provided in the type-based SCG. We
can find an optimal coalition structure using the DP-based algorithm provided
in Theorem 5, where possible coalition types (or items of the knapsack problem)
are restricted to the elements appearing in the type-based SCG. This algorithm
also takes O(n2t) steps. Thus, finding an optimal coalition structure can be done
in O(n2t) time. ⊓⊔

5.2 Type-based MC-nets

We first show the original definition of MC-nets [6].

Definition 8. An MC-net consists of a set of rules R. Each rule r ∈ R is of
the form: (Pr, Nr) → vr, where Pr ⊆ A,Nr ⊆ A,Pr ∩ Nr = ∅, vr ∈ R. vr can
be either positive or negative. We say that rule r is applicable to coalition S if
Pr ⊆ S and Nr ∩ S = ∅, i.e., S contains all agents in Pr (positive literals) but
no agent in Nr (negative literals). For a coalition S, v(S) is given as

∑
r∈RS

vr,
where RS is the set of rules applicable to S.

Next, we introduce the definition of type-based MC-nets.

Definition 9. A type-based MC-net consists of a set of rules R. Each rule
r ∈ R is of the form: (Lr, Ur) → vr, where Lr = ⟨l1r , l2r , . . . , ltr⟩ and Ur =
⟨u1

r, u
2
r, . . . , u

t
r⟩. Each lir (and ui

r) represents the lower (upper) bound of the num-
ber of i-th type agents in a coalition so that this rule becomes effective. We say
that rule r is applicable to coalition S if ∀i ∈ T, lir ≤ ni

S ≤ ui
r. For a coalition S,

v(S) is given as
∑

r∈RS
vr, where RS is the set of rules applicable to S.

Theorem 11. A type-based MC-net can represent any characteristic function
represented in a standard MC-net using at most the same amount of space and
is exponentially more concise than a standard MC-net for certain games.

For space reasons, we omit the proof. We can prove the theorem using a
similar argument described in Theorems 6.

Example 4. A type-based MC-net for Example 1 is given as follows:

r1 : (⟨1, 0⟩, ⟨1, 2⟩) → 3, r2 : (⟨2, 0⟩, ⟨2, 1⟩) → 6,
r3 : (⟨0, 1⟩, ⟨2, 2⟩) → 2, r4 : (⟨2, 2⟩, ⟨2, 2⟩) → 3.

In this case, r2 and r3 are applicable to coalition type ⟨2, 1⟩, but r1 and r4 are
not. Thus, vt(⟨2, 1⟩) is equal to 6+ 2 = 8. Here, the type-based MC-net consists
of four rules, while the type-based characteristic function representation needs
to specify the value of eight possible coalition types.

Unfortunately, as far as the authors are aware, there is no efficient way to
solve core-related coalition formation problems using MC-net-based representa-
tions. However, we can use a naive translation approach, which can be done in
polynomial time. We first prove the following lemma.

Lemma 2. Translating a type-based MC-net representation to a type-based char-
acteristic function representation (i.e., obtaining the values of characteristic
function for all coalition types) can be done in O(n2t) time.

Proof. We can safely assume that the number of rules of a type-based MC-
net is O(nt). Otherwise, it’s better to use the type-based characteristic function
representation in the first place. For each nS ∈ At, we initialize vt(nS) to 0. Then,
for each rule r ∈ R, and for each coalition type nS , if the rule is applicable to
nS , we increment vt(nS) by the value of r. Since each rule is applicable to at
most nt coalition types, this procedure can be done in O(n2t) time. ⊓⊔

Theorem 12. If the number of agent types t is fixed, by using a type-based MC-
net representation, determining whether the core is non-empty can be done in
polynomial time in the number of agents n. Also, determining whether a sym-
metric payoff vector x is in the core can be done in O(n2t) time.

Proof. This is clear since by Lemma 2 we can transform a type-based MC-net
representation into a type-based characteristic function representation in O(n2t)
time. Then, from Theorem 2, we can determine whether the core is non-empty
in polynomial time. Also, from Theorem 3, whether a symmetric payoff vector
x is in the core can be checked in O(nt) time. Thus, the total required time is
polynomial in the number of agents n (in particular, O(n2t) for checking whether
x is in the core). ⊓⊔

In contrast to core-related coalition formation problems, the standard MC-
net representation is suitable for computing Shapley values. This is also true for
our type-based MC-net representation, i.e., the following theorem holds.

Theorem 13. If the number of agent types t is fixed, by using a type-based MC-
net representation, computing the Shapley value of any agent can be done in
O(|R| · n2t) time.

Proof. To compute the Shapley value of an agent, we can compute its Shapley
value for each rule and use the summation of these values (see Proposition 5
in [6]). Furthermore, we can decompose a rule into multiple rules, where each
decomposed rule has a form: (⟨y1, . . . , yt⟩, ⟨y1, . . . , yt⟩) → v, i.e., the rule is
applicable to exactly one coalition type. The Shapley value of type i agent for
rule r (denoted as ϕi,r) is computed by the following procedure:

ϕi,r =
v

n!
(f+

i (y1, . . . , yt)− f−
i (y1, . . . , yt)),

f+
i (y1, . . . , yt) ={
0 if yi = 0,

Πj ̸=i nj
A
Cyj · ni

A−1Cyi−1 · (sy − 1)!(n− sy)! otherwise.

f−
i (y1, . . . , yt) ={
0 if yi = ni

A,

Πj ̸=i nj
A
Cyj · ni

A−1Cyi · (sy)!(n− sy − 1)! otherwise.

where sy =
∑
j∈T

yj , n =
∑
j∈T

nj
A.

Here, f+
i (y1, . . . , yt) represents the number of orderings where the marginal con-

tribution of one type i agent is v, and f−
i (y1, . . . , yt) represents the number

of orderings where the marginal contribution of one type i agent is −v. Thus,
v
n! (f

+
i (y1, . . . , yt)− f−

i (y1, . . . , yt)) represents the Shapley value of type i agent
for this rule. Using this procedure, the required time for computing the Shapley
value of an agent becomes O(|R| · n2t). ⊓⊔

Although Ohta et al. proposed an efficient method for solving CSG problems
based on the standard MC-net [8], we cannot apply this method straightfor-
wardly. Nevertheless, we can still rely on a naive approach that translates a
type-based MC-net representation into the corresponding type-based character-
istic function representation.

Theorem 14. If the number of agent types t is fixed, by using a type-based MC-
net representation, finding an optimal coalition structure can be done in O(n2t)
time.

Proof. This is clear since by Lemma 2 we can transform a type-based MC-net
representation into a type-based characteristic function representation in O(n2t)
time. Then, from Theorem 5, we can find an optimal coalition structure in O(n2t)
time. Thus, the total required time is O(n2t). ⊓⊔

6 Experimental Evaluations

In this section, we experimentally evaluate the performance of our proposed
methods. We concentrate on methods for type-based SCG, since we can control
the input size of a problem instance. In addition, the DP-based algorithm is also
used in other representations. All tests were run on a Core 2 Quad Q9650 3GHz
processor with 16GB RAM. The test machine runs Windows 7 Enterprise x64
Edition.

Let us consider a type-based SCG problem instance, where n agents have
one of five different types (t = 5). We vary n from 10 to 100 and set the number
of elements in a type-based SCG to n, (i.e., equal to the number of agents).
We generate each element using a decay distribution as follows. Initially, the
required number of agents in each type is set to zero. First, we randomly choose
one type and increment the required number of agents in the type by one. Then,
we repeatedly choose a type randomly and increment its required number of
agents with probability α, until a type is not chosen or the required number of
agents exceeds the limit. We choose the value of that coalition between 1 and
10 × n uniformly at random and use α = 0.55. In this way, we generated 50
problem instances for each n.

We translate each generated problem instance represented by type-based
SCG into an equivalent problem instance represented by standard SCG. In Fig-
ure 1(a), the x-axis shows the number of elements in the type-based SCG rep-
resentation, and the y-axis shows the number of elements in the standard SCG
representation. Each data point shows the average of 50 problem instances. The
number of elements in the standard SCG grows exponentially compared to that
in the type-based SCG When the number of elements in the type-based SCG
representation exceeds 40, we cannot translate the problem instances due to in-
sufficient memory. This result illustrates that the type-based representation is
exponentially more concise than the standard representation.

We investigate the computation time of our DP-based algorithm. For com-
parison, we show the results of the MIP formulation in Ohta et al. [8], which uses

101

102

103

104

105

106

107

 10 15 20 25 30 35 40

nu
m

be
r

of
 e

le
m

en
ts

 in
 a

 s
ta

nd
ar

d
SC

G

number of elements in a type-based SCG

(a) Number of elements in a stan-
dard SCG

100

101

102

103

104

105

106

 10 20 30 40 50 60 70 80 90 100

tim
e

[m
s]

number of agents

DP-based algorithm
CPLEX

(b) Computation time

Fig. 1. Experimental Results

a standard SCG representation. To obtain this result, we used CPLEX version
12.1, a general-purpose mixed integer programming package.

Figure 1(b) illustrates the average computation times for solving the gener-
ated problem instances by our DP-based algorithm using the type-based SCG
(DP) and by CPLEX in the MIP formulation using the standard SCG (CPLEX).
The x-axis indicates the number of agents, and the y-axis shows the average com-
putation times. When n ≤ 20, CPLEX is faster than DP, while DP eventually
outperforms CPLEX for n > 20. CPLEX can reduce the search space efficiently
when the input size is relatively small. However, the input size for CPLEX grows
exponentially. Thus, its computation time increases very rapidly. When n > 40,
even generating problem instances becomes infeasible. On the other hand, the
computation time for DP grows more slowly than the exponential rate. This
result corresponds to the theoretical complexity presented in Theorem 10, i.e.,
finding an optimal coalition structure can be done in O(n2t) time. As shown in
this result, the type-based SCG enables us to solve a CSG problem instance with
up to 100 agents in a reasonable amount of time.

7 Conclusion

In this paper, we developed a new concise representation scheme for a char-
acteristic function, which is based on the idea of agent types. The type-based
representation can be exponentially more concise than existing concise represen-
tation schemes. Furthermore, this idea can be used in conjunction with existing
schemes, i.e., MC-nets and SCG, for further reducing the representation size. We
showed that most problems in coalitional games, including CSG, can be solved
in polynomial time in the number of agents, assuming the number of types t
is fixed. We also experimentally showed that a type-based SCG enables us to

solve a CSG problem instance with up to 100 agents in a reasonable amount
of time. Our idea of using agent types is inspired by the recent work of Shrot
et al. [11]. However, in contrast to their study, our work introduced the idea of
describing a characteristic function explicitly using agent types in the first place,
and considered a wider range of problems in coalitional games including CSG.

Our future works include examining the complexity of solving other problems
in coalitional games, e.g., finding the nucleolus, and combining the idea of agent
types with other concise representation schemes such as [13].

References

1. Bachrach, Y., Elkind, E.: Divide and conquer: false-name manipulations in
weighted voting games. In: AAMAS. pp. 975–982 (2008)

2. Bachrach, Y., Rosenschein, J.S.: Coalitional skill games. In: AAMAS. pp. 1023–
1030 (2008)

3. Chalkiadakis, G., Elkind, E., Jennings, N.R.: Simple coalitional games with beliefs.
In: IJCAI. pp. 85–90 (2009)

4. Conitzer, V., Sandholm, T.: Complexity of constructing solutions in the core based
on synergies among coalitions. Artificial Intelligence 170(6), 607–619 (2006)

5. Elkind, E., Pasechnik, D.V.: Computing the nucleolus of weighted voting games.
In: SODA. pp. 327–335 (2009)

6. Ieong, S., Shoham, Y.: Marginal contribution nets: a compact representation
scheme for coalitional games. In: EC. pp. 193–202 (2005)

7. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer (2004)
8. Ohta, N., Conitzer, V., Ichimura, R., Sakurai, Y., Iwasaki, A., Yokoo, M.: Coalition

structure generation utilizing compact characteristic function representations. In:
CP. pp. 623–638 (2009)

9. Rahwan, T., Jennings, N.R.: An improved dynamic programming algorithm for
coalition structure generation. In: AAMAS. pp. 1417–1420 (2008)

10. Sandholm, T., Larson, K., Andersson, M., Shehory, O., Tohmé, F.: Coalition struc-
ture generation with worst case guarantees. Artificial Intelligence 111(1-2), 209–238
(1999)

11. Shrot, T., Aumann, Y., Kraus, S.: On agent types in coalition formation problems.
In: AAMAS. pp. 757–764 (2010)

12. Tennenholtz, M.: Some tractable combinatorial auctions. In: AAAI. pp. 98–103
(2000)

13. Ueda, S., Iwasaki, A., Yokoo, M., Silaghi, M.C., Hirayama, K., Matsui, T.: Coalition
structure generation based on distributed constraint optimization. In: AAAI. pp.
197–203 (2010)

