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ABSTRACT
Behavioral norms are key ingredients that allow agent coordination
where societal laws do not sufficiently constrain agent behaviors.
Whereas social laws need to be enforced in a top-down manner,
norms evolve in a bottom-up manner and are typically more self-
enforcing. While effective norms can significantly enhanceperfor-
mance of individual agents and agent societies, there has been little
work in multiagent systems on the formation of social norms.We
have recently used a model that supports the emergence of social
norms via learning from interaction experiences. In our model, in-
dividual agents repeatedly interact with other agents in the society
over instances of a given scenario. Each interaction is framed as
a stage game. An agent learns its policy to play the game over
repeated interactions with multiple agents. We term this mode of
learningsocial learning, which is distinct from an agent learning
from repeated interactions against the same player. We are partic-
ularly interested in situations where multiple action combinations
yield the same optimal payoff. The key research question is to
find out if the entire population learns to converge to a consistent
norm. In this extension to our prior work we study the emergence
of norms via social learning when agents are physically distributed
in an environment and are more likely to interact with agentsin
their neighborhood than those that are further away. The keynew
results include the surprising acceleration in learning with limited
interaction ranges. We also study the effects of pure-strategy play-
ers, i.e., non-learners in the environment.

1. INTRODUCTION
Norms or conventions routinely guide the choice of behaviors in

human societies. Conformity to norms reduces social frictions, re-
lieves cognitive load on humans, and facilitates coordination. “Ev-
eryone conforms, everyone expects others to conform, and every-
one has good reason to conform because conforming is in each per-
son’s best interest when everyone else plans to conform” [10]1.
Conventions in human societies range from fashions to tipping,
driving etiquette to interaction protocols. Norms are ingrained in

1Conventions can therefore be substituted as external correlating
signals to promote coordination.
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our social milieu and play a pivotal role in all kinds of business,
political, social, and personal choices and interactions.They are
self-enforcing: “A norm exists in a given social setting to the extent
that individuals usually act in a certain way and are often punished
when seen not to be acting in this way” [1].

While these aspects of norms or conventions have merited in-
depth study of the evolution and economics of norms in socialsitu-
ations [6, 13, 19, 20], we are particularly interested in thefollowing
characterization: “... we may define a convention as an equilibrium
that everyone expects in interactions that have more than one equi-
librium.” [20]. This observation has particular significance for the
study of norms2 in the context of computational agents. Computa-
tional agents often have to coordinate their actions and such inter-
actions can be formulated as stage games with simultaneous moves
made by the players [9]. Such stage games often have multiple
equilibria [12], which makes coordination uncertain. While focal
points[14] can be used to disambiguate such choices, they may not
be available in all situations. Norms can also be thought of as fo-
cal points evolved through learning [20]. Hence, the emergence of
norms via learning in agent societies promises to be a productive
research area that can improve coordination in and hence function-
ing of agent societies.

While researchers have studied the emergence of norms in agent
populations, they typically assume access to significant amount of
global knowledge [6, 13, 19, 20]. For example, all of these mod-
els assume that individual agents can observe sizable fraction of
interactions between other agents in the environment. While these
results do provide key insights into the emergence of norms in so-
cieties where the assumption of observability holds, it is unclear if
and how norms will emerge if all interactions were private, i.e., not
observable to any other agent not involved in the interaction.

To study the important phenomenon of emergence of social norms
via private interactions, we have recently used the following inter-
action framework. We consider a population of agents, where, in
each interaction, each agent is paired with another agent randomly
selected from the population. Each agent then is learning concur-
rently over repeated interactions with randomly selected members
from the population. We refer to this kind of learningsocial learn-
ing to distinguish from learning in iterated games against the same
opponent [7]. Most of our experiments involve symmetrical games
with multiple pure-strategy equilibria with the same payoff. In pre-
vious work on learning in games, the opponent is fixed but in our
work, the opponent is different at each iteration. In addition, the
opponent may not use the same learning algorithm. It is unclear,
a priori, if and how a social norm will emerge from such a social
learning framework. In a recent paper, we have investigatedthe ef-

2Henceforth we use the term norm to refer to social norms and
conventions.



fect of population size, number of choices available, heterogeneous
population with multiple learning algorithms, effect of non-learners
in shaping norm adoption, etc. when each agent randomly interacts
with any other agent in the population. Our experimental results
and concomitant analysis throws light on the dynamics of theemer-
gence of norm via social learning with private interactions[16].

The current paper builds on this work and studies norm emer-
gence in more realistic situations where agents are physically dis-
tributed in space. In physical environments, e.g., real-life physical
interactions between humans in the society, agents are muchmore
likely to interact with those in close physical proximity compared
to others located further away. Such physical or spatial interac-
tion constraints or biases have been long well-recognized in social
sciences [11] and, more recently, in the multiagent systemslitera-
ture [15]. In this paper, then, we focus on agents located in agrid
world where they interact predominantly with agents in their phys-
ical neighborhood. The goal is to evaluate the effects of neighbor-
hood sizes on the rate and pattern of norm emergence. We believe
that these results, influenced by spatial interaction constraints, are
more representative of real-life phenomena of evolution ofnorms.

2. RELATED WORK
The need for effective norms to control agent behaviors is well-

recognized in multiagent societies [3, 17]. In particular,norms
are key to the efficient functioning of electronic institutions [8].
Most of the work in multiagent systems on norms, however, has
centered on logic or rule-based specification and enforcement of
norms [5, 17]. Similar to these research, the work on normative,
game-theoretic approach to norm derivation and enforcement also
assumes centralized authority and knowledge, as well as system
level goals [2, 3]. While norms can be established by centralized
dictat, a number of real-life norms evolve in a bottom-up manner,
via “the gradual accretion of precedent” [20]. We find very little
work in multiagent systems on the distributed emergence of social
norms. We believe that this is an important niche research area
and that effective techniques for distributed norm emergence based
on local interactions and utilities can bolster the performance of
open multiagent systems. We focus on the importance for elec-
tronic agents solving a social dilemma efficiently by quickly adopt-
ing a norm. Centralized social laws and norms are not sufficient,
in general, to resolve all agent conflicts and ensure smooth coordi-
nation. The gradual emergence of norms from individual learning
can facilitate coordination in such situations and make individuals
and societies more efficient.

The social learning framework we use to study norm emergence
in a population is somewhat different from both of these lines of re-
search. We are considering a potentially large population of learn-
ing agents. At each time step, however, each agent interactswith
a single agent, chosen at random, from the population. The payoff
received by an agent for a time step depends only on this interaction
as is the case when two agents are learning to play a game. In the
two-agent case, a learner can adapt and respond to the opponent’s
policy. In our framework, however, the opponent changes at each
interaction. It is not cleara priori if the learners will converge to
useful policies in this situation.

3. SOCIAL LEARNING FRAMEWORK
The specific social learning situation for norm evolution that we

consider is that of learning “rules of the road”. In particular, we will
consider the problem of which side of the road to drive in3. We
will represent each interaction between two drivers as a 2-person,
3It might seem to the modern reader that “rules of the road” are

m-action stage game. These stage games typically have multiple
pure strategy equilibria. In each time period each agent is paired
for interaction with a randomly selected agent from a subsetof the
population. An agent is randomly assigned to be the row or column
player in any interaction. We assume that the stage game payoff
matrix is known to both players, but agents cannot distinguish be-
tween other players in the population. Hence, each agent canonly
develop a single pair of policies, one as a row player and the other
as a column player, to play against any other player from the agent
population. The learning algorithm used by an agent is fixed,i.e.
an intrinsic property of an agent.

When two cars arrive at an intersection, a driver will sometimes
have another car on its left and sometimes on its right. Thesetwo
experiences can be mapped to two different roles an agent canas-
sume in this social dilemma scenario and corresponds to an agent
playing as the row and column player respectively. Consequently,
an agent has a private bimatrix: a matrix when it is the row player,
one matrix when it is the column player. Each agent has a learning
algorithm to play as a row player and as a column player and learns
independently to play as a row and a column player. An agent does
not know the identity of its opponent, nor its opponent’s payoff, but
it can observe the action taken by the opponent (perfect but incom-
plete information).

For an iteration of the simulation, each agent plays with oneof
its neighbors: for each agenti in the population, an opponent is
randomly chosen in its neighborhood, the role ofi is selected at
random (play as a row or a column agents); then agents play the
game once, and agenti observe the action of its opponent and up-
dates its learning algorithms. At each iteration, each player plays
at least once, and update its learning mechanism exactly once.

4. RESULTS
In this paper we run experiments using the coordination game,

where agents receive high payoff for using the same action and
otherwise receive a low-payoff (see Table 1). Note that either action
combinations (0,0) or (1,1) would work equally well. This matrix
can model the problem of which side of the road to drive in. When
both agents decide to drive on the same side, there is no collision,
which is modeled by a high reward. Otherwise, a collision occur,
yielding a low payoff. The goal is then for all agent to develop a
norm of choosing the same action consistently.

0 1
0 4, 4 -1, -1
1 -1, -1 4, 4

Table 1: Payoff in a coordination game.

The agents are distributed over space where each agent is located
at a grid point (see Figure 1). An agent is allowed to interactonly
with agents located within its neighborhood. We consider that the
world is a toroid, i.e. agents on one edge are adjacent to the agents
located on the opposite edge. The neighbor of an agent is composed
of all agents within a distanceD of its grid location (we have used
the Manhattan distance metric, i.e.,|x1 − x2| + |y1 − y2| is the
distance between grid locations(x1, y1) and (x2, y2)). We vary
the value ofD to allow for different neighborhood sizes.

In this paper we have experimented with a society ofN agents
placed in a

√
N ×

√
N grid. For the figures presented in this pa-

always fixed by authority, but historical records show that “Soci-
ety often converges on a convention first by an informal process of
accretion; later it is codified into law.” [20].
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Figure 1: Agents located on a grid and allowed to interact only
in a limited neighborhood.

per, we use 225 agents placed on a 15 by 15 grid. We use WoLF-
PHC (Win or Learn Fast - policy hill climbing [4]), which can
learn mixed strategies. Though WoLF is guaranteed to converge
to a Nash equilibrium of the repeated game in a 2-person, 2-actions
game against a given opponent, it is not clear whether it is guar-
anteed to converge in social learning. We have empirically shown
convergence when all agents are neighbor of each other in [16].

The results presented are averaged over 50 runs of the experi-
ment with different random seeds.

4.1 Effect of neighborhood size
In this section, we have experimented by varying the neighbor-

hood distance of the agents and the effect of the neighborhood size
on learning of agents is observed. We have tested with four neigh-
borhood distances,D, for each agent (the distances are 1, 5, 10,
and 15 respectively). WhenD = 4, only an adjacent agent is a
neighbor (there are 4 neighbors in that case). For an arbitrary D

value, an agent has(D + 1)2 − 1 neighbors. When the distance is
15, every agent is a neighbor of every agent.

We present in Figure 2 the dynamics of the average payoff of the
population over a run when all agents are learning concurrently. A
payoff of 1.5 is achieved when the agents use a uniform distribu-
tion when playing the game. The maximum payoff achievable is4,
and is obtained when the agents play the joint action (0,0) or(1,1).
However, as our agents use theǫ-greedy exploration scheme, they
cannot reach 4. We conclude that a norm has emerged in the popu-
lation when the average payoff of the population reaches 3.5. From
Figure 2 we observe that the smaller the neighborhood distance, the
faster the emergence of a norm.

When an agent has four neighbors (D = 1), the agents learn
to coordinate faster by driving on the same side of the roads than
when it has 35 or 99 neighbors (D = 5 and 10 respectively). For
a given number of iterations, the agents interact more oftenwith
a particular neighbors for smaller neighborhoods. This means that
the impact an agent has on another agent is larger when the neigh-
borhood size is small. In addition, an agent with few neighbors
will encounter few different behaviors from its neighbors,and it
is a priori easier to coordinate with a small set of agents rather
than a larger one. As the neighborhood distance increases, an agent
has to coordinate with many other agents, and in addition, inter-
actions between two particular neighbors in the network become
less frequent. This decreasing interaction frequency between pairs
of learners increases the time for exploration of the behavior space
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Figure 2: Influence of neighborhood size on learning rate. All
agents are learning.

and thereby influences the learning patterns of the agents inthe net-
work. This problem is exaggerated when every agent is everyone’s
neighbor (D = 15) which further reduces the rate of learning.

Figure 3 represents, for largest (D = 15) and smallest (D = 1)
neighborhoods, the policy of each agent in the population atdiffe-
rent iterations in a single run. Each cell represent the policy of an
agent: the darker it is, the higher the probability of driving on the
left, whereas lighter colors denote higher probability of driving on
the right. When a cell is completely dark, or white, it means that the
learning algorithm of the agent has converged. In the particular run
we present, the norm of “driving on the right” emerges (over differ-
ent runs “driving on the left” and “driving on the right” norms were
evolved in roughly the same number of runs). At iteration 145, the
agents are exploring and are receiving low payoff (see correspond-
ing payoff dynamics in Figure 2). At iteration 355, forD = 1, we
are close to the inflection point for the curve of the payoff dynam-
ics: the agents start to favor one norm over the other. ForD = 15,
however, there is a lesser bias favoring one action. We can see that,
on the average, the snapshot forD = 1 is lighter than that with
D = 15. At iteration 480, we can see that many more agents have
converged for the smallest compared to the largest neighborhood.
So smaller neighborhoods induce faster learning among agents on
a grid.

The above effect of agent neighborhood size on learning rate
was somewhat surprising. A priori, it was unclear whether smaller
neighborhoods will engender divergent norms to initially form over
the agent space, which would subsequently delay the convergence
of the population to a consistent norm. Such effects, however, were
overshadowed by the effects of increased interaction frequencies
between neighbors in our framework.

4.2 Influence of non-learning agents
So far, we have observed that all norms with equal payoffs were

evolved roughly with the same frequency over multiple runs.This
is expected because the payoff matrix for the coordination game
(Table 1) has no preference for one norm over the other. Extraneous
effects, however, can bias a society of learners towards a particular
norm. For example, some agents may not have learning capabili-
ties and always choose a pre-determined action. We now studythe
influence of agents playing a fixed pure strategy (FPS agent) on the
emergence of a norm. We are interested in the effect of multiple
pure strategy players with the same or different fixed strategies.
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Figure 3: The probabilities of agents driving on the left (Whiter
cells represent probabilities close to 1). All agents are learning.

4.2.1 Non-learners use same strategy
In the first experiment, we replace some learning agents by FPS

agents and we study the effect of the speed of emergence of a norm.
When there are no FPS agents, as the learners explore early inthe
run, they should encounter each joint action in the same proportion
on average. When FPS agents are present, however, learners that
have an FPS agent in their neighborhood should observe a biasto-
wards one strategy which the FPS agent always chooses. As agents
start to exploit, a learnersi that has an FPS agentf in its neighbor-
hood should exploit this bias and consequently, it is more likely to
play the action played byf . This bias should also be boosted by
i’s neighbors which are also in the neighborhood off . Our hypoth-
esis is that with more FPS agents that play the same action, e.g.,
all FPS agent wants to drive on the right, the corresponding norm
would emerge faster in the population. In Figure 4, we compare the
results when there are no FPS agents and either 1, 2, 3, or 4 FPS
agents in the population4. For these experiments, we usedD = 5.
Note that all the FPS agents play the same action (driving on the
right).

The first observation from Figure 4 is that norms do not emerge
any faster with only one FPS: the local effect of a single FPS agent
is insufficient to expedite convergence to a norm. When thereare
two or more FPS agents, however, we observed the expected faster
norm emergence. With our choice of locations for the two FPS
agents, no learner has both FPS agents as neighbors. However,
the speed of emergence is faster than with one FPS agent in the
population. When there are three FPS agents, some agents have
two FPS agents in their neighborhood, which could help them to
converge faster. However, this is not the case as we observe aminor
effect on the speed of emergence. When there are four FPS agents,
more learners have two FPS agents in their neighborhood, andwe
do observe a positive impact on the speed of emergence. As we had
expected, the speed of emergence increases with the number of FPS
agents. However, we cannot yet accurately predict the variation of
the speed of emergence with number of FPS agents, and we plan to
further investigate this issue.

4.2.2 Non-learners use different strategies
In the previous experiment, all FPS agents were playing the same

fixed strategy (driving on the right), and they are able to speed up

4When there are multiple FPS agents, we located them as far as
possible from each other. When there are two FPS agents, theyare
located at (4,4) and (11,11). When there are three FPS, they are
located at (4,4), (7,8) and (11,11). When there are four, they are
located at (4,4), (11,11), (4, 11) and (11,4)
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Figure 4: Influence of of non-learners, using identical strategy,
on learning rate (D = 5).

the emergence of a norm. But FPS agents in practice may be unre-
lated and adopt conflicting behavior, e.g., some agents alway “drive
on the right” and some others always “drive on the left”. In this
case, they are likely to decrease the speed of emergence, or even
prevent the convergence of a norm in the entire population. In [16],
we have observed that two populations that interact infrequently
can develop different norms. Hence, it may be possible that FPS
agents influence other agents in their neighborhood, hence,differ-
ent norms emerge in different neighborhoods. In the next setof
experiments, we used two FPS agents playing different strategy R
(for driving on right) and L (driving on left).

In Figure 5 we present snapshots representing the state of the
policy of the agents in the population at different stages ofthe sim-
ulation. The two FPS agents are located at locations (4,11) for R
and (11,4) for L. In the two runs, forD = 1 andD = 5, presented
in Figure 5, “driving on the right” is the norm that emerges. We no-
tice that the emergence is faster when the size of the neighborhood
is smaller. When the simulation is at iteration 45, the agents are
exploring, and the policies of the agents are close to< 0.5, 0.5 >.
When the simulation is at 535, the population starts to learnand a
norm starts to be preferred by a majority of agents. We were ex-
pecting that neighbors of the FPS agents will converge to thepolicy
of the near-by FPS agent. But we do not observe this phenomenon,
even when the size of the neighborhood is equal to one (for example
the agent that is just below the agent choosing L has converged to
the norm of R). This may be due to the fact that even withD = 1,
three of the neighbors are learners, who might ultimately lead the
neighbor of L to choose R. We plan to run further experiments to
explain this phenomenon. When we ran multiple runs, we observe
that each time, the entire population of learning agents converges
to a norm: the norms driving on the right and driving on the left
emerges with equal frequency. Hence, we did not observe the es-
tablishment of multiple norms in these population. This is partic-
ularly significant since, with the payoffs we chose (see Table 1),
using a single norm in the population maximizes social welfare5.
Hence, social learning is able to produce social welfare maximiz-
ing outcomes even in the presence of non-learners.

5If two regions of the population were to adopt distinct norms, the
agents at the border and their neighbors would suffer a loss of pay-
off. When a single norm emerges, only the neighbor of the FPS
agents suffer a loss of payoff.
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5. CONCLUSIONS
We investigated a bottom-up process for the evolution of so-

cial norm that depends exclusively on individual experiences rather
than observations or hearsay. Our proposed social learningframe-
work requires each agent to learn from repeated interactionwith
anonymous members of the society. This is in contrast to mostre-
sults in multiagent learning where two or more agents learn from
repeatedly interacting with the same group. These results confirm
that only private experience is sufficient for the emergenceof a
norm in a society of learning agents. This is in contrast withprior
work on norm evolution which requires agents to have knowledge
about non-local interactions between other agents and their strate-
gies [6, 13, 19]. Our primary goal in this paper was to evaluate
the effect of spatial interaction restrictions on the speedand nature
of norms that emerges through social learning. We realized that
limiting interactions may isolate sub-populations, thus allowing for
different norms to evolve in different parts of the space. Resolving
of such emerging conflicts that may reduce social welfare andpro-
ducing a consensus norm could have been time-consuming. Experi-
mental results, however, clearly demonstrate that agent populations
with more restrictions, i.e., those with smaller agent neighborhoods
actually produce faster convergence to social norms! This is very
likely due to the increased number of interactions between neigh-
bors which allow them to quickly identify mutually-agreed behav-
ior. This neighbor interaction frequency is found to overshadow
the effect of time taken to resolve divergent norms. We plan to
study this tradeoff more closely to better understand the observed
phenomena. We also observed that the social learning framework
is able to produce social welfare maximizing policies even in the
presence of divergent non-learners.

In this paper, interaction restrictions were binary. Agents were
equally likely to interact with any agent in its neighborhood and
never interacted with anyone outside. Actually, the neighborhood
topology has an interesting characteristic. Within its neighborhood,
the agents were more likely to interact with agents at a larger dis-
tance than agents situated closer. This is because there aremore
agents at a larger distance than a smaller distance within a neigh-
borhood, e.g. forD = 3, for any agent there are 4 agents at dis-
tance 1, 8 agents at distance 2, and 12 agents at distance 3). This
is contrary to normal intuition which suggests that the likelihood
of interaction with another agent should decrease with the distance
to that agent. We plan to run experiments with correspondingin-
teraction preferences and compare results with those presented in
this paper. Other interesting experiments include study ofdifferent
network topologies and the influence of the topology on the speed

of emergence of norms. In particular, we would like to evaluate the
emergence of norms in social networks.
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