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ABSTRACT

Behavioral norms are key ingredients that allow agent doatihn
where societal laws do not sufficiently constrain agent biehs.
Whereas social laws need to be enforced in a top-down manner,
norms evolve in a bottom-up manner and are typically more sel
enforcing. While effective norms can significantly enhape€for-
mance of individual agents and agent societies, there easlitte
work in multiagent systems on the formation of social nori&
have recently used a model that supports the emergence iaf soc
norms via learning from interaction experiences. In our ehoih-
dividual agents repeatedly interact with other agents énsibciety
over instances of a given scenario. Each interaction isdthas

a stage game. An agent learns its policy to play the game over
repeated interactions with multiple agents. We term thislenof
learningsocial learning which is distinct from an agent learning
from repeated interactions against the same player. Wezaatiep
ularly interested in situations where multiple action camaktions
yield the same optimal payoff. The key research questiom is t
find out if the entire population learns to converge to a cxipsit
norm. In this extension to our prior work we study the emeogen
of norms via social learning when agents are physicallyidisted

in an environment and are more likely to interact with agents
their neighborhood than those that are further away. Thenkey
results include the surprising acceleration in learninthwmited
interaction ranges. We also study the effects of pureegjyaplay-
ers, i.e., non-learners in the environment.

1. INTRODUCTION

Norms or conventions routinely guide the choice of behavior
human societies. Conformity to norms reduces social fmj re-
lieves cognitive load on humans, and facilitates coordtmat‘Ev-
eryone conforms, everyone expects others to conform, agy-ev
one has good reason to conform because conforming is in each p
son’s best interest when everyone else plans to conformj®[10
Conventions in human societies range from fashions to rtgpi
driving etiquette to interaction protocols. Norms are aiged in

1Conventions can therefore be substituted as externallatng
signals to promote coordination.
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our social milieu and play a pivotal role in all kinds of busas,
political, social, and personal choices and interactiohkey are
self-enforcing: “A norm exists in a given social settinghe extent
that individuals usually act in a certain way and are oftemighed
when seen not to be acting in this way” [1].

While these aspects of norms or conventions have merited in-
depth study of the evolution and economics of norms in sadia
ations [6, 13, 19, 20], we are particularly interested inftilewing
characterization: “... we may define a convention as an ibgjuiin
that everyone expects in interactions that have more tharequi-
librium.” [20]. This observation has particular significanfor the
study of norméin the context of computational agents. Computa-
tional agents often have to coordinate their actions antl Buer-
actions can be formulated as stage games with simultaneouessm
made by the players [9]. Such stage games often have multiple
equilibria [12], which makes coordination uncertain. VéHibcal
points[14] can be used to disambiguate such choices, they may not
be available in all situations. Norms can also be thoughtsdba
cal points evolved through learning [20]. Hence, the emergef
norms via learning in agent societies promises to be a ptivéuc
research area that can improve coordination in and henctidan
ing of agent societies.

While researchers have studied the emergence of normsim age
populations, they typically assume access to significamteanof
global knowledge [6, 13, 19, 20]. For example, all of theselmo
els assume that individual agents can observe sizablgdinact
interactions between other agents in the environment. &\thdse
results do provide key insights into the emergence of nomse+
cieties where the assumption of observability holds, itislear if
and how norms will emerge if all interactions were private,,inot
observable to any other agent not involved in the interactio

To study the important phenomenon of emergence of sociaisior
via private interactions, we have recently used the folhgpinter-
action framework. We consider a population of agents, whare
each interaction, each agent is paired with another agadoraly
selected from the population. Each agent then is learninguoe
rently over repeated interactions with randomly selectednivers
from the population. We refer to this kind of learnisgcial learn-
ing to distinguish from learning in iterated games against tmees
opponent [7]. Most of our experiments involve symmetricaings
with multiple pure-strategy equilibria with the same pdyéf pre-
vious work on learning in games, the opponent is fixed but in ou
work, the opponent is different at each iteration. In additithe
opponent may not use the same learning algorithm. It is ancle
a priori, if and how a social norm will emerge from such a social
learning framework. In a recent paper, we have investigdieef-

2Henceforth we use the term norm to refer to social norms and
conventions.



fect of population size, number of choices available, legfeneous
population with multiple learning algorithms, effect ofrrtearners
in shaping norm adoption, etc. when each agent randomlsaictte
with any other agent in the population. Our experimentaliltss
and concomitant analysis throws light on the dynamics oéther-

gence of norm via social learning with private interactifi®.

The current paper builds on this work and studies norm emer-
gence in more realistic situations where agents are phiysitia-
tributed in space. In physical environments, e.g., rdalghysical
interactions between humans in the society, agents are maod
likely to interact with those in close physical proximityrapared
to others located further away. Such physical or spatiaraa-
tion constraints or biases have been long well-recognizexbcial
sciences [11] and, more recently, in the multiagent sysiéara-
ture [15]. In this paper, then, we focus on agents locatedgrica
world where they interact predominantly with agents initipbiys-
ical neighborhood. The goal is to evaluate the effects afrimir-
hood sizes on the rate and pattern of norm emergence. Wedelie
that these results, influenced by spatial interaction caims, are
more representative of real-life phenomena of evolutionafns.

2. RELATED WORK

The need for effective norms to control agent behaviors it we
recognized in multiagent societies [3, 17]. In particulaorms
are key to the efficient functioning of electronic institns [8].
Most of the work in multiagent systems on norms, however, has
centered on logic or rule-based specification and enfornemwie
norms [5, 17]. Similar to these research, the work on normati
game-theoretic approach to norm derivation and enforcealsa
assumes centralized authority and knowledge, as well demys
level goals [2, 3]. While norms can be established by centdl
dictat, a number of real-life norms evolve in a bottom-up mean
via “the gradual accretion of precedent” [20]. We find veryldi
work in multiagent systems on the distributed emergencecbs
norms. We believe that this is an important niche researeh ar
and that effective techniques for distributed norm emesgdrased
on local interactions and utilities can bolster the perfance of
open multiagent systems. We focus on the importance for elec
tronic agents solving a social dilemma efficiently by quycktiopt-
ing a norm. Centralized social laws and norms are not sufficie
in general, to resolve all agent conflicts and ensure smanmitde
nation. The gradual emergence of norms from individualneay
can facilitate coordination in such situations and makéviddals
and societies more efficient.

The social learning framework we use to study norm emergence
in a population is somewhat different from both of thesediokre-
search. We are considering a potentially large populatfdaasn-
ing agents. At each time step, however, each agent intenattts
a single agent, chosen at random, from the population. Theffpa
received by an agent for a time step depends only on thisictien
as is the case when two agents are learning to play a gamee In th
two-agent case, a learner can adapt and respond to the apigone
policy. In our framework, however, the opponent changesahe
interaction. It is not cleaa priori if the learners will converge to
useful policies in this situation.

3. SOCIAL LEARNING FRAMEWORK

The specific social learning situation for norm evolutioatttve
consider is that of learning “rules of the road”. In partaiwe will
consider the problem of which side of the road to drive’inwe
will represent each interaction between two drivers as ardgm,

31t might seem to the modern reader that “rules of the road” are

m-action stage game. These stage games typically have faultip
pure strategy equilibria. In each time period each agenaiie@

for interaction with a randomly selected agent from a subk#ie
population. An agent is randomly assigned to be the row amoal
player in any interaction. We assume that the stage gamdfpayo
matrix is known to both players, but agents cannot dististglie-
tween other players in the population. Hence, each agenrgn
develop a single pair of policies, one as a row player and thero
as a column player, to play against any other player from geaita
population. The learning algorithm used by an agent is fiked,
an intrinsic property of an agent.

When two cars arrive at an intersection, a driver will somes
have another car on its left and sometimes on its right. These
experiences can be mapped to two different roles an agerdszan
sume in this social dilemma scenario and corresponds to emt ag
playing as the row and column player respectively. Consatyye
an agent has a private bimatrix: a matrix when it is the rowgla
one matrix when it is the column player. Each agent has ailegarn
algorithm to play as a row player and as a column player anddea
independently to play as a row and a column player. An agezg do
not know the identity of its opponent, nor its opponent’'sqffybut
it can observe the action taken by the opponent (perfecniocotm-
plete information).

For an iteration of the simulation, each agent plays with aine
its neighbors: for each agentin the population, an opponent is
randomly chosen in its neighborhood, the role; 66 selected at
random (play as a row or a column agents); then agents play the
game once, and agehbbserve the action of its opponent and up-
dates its learning algorithms. At each iteration, eachqigjays
at least once, and update its learning mechanism exactl. onc

4. RESULTS

In this paper we run experiments using the coordination game
where agents receive high payoff for using the same actioh an
otherwise receive a low-payoff (see Table 1). Note thaeeitiction
combinations (0,0) or (1,1) would work equally well. This tnia
can model the problem of which side of the road to drive in. Whe
both agents decide to drive on the same side, there is naioalli
which is modeled by a high reward. Otherwise, a collisionuocc
yielding a low payoff. The goal is then for all agent to deyet
norm of choosing the same action consistently.

0
4,4
1,1

0
1

Table 1: Payoff in a coordination game.

The agents are distributed over space where each agenaisdoc
at a grid point (see Figure 1). An agent is allowed to inteceady
with agents located within its neighborhood. We considat the
world is a toroid, i.e. agents on one edge are adjacent togiets.
located on the opposite edge. The neighbor of an agent isasedp
of all agents within a distancP of its grid location (we have used
the Manhattan distance metric, i.€t; — z2| + |y1 — y2| is the
distance between grid locatiois1,y1) and (z2,y2)). We vary
the value ofD to allow for different neighborhood sizes.

In this paper we have experimented with a societyNoagents
placed in a/N x +/N grid. For the figures presented in this pa-

always fixed by authority, but historical records show thHaoci-
ety often converges on a convention first by an informal pgea#
accretion; later it is codified into law.” [20].
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Figure 1: Agents located on a grid and allowed to interact on}
in a limited neighborhood.

per, we use 225 agents placed on a 15 by 15 grid. We use WoLF-

PHC (Win or Learn Fast - policy hill climbing [4]), which can
learn mixed strategies. Though WoLF is guaranteed to cgever
to a Nash equilibrium of the repeated game in a 2-personti@rac
game against a given opponent, it is not clear whether it &-gu
anteed to converge in social learning. We have empiricalbns
convergence when all agents are neighbor of each other jn [16

Dynamics of the payoff for the learners

average payoffs
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Figure 2: Influence of neighborhood size on learning rate. Al
agents are learning.

and thereby influences the learning patterns of the agetits imet-
work. This problem is exaggerated when every agent is energo
neighbor O = 15) which further reduces the rate of learning.
Figure 3 represents, for larged? (= 15) and smallest) = 1)
neighborhoods, the policy of each agent in the populatiafiftg-
rent iterations in a single run. Each cell represent thecpaf an

The results presented are averaged over 50 runs of the experi 29ent: the darker it is, the higher the probability of drgyion the

ment with different random seeds.

4.1 Effect of neighborhood size

In this section, we have experimented by varying the neighbo
hood distance of the agents and the effect of the neighbdrkize
on learning of agents is observed. We have tested with faghne
borhood distances), for each agent (the distances are 1, 5, 10,
and 15 respectively). Wheb = 4, only an adjacent agent is a
neighbor (there are 4 neighbors in that case). For an anpifpa
value, an agent ha> + 1)? — 1 neighbors. When the distance is
15, every agent is a neighbor of every agent.

We present in Figure 2 the dynamics of the average payoffeof th
population over a run when all agents are learning conctiyreh
payoff of 1.5 is achieved when the agents use a uniform Histri
tion when playing the game. The maximum payoff achievabik is
and is obtained when the agents play the joint action (0,0).4).
However, as our agents use thigreedy exploration scheme, they

cannot reach 4. We conclude that a norm has emerged in the popu

lation when the average payoff of the population reachesF3dim
Figure 2 we observe that the smaller the neighborhood distahe
faster the emergence of a norm.

When an agent has four neighbo® (= 1), the agents learn
to coordinate faster by driving on the same side of the roaas t
when it has 35 or 99 neighbor®(= 5 and 10 respectively). For
a given number of iterations, the agents interact more ofitiéim
a particular neighbors for smaller neighborhoods. Thismaghat
the impact an agent has on another agent is larger when thle-nei
borhood size is small. In addition, an agent with few neighbo
will encounter few different behaviors from its neighboesd it
is a priori easier to coordinate with a small set of agents rather
than a larger one. As the neighborhood distance increasegjest
has to coordinate with many other agents, and in additicer-in
actions between two particular neighbors in the networlobec
less frequent. This decreasing interaction frequency &etvpairs
of learners increases the time for exploration of the befrapace

left, whereas lighter colors denote higher probability n¥idg on
the right. When a cell is completely dark, or white, it medrat the
learning algorithm of the agent has converged. In the pdaicun
we present, the norm of “driving on the right” emerges (ovu#éfed
ent runs “driving on the left” and “driving on the right” noswere
evolved in roughly the same number of runs). At iteration, 146
agents are exploring and are receiving low payoff (see spamed-
ing payoff dynamics in Figure 2). At iteration 355, for = 1, we
are close to the inflection point for the curve of the payoffiayn-
ics: the agents start to favor one norm over the other.Fer 15,
however, there is a lesser bias favoring one action. We aathsé
on the average, the snapshot for = 1 is lighter than that with
D = 15. Atiteration 480, we can see that many more agents have
converged for the smallest compared to the largest neigobadr
So smaller neighborhoods induce faster learning amongtagen
a grid.

The above effect of agent neighborhood size on learning rate
was somewhat surprising. A priori, it was unclear whethealtsn
neighborhoods will engender divergent norms to initiatlynfi over
the agent space, which would subsequently delay the cozwvesg
of the population to a consistent norm. Such effects, howeere
overshadowed by the effects of increased interaction &egjes
between neighbors in our framework.

4.2 Influence of non-learning agents

So far, we have observed that all norms with equal payoffewer
evolved roughly with the same frequency over multiple rufisis
is expected because the payoff matrix for the coordinatmmey
(Table 1) has no preference for one norm over the other. Extias
effects, however, can bias a society of learners towardsteylar
norm. For example, some agents may not have learning capabil
ties and always choose a pre-determined action. We now gtedy
influence of agents playing a fixed pure strategy (FPS agertt)e
emergence of a norm. We are interested in the effect of nheiltip
pure strategy players with the same or different fixed sgiage
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Figure 3: The probabilities of agents driving on the left (Whiter
cells represent probabilities close to 1). All agents are &ning.

4.2.1 Non-learners use same strategy

In the first experiment, we replace some learning agents I8/ FP
agents and we study the effect of the speed of emergence afa no
When there are no FPS agents, as the learners explore edly in
run, they should encounter each joint action in the sameqgptiop
on average. When FPS agents are present, however, ledmaers t
have an FPS agent in their neighborhood should observe ébias
wards one strategy which the FPS agent always chooses. Atsage
start to exploit, a learneiighat has an FPS agejitin its neighbor-
hood should exploit this bias and consequently, it is mdwyito
play the action played by. This bias should also be boosted by
7's neighbors which are also in the neighborhood 0Our hypoth-
esis is that with more FPS agents that play the same actign, e.
all FPS agent wants to drive on the right, the correspondargin
would emerge faster in the population. In Figure 4, we complae

Dynamics of the payoff for the learners

average payoffs
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Figure 4: Influence of of non-learners, using identical stréegy,
on learning rate (D = 5).

the emergence of a norm. But FPS agents in practice may be unre
lated and adopt conflicting behavior, e.g., some agents/dhivive
on the right” and some others always “drive on the left”. Iisth
case, they are likely to decrease the speed of emergenceermr e
prevent the convergence of a norm in the entire populatiofi ],
we have observed that two populations that interact infaty
can develop different norms. Hence, it may be possible tR&8 F
agents influence other agents in their neighborhood, helifter-
ent norms emerge in different neighborhoods. In the nexbket
experiments, we used two FPS agents playing differentegfyaR
(for driving on right) and L (driving on left).

In Figure 5 we present snapshots representing the statee of th

results when there are no FPS agents and either 1, 2, 3, or 4 FP$olicy of the agents in the population at different stagethefsim-

agents in the populatién For these experiments, we usBd= 5.
Note that all the FPS agents play the same action (drivindhen t
right).

ulation. The two FPS agents are located at locations (4drliRf
and (11,4) for L. In the two runs, fab = 1 andD = 5, presented
in Figure 5, “driving on the right” is the norm that emergese Wo-

The first observation from Figure 4 is that norms do not emerge tice that the emergence is faster when the size of the neiljbbd

any faster with only one FPS: the local effect of a single F§Sha
is insufficient to expedite convergence to a norm. When theze
two or more FPS agents, however, we observed the expected fas

is smaller. When the simulation is at iteration 45, the agemé
exploring, and the policies of the agents are close @5,0.5 >.
When the simulation is at 535, the population starts to leacha

norm emergence. With our choice of locations for the two FPS norm starts to be preferred by a majority of agents. We were ex
agents, no learner has both FPS agents as neighbors. Howevelpecting that neighbors of the FPS agents will converge tpdfiey
the speed of emergence is faster than with one FPS agent in theof the near-by FPS agent. But we do not observe this phenameno
population. When there are three FPS agents, some ager@s haveven when the size of the neighborhood is equal to one (fanpbe

two FPS agents in their neighborhood, which could help them t
converge faster. However, this is not the case as we obseniroa
effect on the speed of emergence. When there are four FP&agen
more learners have two FPS agents in their neighborhoodwand
do observe a positive impact on the speed of emergence. Aadave h
expected, the speed of emergence increases with the nufifiego
agents. However, we cannot yet accurately predict the tiamiaf

the agent that is just below the agent choosing L has constéaye
the norm of R). This may be due to the fact that even lith= 1,
three of the neighbors are learners, who might ultimatedy léne
neighbor of L to choose R. We plan to run further experimeats t
explain this phenomenon. When we ran multiple runs, we elser
that each time, the entire population of learning agentyages
to a norm: the norms driving on the right and driving on the lef

the speed of emergence with number of FPS agents, and weoplan t emerges with equal frequency. Hence, we did not observesthe e

further investigate this issue.

4.2.2 Non-learners use different strategies

In the previous experiment, all FPS agents were playingahees
fixed strategy (driving on the right), and they are able tcespep

“When there are multiple FPS agents, we located them as far as

possible from each other. When there are two FPS agentsathey
located at (4,4) and (11,11). When there are three FPS, tieey a
located at (4,4), (7,8) and (11,11). When there are fouy tre
located at (4,4), (11,11), (4, 11) and (11,4)

tablishment of multiple norms in these population. Thisastic-
ularly significant since, with the payoffs we chose (see ddl)l
using a single norm in the population maximizes social welfa
Hence, social learning is able to produce social welfareimiax
ing outcomes even in the presence of non-learners.

5If two regions of the population were to adopt distinct northe
agents at the border and their neighbors would suffer a liogsaye

off. When a single norm emerges, only the neighbor of the FPS
agents suffer a loss of payoff.
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Figure 5: Probabilities of agents driving on the left . Two FFS
players play different fixed strategis.

5. CONCLUSIONS

We investigated a bottom-up process for the evolution of so-

cial norm that depends exclusively on individual experen@ather
than observations or hearsay. Our proposed social leafrange-
work requires each agent to learn from repeated interagtitim
anonymous members of the society. This is in contrast to neest
sults in multiagent learning where two or more agents leesmf
repeatedly interacting with the same group. These resoitirm
that only private experience is sufficient for the emergeota
norm in a society of learning agents. This is in contrast \piilr
work on norm evolution which requires agents to have knogsed
about non-local interactions between other agents anddtrate-
gies [6, 13, 19]. Our primary goal in this paper was to evauat
the effect of spatial interaction restrictions on the spaed nature
of norms that emerges through social learning. We realibatl t
limiting interactions may isolate sub-populations, thllevéing for
different norms to evolve in different parts of the spacesdiéng

of such emerging conflicts that may reduce social welfarepaod
ducing a consensus norm could have been time-consumingriExp
mental results, however, clearly demonstrate that agentlptions
with more restrictions, i.e., those with smaller agent hba@hoods
actually produce faster convergence to social norms! FEhieiy
likely due to the increased number of interactions betwesigh
bors which allow them to quickly identify mutually-agreedhav-
ior. This neighbor interaction frequency is found to ovebw
the effect of time taken to resolve divergent norms. We ptan t
study this tradeoff more closely to better understand tre=inied
phenomena. We also observed that the social learning frarkew
is able to produce social welfare maximizing policies eveithie
presence of divergent non-learners.

In this paper, interaction restrictions were binary. Agenere
equally likely to interact with any agent in its neighborlkoand
never interacted with anyone outside. Actually, the neighbod
topology has an interesting characteristic. Within itghbiorhood,
the agents were more likely to interact with agents at a tadge
tance than agents situated closer. This is because themscmee
agents at a larger distance than a smaller distance with@iglhn

borhood, e.g. foD = 3, for any agent there are 4 agents at dis-
tance 1, 8 agents at distance 2, and 12 agents at distancéi8). T

is contrary to normal intuition which suggests that the lih@od
of interaction with another agent should decrease with thtaidce
to that agent. We plan to run experiments with corresponiing
teraction preferences and compare results with those mess@n
this paper. Other interesting experiments include studjiftérent
network topologies and the influence of the topology on theedp

of emergence of norms. In particular, we would like to evidithe
emergence of norms in social networks.
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