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ABSTRACT
Human and artificial agents routinely make critical choicesabout
interaction partners. The decision about which of several possible
candidates to interact with, either for a limited or extended time
period, has significant importance on the competitiveness,surviv-
ability, and overall utility of an agent. We assume that an agent has
time and resource constraints that limit its participationto only a
fixed number,k, of relationships or interactions with other agents
in a particular time period. Therefore, in a given time period, an
agent is free to choose to interact with anyk other agents from
a society of N agents. A bilateral relationship is established in a
time period, however, if both agents choose to do so. The goalof
this research is to investigate the extent to which known learning
schemes can identify and sustain mutually beneficial relationships
in these conditions. While exploration is necessary to locate pos-
sible fruitful relationships, resource constraints limitthe extent of
exploration. The desired emergent phenomena of mutual coopera-
tion is uncertain and fragile as it is predicated on the convergence
of the learning of multiple, concurrent learners. We investigate the
success of individual learners in identifying and sustaining mutu-
ally beneficial relationships in a multiagent society undervarying
envrionmental conditions.

1. INTRODUCTION
“Whom should I interact with?” Whether “I” is a human being,

a business, or an agent, the answer to this question will playan
important role on its performance, e.g., happiness, capital, utility,
etc. There are two key aspects of this problem. First is the location
problem: finding a set of “right” agents to interact with. Though
the set of candidates is potentially large, an agent must quickly find
other agents with whom interactions are particularly rewarding. It
may also take several interactions to build an approximately cor-
rect estimate of the true rewards or interacting with another agent.
Effective exploration schemes are needed to rapidly identify poten-
tially good candidates. Secondly, a desirable interactionrequires
both agents to benefit from it. This mutual benefit requirement adds
another constraint on the partner selection problem: when an agent
encounters a beneficial agent, it needs to determine whetherthe
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other agent is also interested in developing a lasting relationship.
When the amount of interactions over a period of time is limited,
recognizing mutual benefit may not be easy. If another agent does
not interact with our agent in a particular time period, it may mean
that the agent is not interested in continuing the interactions with
our agent, or that the agent was busy exploring relationships with
others in that time period.

In this paper, we investigate the effectiveness of learningwhom
to interact with in a society of agents. We consider that timeand
resource constraints limit the number of possible interactions, k,
that an agent can have per time period, i.e., an agent can choose
to interact with anyk agents in a population ofN agents in each
time period. For an interaction to occur successfully, bothagents
must choose to interact with each other. Each agent receivesa util-
ity for every such interaction and the utility of selecting an agent
unsuccessfully (when the other agent does not want to interact) is
zero. Each agent can update its rating for the other agent based on
the received utilities. This in turn determines their willingness to
select the other agent for future interactions. Agents are interested
in identifying partners such that corresponding interactions gener-
ate high utility. Only mutually profitable interactions, however, are
desirable and self-sustaining.

The goal of this research is to investigate the extent to which
known learning schemes can identify and sustain mutually bene-
ficial relationships in these conditions. The primary difficulty of
efficiently finding mutually beneficial relationships, without prior
knowledge of others’ preferences and needs, is the number ofpo-
tential candidates to evaluate. Large-scale problems can involve a
massive number of agents. The heterogeneity and the number and
types of knowledge, services, and resources that are of interest to
agents further compound the problem: a fairly small portionof the
agent population might be of interest to an agent. So the search for
effective partnerships may amount to the proverbial searching for a
needle in a haystack!

In addition, agents can enter and leave open environments atany
time, e.g., agents may be unable to quickly find desirable interac-
tion partners and are compelled to leave the environment. Also,
new services may be needed, and some agents may enter the envi-
ronment to meet this demand. The environment can, therefore, be
highly dynamic. As learned knowledge may be quickly outdated,
agents have to carefully manage the exploration-exploitation trade-
off.

A number of multiagent learning algorithms have been devel-
oped recently that converge to equlibria in repeated play [3, 7].
Most of these algorithms are evaluated in two-player situations with
few actions per agent. We believe, however, that in real open-world
environments, where agents interact with different set of agents in
each interaction, it is much more likely that simple, single-agent re-



inforcement learning techniques will be used by a large majority of
the agents. Hence, it is useful and highly instructive to evaluate the
resultant dynamics of a relatively large population of simple rein-
forcement learners searching for mutually beneficial partnerships.
We, therefore, use Q-learning [13] as the learning algorithm used
by our population of agents.

We do not know of any research that has attempted such mas-
sively concurrent learning by a large number of utility maximizing
agents using single-agent reinforcement learning techniques where
the agent utilities are closely coupled. Not only is the likelihood of
convergence of such interlinked learning to effective selections un-
cleara priori, no weak guarantees about performance can also be
provided. That is what, however, makes this empirical evaluation
interesting as we can develop important insights about the effects
of different environmental parameters on the learned outcomes. It
will also be illuminating to observe and analyze the dynamics of
agent selection strategies as agents develop preferences for differ-
ent partners over time and adapt their selections.

We conduct a series of experiments varying population size,agent
preferences, exploration schemes, survival rates, etc. Weshow that
the agents can learn to effectively selectk partners from a pop-
ulation of N agents, provided sufficient exploration, in dynamic
domains, and both with deterministic and stochastic payoffs from
interactions. We also study the effect of the diversity of payoffs
from interactions with different agents as well as the effect of agent
“deaths” if unsuccessful in generating a minimum thresholdutility
from interactions in successive generations.

2. RELATED WORK
The agent location problem has been an active area of research

in multiagent systems. A well-studied approach is to use referrals
from other agents [11, 12, 14]. With referral systems, the agents are
not only providing services, but also act as referrers. The issue is
not simply to locate agents that offer a particular service,but also to
locate services offering a high quality of service, which are likely
to be recommended by many peers. When an agent receives a rec-
ommendation, the value of this information depends on how trust-
worthy the recommender agent is and also on its expertise. Agents
use learning to determine the value of a recommendation. In the
particular case where two agents know each other and interact fre-
quently, a trust relationship is established and can be usedto guide
the search for other useful agents. One of the agents can provide
its opinion about another agent, propose agents to meet, andeven
organize an interaction between two of its trusted friends.In re-
ferral systems, however, the mutual interest constraint isnot taken
into account. In our work, the agents do not provide referral, they
locate agents with complementary interest only through repetitive
personal interaction.

Another solution to finding useful agents is to use a matchmaker:
agents can reveal some of their interest and competence to a trusted
third party. From this information, the matchmaker can identify
agents with complementary expertise. This solution is effective for
finding optimal matches, as the matchmaker can evaluate all possi-
ble matchings, but is computationally costly. Informationabout all
agents in the system must be collected at a such centralized repos-
itory. Distributed matchmaking [5, 6, 8] alleviate the scalability
and fault tolerance issues inherent with centralized system. Ben-
Ami and Shehory compare centralized and distributed agent loca-
tion mechanisms [2].

To find agents with complementary competence, it is possible
to create a model of the competence of other agents. Plaza and
Ontañón propose an approach for learning the competence of other
agents where agents face a classification problem and can convene a

committee to improve the classification accuracy [10]. Theyshow
that agents successfully learn when to ask for collaboration and
which agents to ask for help. In their work, the agents are coopera-
tive and there is no mutual interest constraint.

Bringing together agents with complementary interest can be
done by building a social network. The goal of the agents in such
a network can be to modify the connections so that neighbors of
an agent have complementary service: one agent consumes the
service that the neighbor produces [4]. In [1] a peer-to-peer ap-
proach is used to bring together agents with complementary inter-
est and competence: agents are grouped together so as to formself-
sustaining groups of agents who can share their knowledge. An
agent will provide knowledge to some agents and receive knowl-
edge from other agents in such peer clusters.

As discussed briefly in the last section, this work is also related
to work on multiagent learning: in our domain a potentially large
number of self interested agents are learning concurrentlyto opti-
mize their private utility. See [9] for a survey on multiagent learn-
ing.

3. PROBLEM DESCRIPTION
We consider a population ofN agents. Each agent can try to

interact with any other agent in the society. Because of timeand
resource constraints, an agent can interact with onlyk other agents
in any time period. In each time period, each agent selects a list of
k agents it wants to interact with.

In real-life, agents are unlikely to have preferences for individual
agents and are more likely to have preferences for other classes of
agents. For example, if an agent needs complementary resources
or capabilities, any other agent who can provide those, i.e., belong
to a type or class with corresponding properties, will be preferred.
Therefore, we introduce a type for each agent. The set of all types
T is finite. We consider that each agent knows its own type, that
it is private (an agent does not know the type of other agents), and
that the utility received by an agenti in an interaction with another
agentj is a function of the type ofj. Note that the preference
over the type is individual: two agents of the same type can have
different preferences.

For an interaction between agenti and agentj to be successful,
i’s selection list should containj and vice versa. When an inter-
action is successful, each agent will receive a utility (note that for
an unsuccessful interaction, e.g., when agenti wanted to interact
with j but j did not, i receives zero utility). The reward is stored
in a matrixR, that is not known to the agents. The valueR(i, tj),
(i, tj) ∈ N × T , is the payoff received by agenti in a successful
interaction with an agentj of type tj . The entries ofR are either
the maximum utility(H) one can receive from an interaction or a
relatively low value(L). Agent i’s goal, then, is to selectk agents
{i1, ..., ik} such that∀m ∈ [1..k], R(i, tim

) = R(im, ti) = H ,
assuming such a perfectly matching scenario is feasible given the
matrixR. To illustrate, let’s consider an environment which con-
sists of 6 agents that can be of 3 types, and each agent seeks 2 part-
ners. The types of each agent and the matrixR are represented in
Table 1. The optimum solution to this environment is when the
list l(i) of each agenti are as follows: l(0)={2,3}, l(1)={4,5},
l(2)={0,3}, l(3)={0,2}, l(4)={1,5}, l(5)={1,4}.

Note that the agents may not have complementary interest: itcan
be the case that agenti gets a high value when it interacts with agent
j, but agentj may have only a low value for this interaction. Thus,
if they interact once,i may be eager to interact again withj, but
j may not be enthusiastic about such an interaction in the future.
If i keeps on choosingj without j selectingi, i’s utility for j will
decrease. For example, considering the example in Table 1, when



Agent Type Preferences
Type 1 Type 2 Type 3

1 Type 1 L H L
2 Type 1 L L H
3 Type 2 H H L
4 Type 2 H H L
5 Type 3 H L H
6 Type 3 H L H

Table 1: Preference example with 6 agents and 3 types.

agent3 interacts with agent2, agent3 receives a high reward, but
agent2 receives a low reward. Agent3 may seek to interact again
with agent2, but the converse is not true. More generally, utility to
an agent for another agent is determined both by the payoff matrix
(obtaining low or high reward) and the selection strategiesused by
the agents (agents needs to select each other to receive a positive
reward).

We generated matricesR for different number of agents and
types with unique known solutions. These matrices allow us ef-
fectively determine whether the agents are learning to interact with
the optimal set of agents. Also, this setting provides a challeng-
ing learning problem for the agents as there exists only a unique
solution to the problem.

3.1 Learning and Exploration scheme
At each time step, each agent builds its list ofk agents, and re-

ceives a payoff for each successful interaction. This process is re-
peated for many time steps. The goal of each agent is to learn to
select thek agents that will maximize its utility from interactions.

In our formulation, an agentj maintains an estimateQj(i) of
the interaction reward with each agenti in the society. The Q-
learning [13] rule is used by agentj to update the reward estimate
for another agenti as follows

Qj(i)← α(ej(i)) · r + (1− α(ej(i))) ·Qj(i),

wherer is the utility received for interacting withi andα(ej(i)) is
the learning rate that is function of the number of times agent j has
tried to interact with agenti, ej(i).

We use theǫ-greedy exploration scheme for forming the list ofk

agents. First, each agent builds a sorted listl of all the other agents
in decreasing order of Q-values. To draw thek agents to interact
with, the agent chooses the next agent inl with probability1 − ǫ,
or chooses a random agent in the rest ofl with probability ǫ. The
exploration rateǫ determines the tradeoff between exploitation and
exploration. At the beginning of the learning process, agents must
explore to develop utility estimates for the other agents, and thek

agents are chosen at random. Later in the learning process, agents
must exploit their learned knowledge: by decreasing the value ofǫ
with time, more agents that rank high are chosen with certainty. At
the end of the simulation, thek agents chosen are the one with the
highest Q-values. In this setting, exploiting correspondsto com-
miting in a relationship with another agent, i.e., continuing to select
that agent to benefit from that partnership. With the decrease of ǫ,
the agents commit to more relationships.

4. RESULTS
In the following experiments, the populationN = 48 andk = 8.

High reward,H , is 1 whereas low reward,L, is a uniform ran-
dom number in the range [0,0.8] which is unique for each agent.
This choice for the low value should make the problem harder to

learn. While it is true that after one successful interaction agents
will know whether the other agent is a preferred partner or not, it
might take more time to select optimal partnerships in a given envi-
ronment. This is because a relatively high Q-value, e.g., 0.75 can be
obtained by mostly successful interactions with a preferred partner
and few unsuccessful interactions or a more consistent successful
interactions with a somewhat less preferred partner. Differentiat-
ing between these two partners becomes more difficult as the upper
bound of the range ofL increases.

The initial value ofǫ is set to0.8 and we use exponential decay
of exploration with different rates of decayd: at each iteration,
ǫ← ǫ · d. All results are averaged over 10 runs.

4.1 Effect of exploration in static environments
The first question we address is the optimality of the policy found

by the learners. We designed an environment where each of the
agents can interact with exactlyk agents to receive high payoffs.
We want to find out if the agents can learn a policy that is close
from the optimal in reasonable time for this highly constrained en-
vironment. In the following figures, the y-axis represents the aver-
age reward obtained by an agent for an interaction, averagedover
all the agents. The optimum payoff isH , which is 1 for these exper-
iments. In the first experiment, we vary the value ofd, the rate of
decay of the exploration. Whend is small,ǫ decreases quickly, and
the exploration period is short. Whend is close to 1,ǫ decreases
less rapidly, and the agents have more time to explore. The agents
may not have time to exploit (ifd is too low). Figure 1 shows that
a slow decay (d > .995) is required for agents to learn a close to
optimal policy. When the decay is fast, (e.g., ford = 0.98 and
0.95) agents converge prematurely to a suboptimal solution. The
fact that concurrent learning by a relatively large number of indi-
vidual Q-learners is able to find close to optimal solution tosuch a
tightly coupled problem is pleasantly surprising and bodeswell for
open agent societies that require agents to locate mutuallybenefi-
cial partners through trial and error.
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Figure 1: Effect of d in static environment

4.2 Dynamic environments
An agent may be forced to leave the environment if it does not

quickly find interesting agents to interact with. This may bebe-
cause it does not have enough resource reserves to sustain itself.
We model this situation in the following experiments: an agent sur-
vives when the total payoff accumulated over the pastn iterations
is larger than a threshold valuev = δ · k · n. For low value of



δ, an agent needs to find only few good partners. For larger val-
ues ofδ, the agents need to quickly identify many good partners:
this requires an aggressive exploration. When an agent is forced to
leave the environment, it is replaced by a copy. The type and utility
function remains unchanged, which ensures that the same solution
exists (Q-values, history of past interactions, andǫ are reset). The
other agents are notified of the departure of the agent, but they do
not know the utility function of the new agent is the same. Hence,
they reset the corresponding Q-values to a high value. This will
force the other agents to try to interact with the newcomer. As a
result, this helps the new agent to quickly find beneficial partners.
If few agents have found good partners, the arrival of a new agent
may allow them to find a new preferred partner. This might helpthe
system to converge to a close to optimal solution. If many agents
frequently die, however, agents will keep on exploring, andhence
they may loose fruitful interactions with agents, which in turn can
lead to instability in the environment.
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Figure 2: Effect of δ

In Figure 2, we compare learning in a static environment (no
death) with learning in dynamic environments with two different
values forδ. In each case, the agents are able to select the close
to optimal partners. Compared to the curve of the static environ-
ment which present a concave gradual increase, the curves for the
dynamic environments show a rise in utility after an initialexplo-
ration period that increases withδ. At the start of the simulation,
as the exploration is large, many agents have to leave: the agents
do not exploit enough to be able to survive. However, some agents
manage to rapidly find good partners and are able to survive. As
there are some stable agents in the system, new agents can estab-
lish a relationship with these agents. With the increase of the num-
ber of survivors, the number of deaths should decrease faster and
faster over a run. Earlier in the simulation, if an agent found a
good partner, the partner may not live long enough to providesuf-
ficient payoff. When an agent leaves, a (surviving) agent resets the
corresponding Q-value. Hence, it is likely to try to interact with
newcomers. This exploration may be harmful if many agents leave
at the same time.

If we further increase the value ofδ beyond 0.1, it becomes really
hard to learn effectively: agents need to achieve a high utility in a
small amount of time after birth. They have to explore quickly as
well as rapidly exploit potentially good relationships.

4.2.1 Eager exploitation to avoid extinction
In Figure 3, we present the effect of differentd values on the
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Figure 3: Effect of d on dynamic environment

learning abilities of agents whereδ = 0.2. Agents are not able to
establish initial mutual relationships whend is 0.95. Faster decay,
e.g., 0.85, allows them to create initial relationships. For slower
decay (higherd), payoffs increase more slowly over a run. We note
the presence of plateaus where agents are not able to find partners,
and sharp increase where a small set of agents that were repeatedly
dying finally manage to survive.

4.2.2 Protecting young agents
In the previous experiments, we varied the exploration-exploitation

balance. Now, we keep the exploration schedule fixed but we pro-
vide additional time for the agents to explore by protectingthe
agents in their early ages, i.e., they are eliminated only after at least
pp interactions. Various schemes can be used in practice to provide
such protection, e.g, by providing a new agent an initial endowment
upon entering the environment. In Figure 4, we display the effect
of protecting the young agents. When the protection period (pp) is
increased, the agents are able to survive more easily, and the system
converges faster to near optimal value. To shed some light onthis
phenomenon we plot the average number of agent departures that
occur every 10 iterations in Figure 5: whenpp is higher less deaths
occur early in the simulation. Furthermore, the plateaus and rises
in Figures 4 and 5 are correlated. An increase in average payoffs
corresponds to a decrease in average number of departures.
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4.2.3 Robustness to noise
Next, we present results to show that the learners are robustto

noise. We present two scenarios. First, as a result of an interaction,
an agent gets a high valueH if the interaction is preferred and gets
a low valueL otherwise. The more the difference betweenH and
L, the easier it is to differentiate a potentially beneficial agent from
one that is not. In Figure 6, we present the average payoffs gained
by agents with two different low value settings. In one of them, L

is set to a constant value 0.01. In the other,L is a uniform ran-
dom number in the range [0,0.8] which is different for each agent.
Although it is harder for agents to differentiate between close to
optimal and sub-optimal relationships in the second case, it can be
seen that the performance difference is not significant. Thereason
is that even if two agents, which should have beneficial interactions,
fail to take advantage of that opportunity, they are able to limit their
loss by interacting with agents that provide lesser, but still accept-
able payoffs. In the second study, we consider stochastic payoffs:
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for each successful interaction, a Gaussian noiseN(0, σ) is added
to the payoff, e.g., if the interaction is a preferred one, instead of
getting a high value of 1 an agent might get a lesser value, or vice
versa. Thus, it is again harder for agents to identify most appropri-
ate agents. In Figure 7 the performances of noisy experiments are
compared with a non-stochastic one. Forσ values up to 0.3, agents
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are still able to find partners quickly. Whenσ=0.4 it takes around
10000 epochs to reach close to optimal pairings. The figure shows
that when noise is present, it takes longer time but the agents are
still able to discover the best set of partners.

4.3 Experiments with agent preferences
We also investigated the scenario when an agent leaving the en-

vironment is replaced by another agent with a different valuation
function. With the type based environment, we constructed the ma-
trix R such that the optimal solution was unique. We now consider
direct agent-to-agent preferences in the population. To doso, we
use a reward matrixR of dimensionN ×N : for each row, repre-
senting the reward for a given agent, we randomly setγ ·N values
to 1. The other values of the matrix are drawn from a uniform dis-
tributionU(0, 0.8). Whenγ · N > k, it is possible that all agents
can get a maximum payoff, though it is not guaranteed. As the dif-
ferenceγ ·N − k increases, more optimal solutions to the problem
should exist, i.e., the agents should have less problem in finding k

optimal partners. On the other hand, whenγ · N < k, agents will
not be completely satisfied with their agent selections. They can
still find γ ·N agents with optimal interaction value, but they must
also interact with some agents with whom the interactions are not
optimal. In Figure 8 we observe that agents discover best partners
if they have preferences over agents instead of types. Addition-
ally, we note that there does not exist a significant change when the
agents are replaced by the ones with different utility functions.

5. CONCLUSION
We studied the problem of agents learning to select interaction

partners from a large population of concurrent learners. This cor-
responds to real-world problems of selecting mutually beneficial
relationships. Resource and time limitations constrain the learners’
search for close to optimal partnerships. Current multiagent learn-
ing does not scale upto problems involving so many concurrent
learners and large action spaces. Traditional single-agent learn-
ing algorithms are not guaranteed to converge to effective solu-
tions when agents learn concurrently. So,a priori it was unclear
if this concurrent search for selection partners would converge to
desirable system states. Our experiments show that independent Q-
learning by concurrent learners with sufficient exploration is sur-
prisingly robust in identifying most of the mutually beneficial rela-
tionships in the society. This is particularly credible forthe type-
based agent preference situation, where agents prefer other agents
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of certain types and the problems were constructed so that only one
optimal global configuration exists.

We demonstrated that the learning is robust against the differ-
ence between close to optimal and sub-optimal payoffs. We also
experimented with the problem of agent “deaths” if their payoffs
over the last few iterations dropped below a threshold. Thiscaused
some turnover in the population in the initial stages, but finally the
learners converged to the close to optimal set of pairings. Results
improve if agents are allowed more time to locate beneficial part-
nerships. These results attest to the robustness of concurrent learn-
ing for mutually beneficial relationships with existing single-agent
reinforcement learning algorithms.

We would be interested in evaluating scale up to significantly
larger problem sizes. Development of smarter exploration-exploitation
mechanisms would enable faster convergence in larger problems.
It would be interesting to evaluate a more realistic scenario in-
volving heterogeneous group of learners using different reinforce-
ment learning algorithms. On a micro-level, phase transitions in
the learning process, e.g., rapid transitions from relatively low to
high payoffs needs to be analyzed.
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