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ABSTRACT
Power generation and distribution in spacecraft presents an inter-
esting resource allocation for learning agents. In this problem, not
only does the life expectancy of the batteries and the power de-
mands of various devices need to be balanced but sudden power
failures need to be managed. Fixed, centralized strategiesoffer ad-
equate results in reliable and static environments, but arenot well
suited to harsh conditions where because of malfunctioningbatter-
ies and changing device needs, the power needs to be adaptively
balanced. In this work, we propose a multi-agent system to coor-
dinate power distribution for spacecraft systems. The use of rein-
forcement learning agents at each device and battery provides the
adaptiveness and robustness that the domain requires. The funda-
mental problem we need to solve is to determine how to coordinate
agents so that their independent actions lead to good globalbehav-
ior. We present results showing that agents using agent-specific
reward functions that promote cooperation learn to use power in a
globally beneficial manner and significantly outperform both util-
ities aimed to solely optimize device power consumption andutil-
ities aimed to solely optimize battery life. Furthermore, proper
agent utility design overcomes device jams, device resets,battery
degradation and battery failures, and provides satisfactory power
distribution even in extreme cases where over half the devices/bat-
teries are inoperational.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent systems; I.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms
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1. INTRODUCTION
The management of modern power systems is becoming increas-

ingly labor-intensive and error prone as the size, complexity and de-
pendence between subsystems increases. Consequently, managing
such systems using fixed logic algorithms is becoming less and less
desirable. This is even truer in spacecraft power systems asboth the
generation and distribution of power has significantly morerestric-
tions than in terrestrial power grids. For such systems, power man-
agement policies that dynamically adapt to accommodate changes
in user demand (e.g., sudden device needs) and changes in sys-
tem states (e.g., faults) are not only desirable but also imperative.
Four fundamental system characteristics of modern system control
and autonomous computing are crucial in achieving those goals[3].
They are:

1. self-configuration, or the ability to adapt automatically to dy-
namically changing environments,

2. self-healing, or the ability to discover, diagnose, and react to
disruptions,

3. self-optimization, or the ability to monitor and tune resources
automatically, and

4. self-protection, the ability to anticipate, detect, identify, and
protect themselves from any attacks.

Though all four are relevant to the power distribution domain, in
this paper, we will focus on the first three, as the intrusion and/or at-
tack scenario is generally not a concern with spacecraft power sys-
tems. In a battery-powered spacecraft, power management requires
a delicate balance between the life expectancy of the batteries and
the power demands of different subsystems. Deep dischargesof
a battery limit life expectancy, and therefore, it might be globally
preferable to protect the battery and save power even when some
subsystems require power. A priori, it is possible to designfixed
solution that would only deliver power up to a fixed limit for the
battery. However, such an approach is too rigid to trade-offpo-
tentially important subsystem usage against the loss of battery life.
Furthermore, in cases of device or battery failures, such solution
not only become suboptimal, but also in some circumstances,can
place the entire spacecraft in jeopardy. It is therefore crucial to use
an approach that can ensure the overall safety and reliability of the
spacecraft even under severe breakdowns in the system.

In the agent-based solution we present, autonomous agents act
as local controllers in order to bring the system to a globally de-
sirable state. This approach is based on first translating the de-
signer preferences into a global utility function. Though allowing
the agents to make their control decision independently to optimize
that global utility function is appealing, this approach isonly suit-
able in a small system. In larger systems, the impact of a single



agent on the full system is swamped by the actions of other agents:
agents have a difficult time learning which actions are beneficial.
Providing agents with local utilities is an alternative, but this ap-
proach is only successful if the agents’ utilities are aligned with the
global utility. Otherwise, the agents’ actions can lead to conflict,
inconsistencies, and worse adversarial situations. The approach we
present relies on agents making decisions in a coordinated manner
using collectives [2, 8]. This framework addresses how to design
agent rewards so that the agents collective action optimizes a preset
global utility function that evaluates the performance of the overall
system.

In this paper, we show how learning agents can be an appropri-
ate solution in distributed spacecraft power management. In par-
ticular, we investigate robustness in an environment that contains
faults: not only we want to the multiagent system to recover from
faults, but we also want it to respond quickly. Multiagent learning
has focused on performance in terms of speed of convergence and
level of utility, but we believe we should also take into account ro-
bustness. As a preliminary step, we present results of response to
various faults in the system. In Section 2 we describe the details
of the space power system domain used in this paper. In Section 3,
we show how a system of multiple learning agents can be applied
to this domain to provide robust, efficient control. In particular,
we show how the agent’s learning problem can be simplified with
agent-specific reward functions. In Section 4, we present experi-
mental results and show that the system exhibits our desiredprop-
erties of self-configuration, self-optimization and self-healing.

2. SPACE POWER SYSTEMS
The space power domain used in this paper is concerned with the

resource allocation problem of assigning a set of devices toa set of
batteries. Devices have varying power needs and draw power from
at most one battery. Each battery has a capacity of availableenergy.
However, using the full capacity of the batteries is harmfulto the
battery, because deep discharges limit the battery life expectancy.
Unlike many resource allocation problems (e.g. bin packing), the
cost to use the resource is not uniform.

2.1 System Model
In our model, we assume that the batteries are fully recharged pe-

riodically, and we are only interested in the system behavior during
the battery discharge period. The power network structure is a set
of independent buses; each bus is powered by a single battery. To
prevent cascading effects (that yield blackouts in a grid structure)
this is the current solution used in spacecraft. During a discharge
period, a device/task can draw power from one of the power buses
(in our model, it is not possible to change power bus during the dis-
charge period). We model the distribution of power using a simple
flow algorithm.

Each batteryj is modeled by a ratingR(j) (total amount of de-
liverable energy) and a cost function. To ensure that the battery can
perform for given number of charge/discharge cycles, the level of
discharge must remain below a depth of discharge thresholdδM .
For example, batteries on board of the International Space Station
are designed to operate at a maximum35% depth of discharge dur-
ing normal operation [4].

2.2 System Utility
When a task is performed, it contributes to a benefit at the sys-

tem level. In our model, the benefit is proportional to the amount
of power required to process the task. Hence, for each devices i
requesting and obtaining power from a bus, it contributes a bene-
fit B(i). The power cost is modeled by a function penalizing deep

discharges. There is a tradeoff between the cost of using thebat-
tery and the benefit of using the power: one extreme is to maintain
the battery health by limiting power, the other is to performmore
tasks, at the expense of risking to damage the batteries. Thechoice
for the tradeoff can be expressed by single utility functionthat we
call world utility. This function is defined by the system designer,
and the goal of the control mechanism is to maximize this function.

We translate this requirement by a cost functionC that is a logis-
tic function of the depth of dischargeδ (see Figure 1):

C(δ) =
A1

A2 + e−A3(δ−δM )
, (1)

whereAi andδM are constants that control the harmful effects of
a discharge affect battery performance. For lowδ, the cost is close
to zero since the energy drained is not harmful for the batteries.
As δ increases up toδM , getting closer to the harmful region, the
cost increases with an increasing rate. AfterδM , whenδ keeps on
increasing, the rate of increase of the cost slows. This is because
the battery is already operating in a harmful regime: thoughextra
usage has deleterious effects, the damage has already been done.
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The choice of a particular benefit function and a particular logis-
tic function determine theworld utility functionG as in Figure 1:

G =
X

device i

Bi −
X

batteryj

C(δ(j)) (2)

This function measures the overall system performance, andis the
function that the multiagent system as a whole has to optimize.
The evaluation ofG requires a global knowledge of the system: in
particular, it is required to know the depth of discharge of all the
batteries, and the demand of the devices that received power. This
information may not be available to the devices. However, itcan be
measured by the system designer.

3. APPLICATION OF AGENTS
As system designers, we require that the devices can be added

and removed from the system seamlessly. A centralized control
mechanism would require tracking and monitoring a potentially
large number of devices, which is error-prone. Instead, to imple-
ment these plug-and-play devices, a device comes with its own de-
cision mechanism in the form of an agent. This one decides on
the bus that powers the device for the entire discharge period. For
now, we consider that each agent is independent and can senseonly
feedback. We are not considering in this work the possibility of



agents sharing knowledge, or forming teams, which might lead to
improvement of performance for example.

3.1 Learning in a Collective
From the point of view of the entire system, the goal of the agents

is to maximize the world utilityG. However, the agent may not be
able to knowG (because of partial observation, limited communi-
cation, etc), and even if it is possible to knowG, it is hard to opti-
mizeG directly. More importantly, we will show that it is possible
to do better without the knowledge ofG. An agent may access lim-
ited information of the state of the system, and from it, an agenti, it
can compute a private utilitygi. Coordination should be embedded
in a utility, and two other properties are crucial in the definition of
a private utility. First, optimizing independently the private utilities
must not lead to working at counter purpose. When an increasein
gi leads to an increase inG, we say that the utilities are factored.
The second property concerns with a signal to noise issue. Tode-
cide what action is beneficial for itself, an agent must be able to
determine the impact of its action on its private utility. Anagent
will find it difficult to estimate the best decision when changes in
other agents’ decisions greatly affect the value of a private utility.
In [2], measures of the factoredness and learnability are provided.

3.2 Private Utilities of the Agents
To compute the private utility, each agent receives/sensesa feed-

back. This feedback must be inexpensive (in terms of computation,
power and implementation) and fault tolerant. The feedbackmust
be simple enough, but carry enough information for the agentto
make good decision. We now introduce the different private utili-
ties that we tested in the experimental section. In the following, η
denotes an agent,dη is the power obtained by the agent by choosing
to connect to the batterybη.
•Team Game (gTG): The world utilityG can be used as private

utility, and we refer this utility as ateam game: all the agents are
working together to optimize the same global function. By defini-
tion, gTG is guaranteed to be factored. However, it is likely to have
a poor learnability since its value depends on the actions ofall the
agents: it will be difficult for an agent to identify the impact of its
decision on this utility. In addition, the knowledge ofG requires a
global knowledge of the system, which may be difficult and costly
to implement. For example, multiple devices can be in chargeof
computing the value and broadcasting it to all the devices.
•device - (geg) A device can estimate its contribution to the

world utility and can try to greedily optimize this contribution. We
assume that an agent knows the benefit it generates. We assume
that an agent can observe the depth-of-discharge of the battery at
the end of the discharge period. From this observation, it can esti-
mate its contribution to the cost of the battery: it knows theenergy
it obtained, and assuming the knowledge of the battery rating, it
can estimate the total energy used by all the devices connected to
the same bus. For this particular utility, the agent considers that its
contribution to the cost is proportional to the amount of power it
received from the battery. For an agentη, the value of the utility is

geg(η) = B(η) −
dη

R(bη) · δ(bη)
C(δ(bη)).

This utility constitutes a partition of the world utilityG to all agents:
P

η∈A
g0(η) = G.

•device-uniform gunif : Instead of considering that the contri-
bution on the cost of a battery is proportional to the amount of
power received, an agent can consider the cost is uniformly divided

between all the agents using the battery.

gunif (η) = B(η)−
C(δ(bη))

nbη

,

wherenbη denotes the number of agents using the same battery as
agentη. The knowledge ofnbη requires a mechanism to count the
number of agents connected to the bus. Asgeg, gunif is also a
partition of the world utility.
•Wonderful Life Utility ( gWLU ) Finally, the agents can use a

marginal cost to estimate their contribution to the cost of the bat-
tery: its contribution is the difference of cost when the agent uses
the battery or not. An agentη can use:

gWLU (η) = B(η)−

„

C(δ(bη))−C

„

δ(bη)−
dη

R(bη)

««

.

An equivalent expression ofgWLU is gWLU (η) = G−G−η where
G−η denotes the value of the world utility when all the agents re-
main fixed, but agentη is removed from the system. This utility is
the Wonderful Life utility introduced in [8]. This utility is factored
(since the second term is independent of agenti, the derivative of
gWLU with respect to agentη is the derivate of the world utility
with respect to agentη). This utility has proven effective in many
multi-agent system domains including network routing, rover con-
trol, job scheduling and congestion games [1, 5, 7, 6]. Note that
in this domain, the agents only require the knowledge of the rating
of the battery and the observation of the depth-of-discharge of the
battery at the end of the discharge period.
•battery-utility Instead of optimizing a greedy utility (differ-

ence of the benefit of an agent and an estimate on its contribution
on the cost), the agents can optimize the utility of a battery. All
agents using the same battery can uniformly share the utility ob-
tained using this power. Each agent can receive:

gbat(η) =

Pnb
j=1 u(j) − C(δb)

nb

.

This utility requires each device to publish the utility it generated.
A mechanism is required to aggregate the benefit obtained by each
agent, compute the cost incurred by the battery, and broadcast the
utility to the corresponding devices.

3.3 Learning algorithm
Each device uses a simple reinforcement learning algorithmthat

learns an expected utility for each available action, i.e. it learns the
expected utility of using each battery. We require an algorithm that
always performs some exploration because of the possibility of fail-
ure or changes in the system. Without exploration, a learnerwould
not adapt rapidly to changes in the system. That is why we use
Q-learning algorithm with theǫ-greedy exploration scheme. At the
beginning of the discharge period, each agent chooses the bus it is
going to use during that period. At the end of the period, the agent
receives a feedback according to the level of information accessi-
ble, and the agent computes its rewardr and updates its estimate
using a Q-update rule:Q(b)← (1− α)Q(b) + αr, whereα is the
learning rate. The learners use theǫ-greedy exploration scheme:
ǫ% of the time, the learner picks a random action, and the rest of
the time, the learners pick the action leading to the maximumex-
pected utility. The agents keep an estimateQ(b) of the expected
utility of choosing a particular batteryb.

4. RESULTS
We present the experimental results of our simulator. As self-

interested entities, the agents are competing to maximize their utili-
ties. We describe and analyze the environment with different power



demands (which modify the pressure of the competition to obtain
power) but no faults. Finally, we present experiments testing the
robustness of the system.

We experiment with a system of eight batteries and different
numbers of devices. For the experiments we present, the batter-
ies are identical, sharing the same rating (100 units) and the same
cost function. We use the following cost function (see Figure 1):

c(δ) =
5

1 + e−7(δ−0.75)
.

The benefit of performing a task requiringd units of power is set
to d

25
. The optimal usage of the battery is at a48% depth of dis-

charge, which represents 48 units of power. A load of 384 units
will produce an optimal usage of the battery. We chose to experi-
ment with a load of 400 (normal load) or 800 units (overload).The
normal load is achieved by using a set of 50 agents: half of them
require 2 units, the others 14 units. For the overload system, the
set of agents is doubled. With the normal load, the agents have
enough “room” to distribute the load and the difficulty of theprob-
lem lies on an appropriate allocation. In the overload case,some of
the agents must decide not to be plugged in the system at all. This
asymmetry in the load of the agents makes the problem harder to
solve. Each agents uses Q-learning with the epsilon-greedyexplo-
ration scheme with the following parameters:α(t) = 1.0

5+ t
50

and

ǫ(t) = 1.0

1+ it
50

4.1 Non-faulty environment
We first compare the different private utility functions in asys-

tem where the load is normal, i.e. there exists optimal allocations
of the agents where all agents can complete their task. The results
in Figure 2(a) show that three utilities are able to perform at close
to optimal level:gWLU , geg andgunif . The remaining two utili-
ties are not. TG suffers from a poor learnability: although perfectly
aligned, the agents are not able to determine their impact onthe
system. The battery-utility is performing the worse. We observe
that the agents are under-using the power. Despite the possibility
for all agents to get power with optimal performance, a number of
agents requiring lots of power still prefer not to be plugged. In typ-
ical runs, we observe that for most batteries, the difference between
the optimum load and the final load is larger than 14. Because of
the division by the number of agents using the particular battery,
the agents believe the optimal use of the battery is much lessthan
it is. For example, if all agents demand 2 units, the optimal number
to optimizegbat is 7 agents. From there, the utility decreases and
is concave down. This utility over-protects the batteries.

Results with an overload are presented in Figure 2(b). First, this
curve illustrates that the system is self-configuring: the learners ex-
plore the different possibilities and find a way to adapt to ensure
high level of performance in the system. Because it is factored and
learnable,gWLU still performs close to optimal, but all other util-
ities suffer a great drop in performance compared to the situation
with the normal load. Two factors contribute to the increaseof the
problem difficulty: a greater number of agents (scalabilityissue)
and the fact that some agents must decide not to be plugged to the
power network, which greedy agents do not. The utilitygunif and
geg are the ones with the biggest drop: the agents are requesting
too much power. Each agent is greedy in a sense and tries to get
some utility. Agents prefer to be unplugged (getting a utility of 0)
only if the use of a battery provides them a negative utility.Hence,
they use the battery up to a depth of discharge providing positive
utility. A deeper analysis of the results shows that withgeg, agents
with both high and low load get powers whereas withgunif , only

Optimal

 9

 8

 7

 6

 5

 4

 3

 2

 0  500  1000  1500  2000  2500  3000

G
(δ

)

iterations

Team Game
WLU
gunif

geg
gbat

(a) Normal load (50 agents)

Optimal

 9

 8

 7

 6

 5

 4

 3

 2

 1

 0
 0  500  1000  1500  2000  2500  3000

G
(δ

)

iterations

Team Game
WLU
gunif

geg
gbat

(b) Overload (100 agents)

Figure 2: Non-faulty System.

the agents with a high load request power. Withgunif , the cost
incurred by each agent is proportional to the number of agents us-
ing the battery, hence all the agents sharing the same battery incur
the same cost. Agents requesting more power receive more utility;
hence the agents with high demand tend to get more utility than
the agents with smaller load. The agents with a higher load con-
verge faster than the agents with a small load, and are able toget
their power. The greater number of agents is the cause for thede-
crease of performance of Team Game: because of the increase of
the number of agents, the signal to noise ratio has decreased, mak-
ing it harder for an individual agent to understand the impact of its
action.

Although under-using the system can be seen as a weakness un-
der a normal load, this can turn into an advantage under an over-
loaded system: battery-utility performs comparatively better that
in the normal load case, mainly because the other utilities behave
much worse. The decrease in performance is small compared with
the normal load case. This is because few more agents with a small
request use the battery.



4.2 Robustness
Robustness, fault tolerance, low maintenance are important prop-

erties of complex systems. In a case of a large number of devices, it
might not be possible to maintain or replace faulty devices when a
problem occurs. In addition, if a power source is faulty, or if the to-
tal capacity decreases over time, the devices must respond to these
changes of power availability. We believe robustness should also
be considered as an important metric of performance of multiagent
learning. We now provide experiments to show that the learning
agents can make the system self-healing and self-optimizing: we
are testing the robustness of the system by experimenting different
faults that can affect the devices or the power sources:
•device jam: We model a problem in the device which switches

between the different bus to power the subsystem. The agent is
faulty and gets locked to a particular bus in the system. For the
experiments, the bus powering the device is chosen at random. If
too many devices get locked to the same bus, the system may no
longer be able to work at the optimal level, and in this case, the
non-faulty agents must avoid this bus.

device reset:This fault models a surge in the power system. The
agent controlling the choice of the power bus accidentally resets
itself. In this case, the agent must re-learn a policy.

battery degradation: The battery fails to re charge completely.
Typically, a battery is composed by many cells, and we model a
sudden failure of few of these cells: as a result, the total power
delivered by the battery is reduced. However, the cost function for
this battery is unchanged: after the accident, the battery starts anew
with a δ% depth-of-discharge. Ifδ is high, the cost of using even
a small quantity of power might be expensive. In our experiments,
δ = 25%

In the following experiments, devices becomes faulty once,one
at a time, over a window onn charge cycles, when the learning
algorithm has converged. The speed of reaction of the learning
algorithm plays an important role on the drop of performanceand
on the time to converge again. We study the system across two
dimensions: the error rateρ and the lengthn of the window where
the faults occur, or length of the “accident”. We present results
where the faults can occur in a window of 100, 500 and 1000 cycles
for various error rates ranging from10% to 90%. Each graph is an
averaged over 20 runs. The system for these experiments is the
same than previously (Figure 2).

4.2.1 Device jam
During the accident, devices get locked to a particular batteries.

It may happen that many faulty agents use the same battery, with a
very negative effect onG. Under this scenario, non-faulty agents
must not worsen the world utility. In Figure 3, we compare the
utility obtained after the accident and convergence to a newequi-
librium. For the three utilities that performs close to optimal in the
non-faulty environment, we observe a similar trend. For TG,which
does not perform optimally, the influence of the fault is lesssince
the agents are not able to distinguish between noise and faults. For
the battery-utility, we see some improvement with increasing faulty
agents: the agents tend to under-use the batteries. With thefaults,
more agents use the power, which results in relative better perfor-
mance.

4.2.2 Battery degradation
An accident corresponds to a diminution of the total amount of

energy delivered by a battery. Agents must reduce their demand to
use the battery at the optimal depth-of-discharge, which remained
unchanged. In Figure 4, we present the world utility once theagents
have adjusted their demand. For example, when there are two faulty
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batteries and the agents are usinggWLU , the world utility of the
system is 8. If the agents use the battery at their optimal depth-
of-discharge, the cost incurred by the batteries does not change.
As benefit is proportional to power consumption in our model,the
decrease of performance is linear. This explanation is verified for
gWLU , which performs optimally. When the agents are usinggbat,
the batteries are used at a constant level, which explains the same
behavior. Team game suffers the same way, but because of high
level of noise, the performance is not very sensitive to the faults.
We can notice that when 5 batteries fail, the agents are usingalmost
all the available power from the remaining batteries.
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4.2.3 Device reset.
During the accident whereρ% of the agents are resetting their

learning algorithm,G drops, since the system is no longer at the
optimal distribution. The depth of he drop depends on the length
of the accident and of the private utility used. In Figure 6, we com-
pare the behavior of all the utilities with an overload system and
either20% or 50% of the agents are resetting. The drop in per-
formance is greater forgWLU , because it is the only one to reach
optimal performance. For the battery-utility, the immediate effect
of the faults is not a drop, but a raise. Again, this is becausethe
faulty agents will explore and use more power, resulting in an in-
crease ofG. Then, the agents learn to under-use the battery. Note



that the new equilibrium reached is slightly better than theprevious
one. We observe a similar phenomenon forgTG: interestingly, we
noticed that in the case of the overloaded system, the reset helps the
system: the environment is more static and the agents can under-
stand better the impact of their decisions onG. This reset help the
system to move out of a local maximum. In Figure 5, we present a
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typical set of curves. This particular chart occurs with an overload
and the agents are usinggWLU . The accidents occur between itera-
tion 2000 and 2100. The greater the value ofρ, the deeper the drop,
and the longer it takes to reach the previous level of performance.

5. FUTURE WORK AND CONCLUSION
In this work we addressed power distribution in spacecraft where

the life expectancy of the batteries and the power demands ofvar-
ious devices need to be balanced. This is a challenging resource
allocation problem where, because of the long-term harmfuleffects
of deep battery discharges, it is beneficial for devices not to request
power even in cases where power is available. Our results show that
agents using well-designed agent-specific reward functions learn to
use power in a globally beneficial manner and significantly out-
perform both utilities aimed to solely optimize device power con-
sumption and utilities aimed to solely optimize battery life. Fur-
thermore, such agents overcome device jams, device resets,and
battery degradation providing good power distribution even in ex-
treme cases where over half the devices/batteries are inoperational.

Finally, in this work, we assumed that all the devices have equal
importance. However, in most real world application, this assump-
tion is incorrect. Some systems are more important than others are,
and therefore their power needs supersedes those of other systems.
In space vehicles for example, life support systems have thehigh-
est priorities. We are currently expanding these results toincorpo-
rate device priorities so that critical systems are ensuredof getting
power in case of a breakdown in the system.
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