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ABSTRACT
Super-peer networks have been proposed to address the issueof
search latency and scalability in traditional peer-to-peer (P2P) net-
works. In a super-peer network, instead of having a fully dis-
tributed systems of peer nodes with similar or comparable capabil-
ities, some nodes that possess considerable computing power and
resources are designated as super-peers. Each super-peer acts as a
server for multiple client peers under it. This hierarchical structure
of a super-peer network improves the performance of a super-peer
network over traditional P2P networks by handling most search
queries between the few super-peer nodes, thereby reducingover-
all network traffic and improving search latency. In this paper, we
address the problem of mutual selection by super-peers and client
peers. In particular, we evaluate alternative decision functions used
by super-peers to allow new client peers to join the cluster of clients
under it. We experiment with peers with known resources and de-
mands. By formally representing and reasoning with capability
and query distributions, we develop peer-selection functions that ei-
ther promote concentration or diversification of capabilities within
a cluster. We evaluate the effectiveness of these differentselec-
tion functions for different environments where peer capabilities
are aligned or are independent of their queries. We offer insight
and analysis on the effects on inter and intra-peer bandwidth con-
sumption which will allow a super-peer to adopt appropriatepeer-
selection functions given their expectations about the environment.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent systems

General Terms
Algorithms, Design
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1. INTRODUCTION
Current research in peer-to-peer (P2P) networks mainly focuses

on the capacity of the network to provide efficient search capabili-
ties, to treat queries in a timely and accurate fashion, and to max-
imize the bandwidth to transfer data between peers. Super-peer
networks [3, 5, 13] have been proposed to improve the search la-
tency and scalability of traditional P2P systems. Instead of having a
fully distributed system of peer nodes with commensurate comput-
ing capabilities and resources, a super-peer network comprises of
a hierarchical arrangement of nodes with different computational
capabilities. A super-peer network is a two-tiered structure: one
level consists of super-peer nodes that have considerable comput-
ing capability and resources, with each super-peer managing oper-
ations such as searching and query forwarding for multiple client
peers under it. The benefits of this architecture, compared to a fully
decentralized approach, is an improvement in search latency and
scalability as most queries are routed between the few super-peers
or between client peers under one super-peer. In particular, a peer
no longer needs to handle the network traffic associated withevery
search query. A super-peer, however, can become a bottleneck for
its clients: it handles incoming and outgoing queries on their be-
half, which requires maintenance of an accurate description of all
clients.

Under the assumption that all peers are contributing to the com-
munity, [13] gives advice for building efficient super-peernetworks.
An open problem here is the choice of a super-peer when a new peer
joins the network. A super-peer can accept or decline a join request
from a new peer. In [5], the design of the network correspondsto
ontologies. The idea is to cluster peers falling in the same cate-
gory so as to make search more efficient in a semantic peer-to-peer
network. As a result, super-peers will have similar clients. For ex-
ample, it is possible to create a community of super-peers hosting
computer science related information. Each super-peer could corre-
spond to an area of computer science, say language, operating sys-
tem, artificial intelligence (AI), etc. and the peers of the super-peer
corresponding to AI could host information about agents, planning,
Bayesian inference, etc. Depending on the need or the knowledge
of the new peer, a similarity measure or the use of an ontology
can dictate which super-peer the new peer should register with. [5]
prescribes a structured network organization such as a hypercube
that determines the topology of client peers under a super-peer.
However, the problem of network organization becomes challeng-
ing and difficult to design a-priori if we consider unstructured P2P
networks. Hence, we are interested in studying decision functions
that super-peers and peers can use to mutually select each other and
the effects of such decision functions on peer cluster composition.

Consider the case where a super-peer can answer a query from
one of its clients by using its other clients. There may not beany
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need to send a query to other super-peers. Hence, in additionto not
having to coordinate search with other super-peers, answering a
query by another peer in the cluster decreases the traffic between
super-peers. This phenomenon can be highlighted by consider-
ing super-peer networks where each cluster is quasi-self-sufficient:
each query being almost always answered by peers from the same
cluster. The research question is how to form clusters of clients to
significantly decrease the traffic between clusters. Shoulda super-
peer seek heterogeneity of interest and capabilities of itspeers, or
should it attempt to build a community of peers having similar in-
terests and capabilities.

In this paper, we want to dynamically build the network of super-
peers from a fully distributed network. We want to ensure that
peers are contributing to the community. To this end, we use a
reciprocity based mechanism to promote collaboration between the
super-peers. We use a cost function to capture the preference of
intra-cluster data transfer over inter-cluster data transfer. We con-
sider that peers are defined both by their interests, which are used
to generate queries, and their knowledge or competencies, that are
used to answer queries. We believe that in the real world, knowl-
edge and competencies are often aligned: interest in a subject leads
to an increase knowledge in that topic. In such situations, peers
with similar interests should be able to sustain self-sufficient com-
munities, needing the help of other clusters only rarely. Onthe
other hand, if interest and knowledge are not aligned, it might be
preferable to create heterogeneous groups where peers havecom-
plementary knowledge and interests. We want to study how the
joining decisions affects cluster compositions and the total cost of
answering queries. In particular, we consider both environments
where agents have similar interest and knowledge, and environ-
ments where interest and knowledge are not correlated.

2. RELATED WORK
P2P systems have become an area of active research and develop-

ment because of the popularity of online resource sharing services
such as Freenet [1], Gnutella [2], Napster [4] and SETI@home
[9]. Resource management in P2P networks has been an impor-
tant and challenging issue for researchers. The most commontech-
niques for P2P resource management include structured P2P net-
works that employ distributed hash tables (DHT). In DHTs, re-
sources are strategically placed on nodes to improve resource avail-
ability and enable rapid lookup [7, 10, 14]. In DHTs each nodeand
resource is associated with a key computed from a hash function.
A mathematical function [6, 11] is then used to strategically place
resources in different nodes to preserve the network topology and
balance the network load throughout the system. However, DHTs
require additional overhead in the form of updates to local hash
tables within a node when nodes and resources join or leave the
network, and, forwarding the updates to neighboring nodes.

Yet another mechanism for P2P resource management is super-
peer networks [12, 13] that uses a tiered network structure within an
unstructured P2P network. In a super-peer network, some nodes act
as super-peers or managers that supervise and coordinate the oper-
ation of several peers or clients under them. Super-peers maintain
meta-information about peers supervised by them. A super-peer
can interact with the peers its supervises and with other super-peers
to route search queries and implement load balancing algorithms.
In super-peer networks, a peer wishing to search for a resource
contacts the super-peer supervising it with the search request. The
super-peer first searches for the resource within other peers super-
vised by itself. If the resource is not found within its supervised
peers, the super-peer directs the search query to other super-peers.
Each super-peer that receives a search request from anothersuper-

peer searches for the resources within its supervised peersand re-
sponds to the super-peer that initiated the query at the super-peer
level if the resource is found. The super-peer that initiated the
super-peer level query then forwards the resource-found response
to the peer under it that originated the query. In [5], the super-peer
framework has been implemented within a structured P2P network.
DHT-based algorithms are used to determine the network topol-
ogy and resource placement within the network. Database schema
based techniques are also used to organize the content on differ-
ent peers. In [3], a protocol for dynamically updating the topology
of a super-peer network is described. Super-peers exchangemeta-
information about peers with each other to reconfigure the network
and achieve load balancing. In contrast to these research, our paper
describes mechanisms that can be used by peers and super-peers
for mutual selection within an unstructured P2P network.

3. SUPER-PEER NETWORK MODEL
In this section, we describe our model of the peer-to-peer system

and the query protocol. We assume a fully connected network of
super-peers, which allows a super-peer to be contacted directly, i.e.,
a query can be targeted to a precise set of peers. Each super-peer
manages a cluster of client peers.

Each peer is defined by its interests and its competence in pro-
viding information to other peers. The interests are used togenerate
queries, and the competencies are used to answer queries. Wewill
investigate two kinds of environments: one where competencies
and interests are the same, the other where they are not correlated.
Each resource is indexed by a set of interests or keywords andpeers
can query for a resource based on its associated interest set. Inter-
ests are represented as words (character strings). We have used a
hash function to map the different interests to a natural number in
the rangeS = [0..dim]. Every peer uses the same hash function to
ensure uniformity in the interpretation of interests across the net-
work. This allows us to model the competence and interest on a
one-dimensional line. The interests of a peer are represented by a
probability distribution functionI overS . Peaks onI represents
the main interests of a peer. The competence of the peer is rep-
resented by a functionC which, given a pointq in S , output the
probabilityS(q) of answering a query for that input. We have cho-
sen this approach to produce a static description of the peers’ inter-
ests and capabilities that facilitates analysis and experimentation.
This would not be possible if peer capabilities were represented for
example by a dynamic database of resources.

A super-peer has the responsibility to handle queries from its
clients and other super-peers. It maintains a balance of help over
the past interactions with other super-peers, and with its own peers.
Each time a peer answers a query from another peer, it incurs a
cost proportional to the amount of data transferred. We assume that
transfer of data within a cluster is cheaper than transferring data
between cluster. In order to promote contribution of other super-
peers, the balance of cost is used in a probability-based mechanism
to make the decision [8] of answering or not answering queries
from other super-peers. A super-peer wants to minimize the cost
incurred by its own clients by promoting intra-cluster communica-
tion. If a super-peer or one of its peers does not collaboratesuffi-
ciently, the super-peer can decide to block their future queries until
the balance improves.

We address the dynamic formation and update of peer clustersby
evaluating alternative joining decision mechanisms that are func-
tion of the interest and competence of the new peer and the existing
clusters. We require a new peer to reveal an estimate of its inter-
ests and competencies. Because of the trust mechanism used by the
super-peer to track its actual performance, there is a disincentive to
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misrepresenting one’s competence or interest. Though we assume
that peers can generate their competence and interest vector, we
note that this may not be a simple task. In addition, we assume
that the super-peer is also a peer, and it can ask as well as answer
queries.

3.1 Cost and Reciprocity Framework
The cost metric is a function of the volume of data transferred

and whether the communication is intra or inter clusters. Weuse
two rates: cl for intra-cluster communication andcw for inter-
cluster communication. The difference in cost models a search
cost incurred by the super-peer when it needs to deal with theother
super-peers.

Each super-peer records the past interactions of help with the
other super-peers. For a super-peeri, a super-peerj maintains:

• creditc(i, j), i.e., cost of the help received byj from i.

• debitd(i, j), i.e., cost of the help provided byj to i.

• balanceb(i, j) = d(i, j) − c(i, j)

To determine whether to answer a queryq from super-peeri, super-
peerj peer first obtain the costcq of answeringq using its knowl-
edge about the capabilities of its client peers. It then calculates the
probability of responding to the query as

P (i, j, q) =
1

1 + e
cq−b(i,j)−c0

τ

,

wherec0 is the initial inclination to help andτ controls the shape
of the probability function. The super-peer will sample this prob-
ability to decide whether to help or not the other peer. Ifc0 is
large, the super peer is more inclined to help other super-peers. In
Figure 1(a) and 1(b), we present the probability to answer a query
with respect to its cost. In Figure 1(a), we study the effect of c0

on the probability function. The higher the cost, the less likely it
is to provide an answer. In addition, the higher the value ofc0, the
more likely it is to answer a query. In Figure 1(b) we vary the value
of τ for a fixed value ofc0: large value ofτ make the probability
function to answer a query quasi-linear in the cost, when small val-
ues ofτ gives a logistic shape to the function: high probability of
answering a query for low cost, low probability for high cost.

3.2 Query generation and Response Protocol
The following describes the different aspects of the query gener-

ation and response process:

Query generation: A query corresponds to one pointq in S , the
interest space. A peer generates a query by sampling its probability
distributionI. The message containing the query also contains the
address of the requesting peer and its super-peer.

Query-answering capability: The client has an answer toq
with a probabilityC(q), and do not have an answer with proba-
bility 1− C(q).

Replying to a query q: A super-peer answers a query by send-
ing a message,ra containing its address, the address of one of its
clients,a, that will answerq, and the associated cost. The clients
are then responsible for opening a connection between themselves
and transfer the data.

Protocol: The protocol for the interaction of the source of a
query and the responder is as follows:
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Figure 1: Influence of c0 and τ on the probability to help.

1. an initiator peerPq generates a queryq and sends it to its
super-peerSP (Pq).

2. SP (Pq) checks its database to find if one of its clients can
answerq. We consider that a super-peer has accurate knowl-
edge of the capabilities of its client peers. In our model, this
is implemented bySP (Pq) sampling the probabilityCi(q) to
determine whether the peeri can answer the queryq or not.
If one of the clients underSP (Pq) can answer the query, the
query is forwarded to that client. If more than one client can
answerq, the super-peer chooses the one with the highest
balance (download minus upload volume). This allows the
super-peer to distribute the load of query answering between
its client peers and maintain the satisfaction level of peers.

3. If the clients ofSP (Pq) cannot answer the query,SP (Pq)
broadcasts the query to other super-peers. When another
super-peerSPa receives a query fromSP (Pq) it performs
the following steps:

(a) SPa determine whether one of its client peers can an-
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swer the query. Again, this is implemented by sam-
pling the probabilityCi(q) for each of its peeri. If
some peers can answer the query,SPa picks the peer
Pa with the highest balance as described above. If no
client can answer the query, thenSPa cannot answer
the query.

(b) If some client can respond to the query,SPa uses the
reciprocity framework (Section 3.1) to decide whether
or not to provide the answer.

(c) If SPa decides not to answer, an empty message is sent.

(d) If SPa decides to help, it forwards the query toPa,
and sends a replyra to SP (Pq). The reply message
contains the address of the peer that will answer the
query and the associated cost. At this time,SPq may
or may not use this answer, henceSPa does not update
its balance of yet at this time, it will wait a notification
that its peer has provided an answer (see step 4)

SP (Pq) gets all the reply messages,ra, from all the super-
peers. It chooses to use the answer provided by the super-
peerSPa with the highest balance, i.e., it picks the super-
peers that owes the most.SP (Pq) updates its balance with
SPa and forwards the reply message toPq.

4. WhenPq receives the reply, it directly contacts the answering
peerPa and transfers the data. At the end of the transfer,Pa

notifies its super-peer about the transaction so thatSPa can
update its balance withSP (Pq).

3.3 Mechanisms for cluster formation
We assume the existence of a network of super-peers. The peer

nodes enter the system one at a time and are assigned to one of
the super-peers by the process described below. Once assigned, a
peer-node does not change its super-peer.

3.3.1 Random peer assignment
As a baseline scheme for comparison we consider a random as-

signment of new peers to any of the super-peers.

3.3.2 Negotiated peer assignment
We consider three negotiated mechanisms. In each of these meth-

ods new peers negotiate with existing super-peers and final assign-
ment is made by mutual selection.

When a peer seeks to join a cluster, it sends its capability and in-
terest information to all super-peers. The super-peers estimate the
“usefulness” of having this new peer in their cluster and reply with
the estimate. The peer greedily chooses to join the super-peer that
provided the best estimate. To measure this “usefulness”, we con-
sider three metrics:
Competence alignment:By using this metric, a super-peer seeks
peers that have similar competence, which improves the probabil-
ity of answering queries on particular topics. The super-peer builds
the aggregate competence vector of its cluster of client peer nodes
where the aggregate competence of a cluster for a given domain is
the probability that at least one peer answers the query. Consider
that a super-peer hasn client peers, and letci,j denote the proba-
bility of the ith peer to answer a query for thejth domain in the
competence spaceS . The probability for at least one peer to answer
the query is

cj = 1− Πn
i=1(1− ci,j), j ∈ [1..dim].

The metric returned is the Euclidean distance between the aggre-
gate competence of the cluster and the competence of the entering

peer. The smaller the distance, the better the offer made to the peer.
Competence diversity: With this metric, a super-peer seeks to
form a heterogeneous group able to answer the most diverse range
of queries. For example, a peer who does not bring any new ex-
pertise to a cluster is of little interest. The super-peer computes
the probability of answering a query about each domain inS in the
absence or presence of the requesting peer. The difference is the
measure of the impact of the peer on the group. The “usefulness”
metric sent to the requesting peer is:

∆ =
1

dim

dim
X

j=1

`

c
+
j − cj

´

,

wheredim is the dimension ofS , cj (respc+
j ) is the aggregate

probability of the cluster (resp the cluster and the peer) toanswer
a query about thejth domain inS ( we assume a uniform distri-
bution of queries overS). A super-peer seeks peers with higher∆
value. The peer chooses the super-peer with the largest∆.
Competence and interest complementarity:By using this met-
ric, a super-peer seeks peers that can answer queries from the cur-
rent cluster and vice versa. When this metric is used, peers and
super-peers use a two-step interaction protocol: the super-peer will
first evaluate the ability of the peer to answer queries from the clus-
ter’s member. If this likelihood is above a threshold, the super-peer
will send the likelihood for cluster’s members to answer a query
from the new peer. We now present more details of this process.
First the peer sends its competence vector so that the super-peer
can estimate the potential of this peer to answer a query issued by
current cluster members. The super-peer invites a peer onlyif it
can bring sufficient new expertise to the cluster. If the probability
of answering queries from its cluster exceeds a fixed threshold ǫu,
the super-peer responds favorably to the peer. The peer replies to
interested super-peers and sends them its interest vector.The super-
peers return the probability of the cluster to answer a queryissued
by the new peer. The entering peer chooses the super-peer with the
highest likelihood of answering its query. Letq denote the interest
probability distribution and letc denote a competence vector. The
probability that a peer or cluster with a competencec can answer
a query from a peer or cluster of interestq is

Pd

i=1
qici. In a nut-

shell, the super-peer accepts beneficial peers, and the peerjoins the
most promising super-peer, i.e. one that is most likely to able to
answer its queries.

4. EXPERIMENTAL RESULTS
To evaluate the relative effectiveness of above mentioned cluster

formation mechanisms, we simulated different environmental con-
figurations. We generated the interest and the competence ofthe
peers assuming the existence of a preponderant domain of com-
petence and a preponderant domain of interest, which need not be
identical. When they are identical , i.e., competence and interest are
aligned, we have peers knowledgeable about a particular topic and
wanting to know more about that topic. When the preponderant
topics are different, i.e., competence and interest are notaligned,
we have peers that have knowledge in a domain and wanting to
learn about a different domain. In Figure 2, we present a typical
competence vector of a peer. The algorithm for generating a com-
petence vector for a peer is presented in Algorithm 1. The interest
vector is generated in a similar way, and is normalized to meet the
requirements of a probability distribution. We have experimented
with two types of peers: when interest and competence are aligned
and when they are not correlated. In all experiments we ensure that
the preponderant competence and interest are drawn from a uni-
form distribution.
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Figure 2: Example of the competence vector of one peer.

Algorithm 1 Form competence vectorc for peerp.
phigh, plow andv are given
for i = 1 to d do

ǫ← normal(0,1)
if main interest ofp is i then

ci ← phigh + ǫv

else
ci ← plow + ǫv

4.1 Settings
The results presented in this section are averaged over 20 differ-

ent assignments of the peers to the clusters (the order of introduc-
tion of the peers is different). For each assignment, we ran the sim-
ulation 5 times, varying the order of the peers asking queries. Each
simulation consists of generating 10,000 queries. For eachquery,
a peer is chosen randomly, and its interest distribution is sampled
to generate the query type. There is a fixed number of super-peers,
one for each domain, and the number of peers varies between 20
and 300.

4.2 Influence of the cost difference between
intra and inter cluster communication

We study first the influence of the cost difference between intra
and inter cluster communication on the environment where interest
and competence are aligned. For these experiments, the reciprocity
framework is initialized withτ = 1 andc0 = cinter , i.e. initially,
the super-peer is inclined to answer one query issued from another
super-peer with a probability of0.5. In Figure 3, we present results
from experiments with a system of 500 peers, 50 super-peers and
50 different domains. The cost for communication within thegroup
is fixed to 1.0 per query.

Since for a given peer, the preponderant competence and interest
domains are the same, the optimal assignment occurs when peers
with the same preponderant domain are grouped in the same clus-
ter. They are likely to answer most queries of other members of the
cluster, thus minimizing total cost of answering queries. Request-
ing the help of peers from other clusters is needed when a query is
outside the preponderant domain, which is much less frequent. Un-
der these conditions, the join function promoting complementarity
between peers and the join method based on the alignment of the
competence produce best performance. We noticed that as thesize
of a cluster increases, the cost increases slightly. Even ifall the

cluster’s peers have the same main expertise, the probability of an-
swering other types of queries also increases, which may “mislead”
the assignment of some peers entering later. These peers cause the
performance to drop, i.e. the cost to increase; since the query of
these late entering peers is less likely to be answered by theclus-
ter’s member. Surprisingly, promoting the diversity of competence
in the cluster performs better than random assignment. The use of
a diversity based mechanism should be costly since it is unlikely to
have two peers with the same interest/competence coexisting in the
same cluster. The relative better performance compared to random
is due to the existence of few larger clusters that are more capable
of being self-sufficient.
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Figure 3: Influence of the cost ratio between inter and intra
cluster communication on average cost of answering a query
with different cluster formation mechanisms.

4.3 Influence of the number of peers
For the rest of the study, we fixed the ratio of the cost of inter

and intra-cluster communication to2.5 where the cost to commu-
nicate one answer within a cluster is set to1.0. In the next set of
experiments, we fixed the dimension of the interest space andthe
number of super-peers to 10. We study the influence of the num-
ber of peers in the system both in environment where competence
and interest are aligned and when these are not correlated. Our first
metric is the average cost of a query. If it is 1.0, all the queries are
answered within the cluster. The second metric is the percentage of
queries answered (see Section 3.2). A query may not be answered
for multiple reasons. First, when a peerp answers a query about
domaini ∈ S , the distributionC(i) is sampled. Even ifi is the
domain of expertise ofp, it may not get the answer and no one else
may be able to answer. In addition, a peer might be capable of an-
swering the query, but the super-peer may block the query because
the requesting peer has a low balance.

The results when the competence and interest of a peer are aligned
are presented in Figure 4. The complement-based and the alignment-
based join functions produce clusters of peers with similarexpertise
and are performing the best in this environment (the corresponding
curves are overlapping). As peers generate queries in theirarea of
interest, other peers in the same group can answer these queries
with a high probability and hence they do not require help from
other super-peers, keeping the cost low. For a small number of
peers in the system, the join function based on diversity is perform-
ing worse than random assignment. This is because all the peers
in the cluster have different competence/interest, and they have a
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small probability of answering queries from the other peersof the
cluster. When the number of peers is high, each group contains
sufficient number of experts of each type in each cluster to answer
queries issued by any peer and hence the performance of clusters
generated by all mechanisms become equivalent. This is shown
both by an increase in the success rate of answering queries and a
corresponding decrease in the cost per query.
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Figure 4: Influence of the number of peers when interest and
competence are aligned.

When the preponderant competence and interest of a peer are
not correlated, the join function based on complementarityis still
performing much better with a small number of peers in the sys-
tem (see Figure 5). The first significant difference with the previ-
ous scenario is that the alignment-based join method is performing
much poorer: as peers with the same main expertise do not neces-
sarily have the same main interest, a cluster made of peers with the
same main expertise will require the help from many other clusters.
The second main difference is that the diversity-based joinfunction
takes less number of peers in the system to perform as well as any
other scheme. The promotion of diversity in the cluster formation
increases the probability of answering any kind of query by another

member of the same cluster, which is the key requirement here.
From the above scenarios, the main conclusion to be drawn is

that the join method based on complementarity is performingas
well as any other selection method over all scenarios. This mecha-
nism appears robust to scale and to competency-interest alignment
of peers. The inherent reciprocal benefit consideration underlying
this cluster formation scheme enables such clusters to be largely
”self-sufficient” in most environments, thus increasing query an-
swering rate and reducing the cost for answering queries.
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Figure 5: Influence in the number of peers when interest and
competence are not aligned.

5. CONCLUSIONS
We have investigated the effects of different join-decision-functions

on the performance of super-peer networks. Super-peers arere-
sponsible to find other peers which can provide an answer to a
query, either by using peers from its pool of clients, or by re-
questing help from other super-peers. Super-peers use a reciprocity
mechanism to ensure that there are no free-riders in the system.
Each super-peer also ensures that all its client peers are contribut-
ing by enforcing load balancing within its cluster of clientpeers.
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We use a probability function to model the competence and prob-
ability distributions to model the interest of a peer. Underthese
conditions, we found out that forming peers based on complemen-
tarity between a new peer and a cluster reduces cost of answering
and increases success. However, this join method, unlike the oth-
ers, is a two-step process. Looking for diversity to form a clus-
ter can also be beneficial when there is no correlation between the
competence and the interest of a peer. However, when interest and
query is aligned, alignment of competence in a cluster is preferable
to competence diversity. As the number of peers in each cluster in-
creases, however, the performance difference between the different
cluster formation mechanisms monotonically decreases.

We plan to study the effect of the relative ratio of the number
of super-peers to the number of capability and interest types. In
this paper, agents do not change clusters; we plan to investigate
dynamic cluster dissolution and reorganization schemes. Another
limitation in the current work is the static interest and capability
vectors for peers. We believe that in a number of domains bothca-
pabilities and interests of peers can vary over time. That dynamism
presents a significant challenge to developing adaptive schemes that
will continue to maintain the performance of peer clusters.We will
investigate predictive cluster selection schemes to address this crit-
ical issue.
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