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ABSTRACT

Human and artificial agents routinely make critical choiabsut
interaction partners. The decision about which of sevesakible
candidates to interact with, either for a limited or extahdiene
period, has significant importance on the competitivenassyiv-
ability, and overall utility of an agent. We assume that aerdadpas
time and resource constraints that limit its participatioronly a

fixed numberk, of relationships or interactions with other agents

in a particular time period. Therefore, in a given time pdrian
agent is free to choose to interact with ahyther agents from
a society of N agents. A bilateral relationship is estalglicsin a

time period, however, if both agents choose to do so. The @oal

this research is to investigate the extent to which knowmieg
schemes can identify and sustain mutually beneficial meiatiips
in these conditions. While exploration is necessary totlg®s-
sible fruitful relationships, resource constraints lithie extent of
exploration. The desired emergent phenomena of mutualkecaep
tion is uncertain and fragile as it is predicated on the cagemce
of the learning of multiple, concurrent learners. We inigegte the
success of individual learners in identifying and sustajninutu-
ally beneficial relationships in a multiagent society undsmying
envrionmental conditions.

1. INTRODUCTION

“Whom should | interact with?” Whether “I” is a human being,

a business, or an agent, the answer to this question will @ay
important role on its performance, e.g., happiness, dapitiity,
etc. There are two key aspects of this problem. First is tbation
problem: finding a set of “right” agents to interact with. Tigh
the set of candidates is potentially large, an agent musktyuiind
other agents with whom interactions are particularly relvay. It
may also take several interactions to build an approximatet-
rect estimate of the true rewards or interacting with anotigent.
Effective exploration schemes are needed to rapidly itleptiten-
tially good candidates. Secondly, a desirable interaataouires
both agents to benefit from it. This mutual benefit requireradds
another constraint on the partner selection problem: wheagant
encounters a beneficial agent, it needs to determine whéibker
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other agent is also interested in developing a lastingiosighip.
When the amount of interactions over a period of time is kahjt
recognizing mutual benefit may not be easy. If another agees d
not interact with our agent in a particular time period, itynmaean
that the agent is not interested in continuing the inteoastiwith
our agent, or that the agent was busy exploring relatiosshvith
others in that time period.

In this paper, we investigate the effectiveness of learmthgm
to interact with in a society of agents. We consider that tand
resource constraints limit the number of possible intévast &,
that an agent can have per time period, i.e., an agent carsehoo
to interact with anyk agents in a population oV agents in each
time period. For an interaction to occur successfully, aghnts
must choose to interact with each other. Each agent receivgés
ity for every such interaction and the utility of selecting agent
unsuccessfully (when the other agent does not want to itt)eisa
zero. Each agent can update its rating for the other ageattuas
the received utilities. This in turn determines their wijness to
select the other agent for future interactions. Agentsraterested
in identifying partners such that corresponding interattigener-
ate high utility. Only mutually profitable interactions,wever, are
desirable and self-sustaining.

The goal of this research is to investigate the extent to kvhic
known learning schemes can identify and sustain mutualhebe
ficial relationships in these conditions. The primary difftg of
efficiently finding mutually beneficial relationships, watlt prior
knowledge of others’ preferences and needs, is the numbas-of
tential candidates to evaluate. Large-scale problemsroanive a
massive humber of agents. The heterogeneity and the number a
types of knowledge, services, and resources that are o&siteo
agents further compound the problem: a fairly small portibthe
agent population might be of interest to an agent. So thelkdar
effective partnerships may amount to the proverbial séagdor a
needle in a haystack!

In addition, agents can enter and leave open environmeats/at
time, e.g., agents may be unable to quickly find desirabkraat
tion partners and are compelled to leave the environmenso,Al
new services may be needed, and some agents may enter the envi
ronment to meet this demand. The environment can, therdfere
highly dynamic. As learned knowledge may be quickly outdate
agents have to carefully manage the exploration-expioitatade-
off.

A number of multiagent learning algorithms have been devel-
oped recently that converge to equlibria in repeated play7[3
Most of these algorithms are evaluated in two-player sibnatwith
few actions per agent. We believe, however, that in real -apenhd
environments, where agents interact with different setgeiss in
each interaction, itis much more likely that simple, sirgtgent re-



inforcement learning techniques will be used by a large nitgjof

the agents. Hence, it is useful and highly instructive tduata the
resultant dynamics of a relatively large population of diengin-
forcement learners searching for mutually beneficial pastimips.
We, therefore, use Q-learning [13] as the learning algorittsed
by our population of agents.

committee to improve the classification accuracy [10]. Tslegw
that agents successfully learn when to ask for collabaradiod
which agents to ask for help. In their work, the agents arpemn
tive and there is no mutual interest constraint.

Bringing together agents with complementary interest can b
done by building a social network. The goal of the agents ahsu

We do not know of any research that has attempted such mas-a network can be to modify the connections so that neighbbrs o

sively concurrent learning by a large number of utility nraiing
agents using single-agent reinforcement learning teciesigvhere
the agent utilities are closely coupled. Not only is thelltk@od of
convergence of such interlinked learning to effective d@es un-

an agent have complementary service: one agent consumes the
service that the neighbor produces [4]. In [1] a peer-to-@ge
proach is used to bring together agents with complementeey-i

est and competence: agents are grouped together so as teditrm

cleara priori, no weak guarantees about performance can also be sustaining groups of agents who can share their knowledge. A

provided. That is what, however, makes this empirical extadm
interesting as we can develop important insights about fileets
of different environmental parameters on the learned onéso It
will also be illuminating to observe and analyze the dynanut
agent selection strategies as agents develop preferemrcdifér-
ent partners over time and adapt their selections.

We conduct a series of experiments varying population agent
preferences, exploration schemes, survival rates, etshite that
the agents can learn to effectively selécpartners from a pop-
ulation of N agents, provided sufficient exploration, in dynamic
domains, and both with deterministic and stochastic paywffm
interactions. We also study the effect of the diversity ojqits
from interactions with different agents as well as the efté@agent
“deaths” if unsuccessful in generating a minimum threshility
from interactions in successive generations.

2. RELATED WORK

agent will provide knowledge to some agents and receive know
edge from other agents in such peer clusters.

As discussed briefly in the last section, this work is alsates
to work on multiagent learning: in our domain a potentiallyge
number of self interested agents are learning concurréntbpti-
mize their private utility. See [9] for a survey on multiagésarn-

ing.

3. PROBLEM DESCRIPTION

We consider a population aV agents. Each agent can try to
interact with any other agent in the society. Because of tma
resource constraints, an agent can interact with erdsher agents
in any time period. In each time period, each agent seledss af |
k agents it wants to interact with.

In real-life, agents are unlikely to have preferences fdiviidual
agents and are more likely to have preferences for othesedasf
agents. For example, if an agent needs complementary oesour

The agent location problem has been an active area of résearc or capabilities, any other agent who can provide those hedong

in multiagent systems. A well-studied approach is to userrafs
from other agents [11, 12, 14]. With referral systems, trenégare
not only providing services, but also act as referrers. Fhaé is
not simply to locate agents that offer a particular sentice also to
locate services offering a high quality of service, which bkely

to a type or class with corresponding properties, will befgred.
Therefore, we introduce a type for each agent. The set ofjadist

T is finite. We consider that each agent knows its own type, that
it is private (an agent does not know the type of other ageats)
that the utility received by an agehin an interaction with another

to be recommended by many peers. When an agent receives a recagent; is a function of the type ofi. Note that the preference

ommendation, the value of this information depends on hagt4r
worthy the recommender agent is and also on its expertisentag
use learning to determine the value of a recommendationhdn t
particular case where two agents know each other and intieeac
quently, a trust relationship is established and can be tesgdide
the search for other useful agents. One of the agents caidprov
its opinion about another agent, propose agents to meeg\ard
organize an interaction between two of its trusted frienkfsre-
ferral systems, however, the mutual interest constrainbidaken
into account. In our work, the agents do not provide refethay
locate agents with complementary interest only througletitye
personal interaction.

Another solution to finding useful agents is to use a matclemak
agents can reveal some of their interest and competenceustaed
third party. From this information, the matchmaker can tdgn
agents with complementary expertise. This solution isctiffe for
finding optimal matches, as the matchmaker can evaluatessip
ble matchings, but is computationally costly. Informatadout all
agents in the system must be collected at a such centrabped+
itory. Distributed matchmaking [5, 6, 8] alleviate the sdality
and fault tolerance issues inherent with centralized systBen-
Ami and Shehory compare centralized and distributed ageat |
tion mechanisms [2].

over the type is individual: two agents of the same type cam ha
different preferences.

For an interaction between agerdand agenj to be successful,
7's selection list should contaip and vice versa. When an inter-
action is successful, each agent will receive a utility énibtat for
an unsuccessful interaction, e.g., when agenanted to interact
with j but j did not, receives zero utility). The reward is stored
in a matrixR, that is not known to the agents. The valéi, ¢;),
(i,t;) € N x T, is the payoff received by agehin a successful
interaction with an agent of typet;. The entries ofR are either
the maximum utility@) one can receive from an interaction or a
relatively low value{). Agenti’s goal, then, is to seledt agents
{41, ..., 1k} such thatvm € [1..k], R(%,ti,,) = R(im,t:) = H,
assuming such a perfectly matching scenario is feasiblendive
matrix K. To illustrate, let’s consider an environment which con-
sists of 6 agents that can be of 3 types, and each agent seaks 2 p
ners. The types of each agent and the maRiare represented in
Table 1. The optimum solution to this environment is when the
list [(i) of each agent are as follows:1(0)={2,3}, {(1)={4,5},
1(2)={0,3}, 1(3)={0,2}, I(4)={1,5}, I(5)={1,4}.

Note that the agents may not have complementary interesinit
be the case that ageigets a high value when it interacts with agent
j, but ageng may have only a low value for this interaction. Thus,

To find agents with complementary competence, it is possible if they interact once; may be eager to interact again withbut
to create a model of the competence of other agents. Plaza andj may not be enthusiastic about such an interaction in thedutu

Ontafidn propose an approach for learning the competdmthar
agents where agents face a classification problem and caereoa

If < keeps on choosing without j selectingi, ¢'s utility for j will
decrease. For example, considering the example in Tablédnw
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Type2

Agent | Type

Typel Type3

Type 1
Type 1
Type 2
Type 2
Type 3
Type 3
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Table 1. Preference examplewith 6 agentsand 3 types.

agent3 interacts with agent, agent3 receives a high reward, but
agent2 receives a low reward. Agestmay seek to interact again
with agent2, but the converse is not true. More generally, utility to
an agent for another agent is determined both by the paydfixma
(obtaining low or high reward) and the selection strategied by
the agents (agents needs to select each other to receivétigepos
reward).

We generated matriceR for different number of agents and
types with unique known solutions. These matrices allowfus e
fectively determine whether the agents are learning taactevith
the optimal set of agents. Also, this setting provides alehgt
ing learning problem for the agents as there exists only guani
solution to the problem.

3.1 Learning and Exploration scheme

At each time step, each agent builds its liskofgents, and re-
ceives a payoff for each successful interaction. This Eedgre-
peated for many time steps. The goal of each agent is to learn t
select the: agents that will maximize its utility from interactions.

In our formulation, an agent maintains an estimat@; (i) of
the interaction reward with each agehin the society. The Q-
learning [13] rule is used by agejtio update the reward estimate
for another agentas follows

Qi (i) — ale;(i) -+ (1 —ale;(i)) - Q;(2),

wherer is the utility received for interacting withandca(e; (7)) is
the learning rate that is function of the number of times &géras
tried to interact with agent, ¢; (7).

We use the-greedy exploration scheme for forming the listiof
agents. First, each agent builds a sorted lidtall the other agents
in decreasing order of Q-values. To draw thagents to interact
with, the agent chooses the next agent with probability 1 — e,
or chooses a random agent in the rest with probabilitye. The
exploration rate determines the tradeoff between exploitation and
exploration. At the beginning of the learning process, &gemst
explore to develop utility estimates for the other agents|, thek
agents are chosen at random. Later in the learning proagestsa
must exploit their learned knowledge: by decreasing theevafe
with time, more agents that rank high are chosen with ceytaft
the end of the simulation, theagents chosen are the one with the
highest Q-values. In this setting, exploiting correspotalsom-
miting in a relationship with another agent, i.e., contirgifo select
that agent to benefit from that partnership. With the deereds,
the agents commit to more relationships.

4. RESULTS

In the following experiments, the populatidn = 48 andk = 8.
High reward, H, is 1 whereas low rewardl,, is a uniform ran-
dom number in the range [0,0.8] which is unique for each agent
This choice for the low value should make the problem harder t

learn. While it is true that after one successful interactgents
will know whether the other agent is a preferred partner dr iho
might take more time to select optimal partnerships in argamvi-
ronment. Thisis because arelatively high Q-value, e.@5 6an be
obtained by mostly successful interactions with a pretepartner
and few unsuccessful interactions or a more consistenessfid
interactions with a somewhat less preferred partner. Eiffgat-
ing between these two partners becomes more difficult agpheru
bound of the range af increases.

The initial value ofe is set t00.8 and we use exponential decay
of exploration with different rates of deca} at each iteration,
€ < € - d. All results are averaged over 10 runs.

4.1 Effect of explorationin staticenvironments

The first question we address is the optimality of the polazynid
by the learners. We designed an environment where each of the
agents can interact with exactkyagents to receive high payoffs.
We want to find out if the agents can learn a policy that is close
from the optimal in reasonable time for this highly consteal en-
vironment. In the following figures, the y-axis represehis aver-
age reward obtained by an agent for an interaction, averaged
all the agents. The optimum payoffis, which is 1 for these exper-
iments. In the first experiment, we vary the valuedpthe rate of
decay of the exploration. Whehis small,e decreases quickly, and
the exploration period is short. Whehis close to 1¢ decreases
less rapidly, and the agents have more time to explore. Téetsg
may not have time to exploit (if is too low). Figure 1 shows that
a slow decayd > .995) is required for agents to learn a close to
optimal policy. When the decay is fast, (e.g., tbr= 0.98 and
0.95) agents converge prematurely to a suboptimal solutidre
fact that concurrent learning by a relatively large numkfeindi-
vidual Q-learners is able to find close to optimal solutiosuch a
tightly coupled problem is pleasantly surprising and boslel for
open agent societies that require agents to locate mutoeiigfi-
cial partners through trial and error.

Static Environment
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Figure 1. Effect of d in static environment

4.2 Dynamic environments

An agent may be forced to leave the environment if it does not
quickly find interesting agents to interact with. This mayhbme
cause it does not have enough resource reserves to sustdin it
We model this situation in the following experiments: anreggir-
vives when the total payoff accumulated over the pagérations
is larger than a threshold value= 6 - k£ - n. For low value of



4, an agent needs to find only few good partners. For larger val- 502

ues ofd, the agents need to quickly identify many good partners: 1 : : . .
this requires an aggressive exploration. When an agentdeddo
leave the environment, it is replaced by a copy. The type &tityu e 4083 : o
function remains unchanged, which ensures that the samgosol P/
exists (Q-values, history of past interactions, arate reset). The
other agents are notified of the departure of the agent, bytdb
not know the utility function of the new agent is the same. ¢tgn
they reset the corresponding Q-values to a high value. THis w
force the other agents to try to interact with the newcomes.aA
result, this helps the new agent to quickly find beneficiatrpas.

If few agents have found good partners, the arrival of a nesngg
may allow them to find a new preferred partner. This might tied¢p
system to converge to a close to optimal solution. If manyntge
frequently die, however, agents will keep on exploring, aedce 0 1000 2000 3000
they may loose fruitful interactions with agents, whichumrt can Iterations
lead to instability in the environment.
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Figure 3: Effect of d on dynamic environment

learning abilities of agents whefe= 0.2. Agents are not able to
establish initial mutual relationships wheris 0.95. Faster decay,
08 5 e.g., 0.85, allows them to create initial relationshipsr §ower
T decay (highetl), payoffs increase more slowly over a run. We note
06 | ! ] the presence of plateaus where agents are not able to fimpart
g and sharp increase where a small set of agents that werdedjyea
dying finally manage to survive.
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’ ’ 4.2.2 Protecting young agents

o2l S ] In the previous experiments, we varied the exploratioratgiion
E,‘/’{,*’\ balance. Now, we keep the exploration schedule fixed but we pr

vide additional time for the agents to explore by protectihg

o5 " 100 50 200 50 200 agents in t_helr early_ ages, i.e., they are ellmlnaFed om@_’at It_east

Iterations ppinteractions. Various schemes can be used in practice videro
such protection, e.g, by providing a new agent an initiabsndent

Figure2: Effect of § upon entering the environment. In Figure 4, we display tlecef
of protecting the young agents. When the protection peppyié

In Figure 2, we compare learning in a static environment (no increased, the agents are able to survive more easily, arsystem

death) with learning in dynamic environments with two diéfet converges faster to near optimal value. To shed some ligkttien
values foré. In each case, the agents are able to select the Closephenomenon we pIo_t the_ average number_of ggent departtes th
to optimal partners. Compared to the curve of the staticrenvi ~ ©CCUr €very 10 iterations in Figure 5: whppis higher less deaths
ment which present a concave gradual increase, the curvélsefo ~ OCCUr €arly in the simulation. Furthermore, the plateaubrases
dynamic environments show a rise in utility after an inigaplo- in Figures 4 and 5 are correlated. An increase in averageffsayo

ration period that increases wih At the start of the simulation, ~ COrresponds to a decrease in average number of departures.
as the exploration is large, many agents have to leave: thetag

do not exploit enough to be able to survive. However, somatage 0.1, c:0.995

manage to rapidly find good partners and are able to surviee. A 1 ; ; ; ;
there are some stable agents in the system, new agents abn est
lish a relationship with these agents. With the increas@@hum-
ber of survivors, the number of deaths should decreaser faste
faster over a run. Earlier in the simulation, if an agent fibuan
good partner, the partner may not live long enough to proside
ficient payoff. When an agent leaves, a (surviving) agerdtsethe
corresponding Q-value. Hence, it is likely to try to intaradth
newcomers. This exploration may be harmful if many agerstede

at the same time.

If we further increase the value 6beyond 0.1, it becomes really
hard to learn effectively: agents need to achieve a highyuiil a
small amount of time after birth. They have to explore quick$
well as rapidly exploit potentially good relationships. 0 2000 4000 6000 8000 10000

Avg. Payoff

0 I I I I

Iterations

4.2.1 Eager exploitation to avoid extinction
In Figure 3, we present the effect of differemtvalues on the Figure4: Effect of pp on average payOffs
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Figure5: Effect of pp on number of deaths

4.2.3 Robustness to noise

Next, we present results to show that the learners are robust
noise. We present two scenarios. First, as a result of araitten,
an agent gets a high valué if the interaction is preferred and gets
a low valueL otherwise. The more the difference betwdérand
L, the easier it is to differentiate a potentially beneficgdat from
one that is not. In Figure 6, we present the average payoiffieda
by agents with two different low value settings. In one ofrthd.
is set to a constant value 0.01. In the otheris a uniform ran-
dom number in the range [0,0.8] which is different for eachrag
Although it is harder for agents to differentiate betweevsel to
optimal and sub-optimal relationships in the second casanibe
seen that the performance difference is not significant. rébeon
is that even if two agents, which should have beneficial atgons,
fail to take advantage of that opportunity, they are abléit their
loss by interacting with agents that provide lesser, biltastcept-
able payoffs. In the second study, we consider stochasyiaffsa
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Figure6: Effect of varying L values

for each successful interaction, a Gaussian ndige, o) is added
to the payoff, e.g., if the interaction is a preferred onstéad of
getting a high value of 1 an agent might get a lesser valueicer v
versa. Thus, it is again harder for agents to identify moptagri-
ate agents. In Figure 7 the performances of noisy expersraet
compared with a non-stochastic one. boralues up to 0.3, agents

&:0.1, pp:no protection, d:0.95 , L=U(0,0.8)
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Figure 7. Effect of Gaussian noise on payoffs

are still able to find partners quickly. Wherr0.4 it takes around
10000 epochs to reach close to optimal pairings. The figuresh
that when noise is present, it takes longer time but the agpmet
still able to discover the best set of partners.

4.3 Experimentswith agent preferences

We also investigated the scenario when an agent leavingnthe e
vironment is replaced by another agent with a different atiun
function. With the type based environment, we construdtedna-
trix R such that the optimal solution was unique. We now consider
direct agent-to-agent preferences in the population. Tealave
use a reward matri® of dimensionN x N: for each row, repre-
senting the reward for a given agent, we randomlyysel values
to 1. The other values of the matrix are drawn from a uniforsa di
tributionZ4(0, 0.8). When~ - N > k, it is possible that all agents
can get a maximum payoff, though it is not guaranteed. As ithe d
ferencey - N — k increases, more optimal solutions to the problem
should exist, i.e., the agents should have less problemdinfirk
optimal partners. On the other hand, whenN < k, agents will
not be completely satisfied with their agent selections. yTdan
still find v - V agents with optimal interaction value, but they must
also interact with some agents with whom the interactioesnat
optimal. In Figure 8 we observe that agents discover beshes
if they have preferences over agents instead of types. idélit
ally, we note that there does not exist a significant changanwtte
agents are replaced by the ones with different utility fiomes.

5. CONCLUSION

We studied the problem of agents learning to select intieract
partners from a large population of concurrent learnerds €br-
responds to real-world problems of selecting mutually feizé
relationships. Resource and time limitations constragri¢arners’
search for close to optimal partnerships. Current multiaggarn-
ing does not scale upto problems involving so many conctirren
learners and large action spaces. Traditional singletdgem-
ing algorithms are not guaranteed to converge to effecte-s
tions when agents learn concurrently. Saopriori it was unclear
if this concurrent search for selection partners would eoge to
desirable system states. Our experiments show that indepe@-
learning by concurrent learners with sufficient explonatie sur-
prisingly robust in identifying most of the mutually benddicela-
tionships in the society. This is particularly credible fhe type-
based agent preference situation, where agents prefaragbats
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Figure 8: Agent based environment. Eliminated agentsarere-
placed by the ones with same or different utility functions.

of certain types and the problems were constructed so thaboe
optimal global configuration exists.

We demonstrated that the learning is robust against therdiff
ence between close to optimal and sub-optimal payoffs. \&& al
experimented with the problem of agent “deaths” if their qiffs/
over the last few iterations dropped below a threshold. Taised
some turnover in the population in the initial stages, bulfnthe
learners converged to the close to optimal set of pairingsuRs
improve if agents are allowed more time to locate beneficat-p
nerships. These results attest to the robustness of cenclearn-
ing for mutually beneficial relationships with existing gie-agent
reinforcement learning algorithms.

We would be interested in evaluating scale up to signifigantl
larger problem sizes. Development of smarter exploragiguloitation
mechanisms would enable faster convergence in larger gorabl
It would be interesting to evaluate a more realistic scenar
volving heterogeneous group of learners using differeinfoece-
ment learning algorithms. On a micro-level, phase tramsdtiin
the learning process, e.g., rapid transitions from redftilow to
high payoffs needs to be analyzed.
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