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ABSTRACT

Power generation and distribution in spacecraft presenigtar-
esting resource allocation for learning agents. In thiblam, not
only does the life expectancy of the batteries and the power d
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1. INTRODUCTION

The management of modern power systems is becoming increas-
ingly labor-intensive and error prone as the size, complexid de-
pendence between subsystems increases. Consequenthgintan

mands of various devices need to be balanced but sudden powesuch systems using fixed logic algorithms is becoming leddess

failures need to be managed. Fixed, centralized strateffimsad-
equate results in reliable and static environments, bubarevell
suited to harsh conditions where because of malfunctiobaitgr-
ies and changing device needs, the power needs to be adaptive
balanced. In this work, we propose a multi-agent system ¢o-co
dinate power distribution for spacecraft systems. The diseio-
forcement learning agents at each device and battery mevite
adaptiveness and robustness that the domain requires.umtia-f
mental problem we need to solve is to determine how to coatein
agents so that their independent actions lead to good ghetelv-
ior. We present results showing that agents using agewifgpe
reward functions that promote cooperation learn to use pawa
globally beneficial manner and significantly outperformtbotil-
ities aimed to solely optimize device power consumption atile
ities aimed to solely optimize battery life. Furthermoreoper
agent utility design overcomes device jams, device rebetsery
degradation and battery failures, and provides satisfagiower
distribution even in extreme cases where over half the defat-
teries are inoperational.

Categories and Subject Descriptors

1.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent systems.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms
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desirable. This is even truer in spacecraft power systerstaghe
generation and distribution of power has significantly nrexsric-

tions than in terrestrial power grids. For such systems goanan-
agement policies that dynamically adapt to accommodategasa

in user demand (e.g., sudden device needs) and changes-in sys
tem states (e.g., faults) are not only desirable but als@iatjve.

Four fundamental system characteristics of modern systertnat

and autonomous computing are crucial in achieving thosksga
They are:

1. self-configuration, or the ability to adapt automatigédi dy-
namically changing environments,

2. self-healing, or the ability to discover, diagnose, asatt to
disruptions,

3. self-optimization, or the ability to monitor and tuneoesces
automatically, and

4. self-protection, the ability to anticipate, detect,ntiy, and
protect themselves from any attacks.

Though all four are relevant to the power distribution damai
this paper, we will focus on the first three, as the intrusiodvar at-
tack scenario is generally not a concern with spacecrafepsys-
tems. In a battery-powered spacecraft, power managenguites
a delicate balance between the life expectancy of the bettand
the power demands of different subsystems. Deep dischafges
a battery limit life expectancy, and therefore, it might bebglly
preferable to protect the battery and save power even whae so
subsystems require power. A priori, it is possible to dediged
solution that would only deliver power up to a fixed limit fdret
battery. However, such an approach is too rigid to tradgpoff
tentially important subsystem usage against the loss téiydife.
Furthermore, in cases of device or battery failures, sudiltisa
not only become suboptimal, but also in some circumstaruaes,
place the entire spacecraft in jeopardy. It is thereforeiatio use
an approach that can ensure the overall safety and retjabilthe
spacecraft even under severe breakdowns in the system.

In the agent-based solution we present, autonomous agents a
as local controllers in order to bring the system to a glghdé-
sirable state. This approach is based on first translatiagléi
signer preferences into a global utility function. Thoudlowing
the agents to make their control decision independentlyptiomze
that global utility function is appealing, this approactoidy suit-
able in a small system. In larger systems, the impact of desing



agent on the full system is swamped by the actions of othartage
agents have a difficult time learning which actions are beradfi
Providing agents with local utilities is an alternativet his ap-
proach is only successful if the agents’ utilities are adigimith the
global utility. Otherwise, the agents’ actions can lead daflict,
inconsistencies, and worse adversarial situations. Thmaph we
present relies on agents making decisions in a coordinasethen
using collectives [2, 8]. This framework addresses how tEigfe
agent rewards so that the agents collective action optsw@izzeset
global utility function that evaluates the performancehsf bverall
system.

In this paper, we show how learning agents can be an appropri-

ate solution in distributed spacecraft power managemenpat-
ticular, we investigate robustness in an environment tbatains
faults: not only we want to the multiagent system to recovemf
faults, but we also want it to respond quickly. Multiagerdrtgng
has focused on performance in terms of speed of convergenkce a
level of utility, but we believe we should also take into amabro-
bustness. As a preliminary step, we present results of nsgpm
various faults in the system. In Section 2 we describe thaildet
of the space power system domain used in this paper. In 8ektio
we show how a system of multiple learning agents can be applie
to this domain to provide robust, efficient control. In peutar,

we show how the agent’s learning problem can be simplifieti wit
agent-specific reward functions. In Section 4, we presepeéx
mental results and show that the system exhibits our depnaa
erties of self-configuration, self-optimization and dedfaling.

2. SPACE POWER SYSTEMS

The space power domain used in this paper is concerned with th
resource allocation problem of assigning a set of devicasstt of
batteries. Devices have varying power needs and draw poomr f
at most one battery. Each battery has a capacity of avaisigy.
However, using the full capacity of the batteries is harntéuthe
battery, because deep discharges limit the battery lifeespcy.
Unlike many resource allocation problems (e.g. bin packitige
cost to use the resource is not uniform.

2.1 System Model

In our model, we assume that the batteries are fully reckgrge
riodically, and we are only interested in the system behaltoing
the battery discharge period. The power network structiseset
of independent buses; each bus is powered by a single bafiery
prevent cascading effects (that yield blackouts in a gridcstire)
this is the current solution used in spacecraft. During altdisgge
period, a device/task can draw power from one of the powegdus
(in our model, itis not possible to change power bus duriegilk-
charge period). We model the distribution of power usingwapte
flow algorithm.

Each battery is modeled by a rating?(;) (total amount of de-
liverable energy) and a cost function. To ensure that thiefyatan
perform for given number of charge/discharge cycles, tiel lef
discharge must remain below a depth of discharge thresheld
For example, batteries on board of the International Sp&aiEo8
are designed to operate at a maxim8#fi; depth of discharge dur-
ing normal operation [4].

2.2 System Utility

When a task is performed, it contributes to a benefit at the sys
tem level. In our model, the benefit is proportional to the anto
of power required to process the task. Hence, for each device
requesting and obtaining power from a bus, it contributesreeb
fit B(¢). The power cost is modeled by a function penalizing deep

discharges. There is a tradeoff between the cost of usingdte
tery and the benefit of using the power: one extreme is to miaint
the battery health by limiting power, the other is to perfarmare
tasks, at the expense of risking to damage the batterieschidiee
for the tradeoff can be expressed by single utility functiost we
call world utility. This function is defined by the system designer,
and the goal of the control mechanism is to maximize thistionc
We translate this requirement by a cost functioihat is a logis-
tic function of the depth of discharge(see Figure 1):
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where A; anddys are constants that control the harmful effects of
a discharge affect battery performance. For fguhe cost is close
to zero since the energy drained is not harmful for the Hater
As § increases up tdas, getting closer to the harmful region, the
cost increases with an increasing rate. Aftgr, whend keeps on
increasing, the rate of increase of the cost slows. Thisdaume
the battery is already operating in a harmful regime: thoextna
usage has deleterious effects, the damage has already dre=n d

C(9)

Cost of using a battery
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Figure 1: Cost, benefit, utility of a battery

The choice of a particular benefit function and a particudgid-
tic function determine thevorld utility functionG as in Figure 1:

G=Y Bi— Y C(6() @)

device 7 battery j

This function measures the overall system performancejsatine
function that the multiagent system as a whole has to opéimiz
The evaluation of7 requires a global knowledge of the system: in
particular, it is required to know the depth of discharge lbttee
batteries, and the demand of the devices that received pdwer
information may not be available to the devices. Howeveait be
measured by the system designer.

3. APPLICATION OF AGENTS

As system designers, we require that the devices can be added
and removed from the system seamlessly. A centralized @ontr
mechanism would require tracking and monitoring a poténtia
large number of devices, which is error-prone. Insteadniplé-
ment these plug-and-play devices, a device comes with itsczx
cision mechanism in the form of an agent. This one decides on
the bus that powers the device for the entire discharge gheFor
now, we consider that each agent is independent and cana@gse
feedback. We are not considering in this work the possjbiit



agents sharing knowledge, or forming teams, which might tea
improvement of performance for example.

3.1 Learning in a Collective

From the point of view of the entire system, the goal of thendge
is to maximize the world utilityG. However, the agent may not be
able to knowG (because of partial observation, limited communi-
cation, etc), and even if it is possible to knaw it is hard to opti-
mize G directly. More importantly, we will show that it is possible
to do better without the knowledge 6f. An agent may access lim-
ited information of the state of the system, and from it, agrag it
can compute a private utility;. Coordination should be embedded
in a utility, and two other properties are crucial in the diifom of
a private utility. First, optimizing independently theyate utilities
must not lead to working at counter purpose. When an incriease
gi leads to an increase i@, we say that the utilities are factored.
The second property concerns with a signal to noise issueleTo
cide what action is beneficial for itself, an agent must be abl
determine the impact of its action on its private utility. Agent
will find it difficult to estimate the best decision when chasgn
other agents’ decisions greatly affect the value of a peivatlity.

In [2], measures of the factoredness and learnability aveiged.

3.2 Private Utilities of the Agents

To compute the private utility, each agent receives/seasesd-
back. This feedback must be inexpensive (in terms of contipata
power and implementation) and fault tolerant. The feedbaakt
be simple enough, but carry enough information for the agent
make good decision. We now introduce the different privaiie u
ties that we tested in the experimental section. In thevetig, n
denotes an agent,, is the power obtained by the agent by choosing
to connect to the battery,.

eTeam Game @r¢): The world utility G can be used as private
utility, and we refer this utility as geam game all the agents are
working together to optimize the same global function. Bfirde
tion, gr¢ is guaranteed to be factored. However, it is likely to have
a poor learnability since its value depends on the actiorad! tiie
agents: it will be difficult for an agent to identify the impasf its
decision on this utility. In addition, the knowledge @Gfrequires a
global knowledge of the system, which may be difficult andlgos
to implement. For example, multiple devices can be in chafge
computing the value and broadcasting it to all the devices.

edevice - (gy) A device can estimate its contribution to the
world utility and can try to greedily optimize this contritoon. We

between all the agents using the battery.

gunss () = Bly) — L),
nbn

wheren;,, denotes the number of agents using the same battery as
agentn. The knowledge of;, requires a mechanism to count the
number of agents connected to the bus. gA$ gunis iS also a
partition of the world utility.

eWonderful Life Utility ( gwru) Finally, the agents can use a
marginal cost to estimate their contribution to the costhef bat-
tery: its contribution is the difference of cost when therdgeses
the battery or not. An agemtcan use:

d’f]
wro(n) = B01) — (€60, — € (50) - 725 ).

An equivalent expression @iy Lv is gwru(n) = G—G—, where
G _, denotes the value of the world utility when all the agents re-
main fixed, but agent is removed from the system. This utility is
the Wonderful Life utility introduced in [8]. This utilityd factored
(since the second term is independent of agetiie derivative of
gwru With respect to ageny is the derivate of the world utility
with respect to ageny). This utility has proven effective in many
multi-agent system domains including network routing,eroson-
trol, job scheduling and congestion games [1, 5, 7, 6]. No&t t
in this domain, the agents only require the knowledge of &tiag
of the battery and the observation of the depth-of-disehafghe
battery at the end of the discharge period.

ebattery-utility Instead of optimizing a greedy utility (differ-
ence of the benefit of an agent and an estimate on its cornnibut
on the cost), the agents can optimize the utility of a batteéxly
agents using the same battery can uniformly share theyubitit
tained using this power. Each agent can receive:

>t u(g) = C(6)

Goat(n) = T :

This utility requires each device to publish the utility grgerated.
A mechanism is required to aggregate the benefit obtaineddly e
agent, compute the cost incurred by the battery, and breatioa
utility to the corresponding devices.

3.3 Learning algorithm

Each device uses a simple reinforcement learning algottitiain
learns an expected utility for each available action, t.kearns the
expected utility of using each battery. We require an atborithat
always performs some exploration because of the posgibfifail-

assume that an agent knows the benefit it generates. We assumgre or changes in the system. Without exploration, a leamoestd

that an agent can observe the depth-of-discharge of therpat
the end of the discharge period. From this observation,nitesti-

mate its contribution to the cost of the battery: it knowsehergy
it obtained, and assuming the knowledge of the batterygaiin
can estimate the total energy used by all the devices caeuhéat
the same bus. For this particular utility, the agent consitieat its
contribution to the cost is proportional to the amount of poit

received from the battery. For an agenthe value of the utility is

geg(n) = B(n) —

This utility constitutes a partition of the world utility¥ to all agents:
2 peadgo(n) =G.

edevice-uniform g.nir: Instead of considering that the contri-
bution on the cost of a battery is proportional to the amount o
power received, an agent can consider the cost is uniforivigesti

not adapt rapidly to changes in the system. That is why we use
Q-learning algorithm with the-greedy exploration scheme. At the
beginning of the discharge period, each agent chooses thi¢ iisu
going to use during that period. At the end of the period, tiena
receives a feedback according to the level of informaticressi-

ble, and the agent computes its rewardnd updates its estimate
using a Q-update rule) (b) « (1 — a)Q(b) + ar, wherea is the
learning rate. The learners use thigreedy exploration scheme:
€% of the time, the learner picks a random action, and the rest of
the time, the learners pick the action leading to the maxineum
pected utility. The agents keep an estim@t@) of the expected
utility of choosing a particular battery

4. RESULTS

We present the experimental results of our simulator. At sel
interested entities, the agents are competing to maxirné&eutili-
ties. We describe and analyze the environment with diftgpewer



demands (which modify the pressure of the competition taiabt
power) but no faults. Finally, we present experiments ngsthe
robustness of the system.

We experiment with a system of eight batteries and different
numbers of devices. For the experiments we present, therbatt
ies are identical, sharing the same rating (100 units) aeddme
cost function. We use the following cost function (see Féglly:

5
c(0) = 14+ e-7(6-0.75) "

The benefit of performing a task requirimgunits of power is set

to %. The optimal usage of the battery is at&% depth of dis-
charge, which represents 48 units of power. A load of 384sunit
will produce an optimal usage of the battery. We chose torxpe
ment with a load of 400 (normal load) or 800 units (overlodd)e
normal load is achieved by using a set of 50 agents: half ghthe
require 2 units, the others 14 units. For the overload systben
set of agents is doubled. With the normal load, the agents hav
enough “room” to distribute the load and the difficulty of fhr@b-

lem lies on an appropriate allocation. In the overload casme of

the agents must decide not to be plugged in the system attadl. T
asymmetry in the load of the agents makes the problem hawder t
solve. Each agents uses Q-learning with the epsilon-grexplyp-

ration scheme with the following parameters(t) = 55; and
50
e(t) = T

ol

5

4.1 Non-faulty environment

We first compare the different private utility functions irsys-
tem where the load is normal, i.e. there exists optimal atioas
of the agents where all agents can complete their task. Budtse
in Figure 2(a) show that three utilities are able to perfotrolase
to optimal level: gw v, geg andgunis. The remaining two utili-
ties are not. TG suffers from a poor learnability: althoughfectly
aligned, the agents are not able to determine their impa¢hen
system. The battery-utility is performing the worse. Weeshe
that the agents are under-using the power. Despite thehidgsi
for all agents to get power with optimal performance, a nunafe
agents requiring lots of power still prefer not to be pluggedyp-
ical runs, we observe that for most batteries, the diffezdretween
the optimum load and the final load is larger than 14. Becafise o
the division by the number of agents using the particularebgt
the agents believe the optimal use of the battery is muchtihess
itis. For example, if all agents demand 2 units, the optinuahber
to optimizegs.+ is 7 agents. From there, the utility decreases and
is concave down. This utility over-protects the batteries.

Results with an overload are presented in Figure 2(b). ,Fivist
curve illustrates that the system is self-configuring: deghers ex-
plore the different possibilities and find a way to adapt teuza
high level of performance in the system. Because it is fadt@nd
learnable gw v still performs close to optimal, but all other util-
ities suffer a great drop in performance compared to thetsin
with the normal load. Two factors contribute to the increafsthe
problem difficulty: a greater number of agents (scalabikigue)
and the fact that some agents must decide not to be plugged to t
power network, which greedy agents do not. The utiify;y and
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Figure 2: Non-faulty System.

the agents with a high load request power. Wjth,;s, the cost
incurred by each agent is proportional to the number of agesi
ing the battery, hence all the agents sharing the same ypaitanr
the same cost. Agents requesting more power receive mditg;uti
hence the agents with high demand tend to get more utility tha
the agents with smaller load. The agents with a higher load co
verge faster than the agents with a small load, and are algetto
their power. The greater number of agents is the cause fatehe
crease of performance of Team Game: because of the incréase o
the number of agents, the signal to noise ratio has decreamdd

ing it harder for an individual agent to understand the inphdts
action.

geg are the ones with the biggest drop: the agents are requesting Although under-using the system can be seen as a weakness un-
too much power. Each agent is greedy in a sense and tries to getder a normal load, this can turn into an advantage under an ove

some utility. Agents prefer to be unplugged (getting a tytitif 0)
only if the use of a battery provides them a negative utilitgnce,
they use the battery up to a depth of discharge providingtigesi
utility. A deeper analysis of the results shows that with, agents
with both high and low load get powers whereas with;¢, only

loaded system: battery-utility performs comparativelytérethat

in the normal load case, mainly because the other utilitedsate
much worse. The decrease in performance is small compathd wi
the normal load case. This is because few more agents witlah sm
request use the battery.



4.2 Robustness

Robustness, fault tolerance, low maintenance are impqutap-
erties of complex systems. In a case of a large number of efg\iic
might not be possible to maintain or replace faulty devichsma
problem occurs. In addition, if a power source is faulty,fahé to-
tal capacity decreases over time, the devices must respdhdge
changes of power availability. We believe robustness shaldo
be considered as an important metric of performance of agétit
learning. We now provide experiments to show that the legrni
agents can make the system self-healing and self-optigizire
are testing the robustness of the system by experimentffegetit
faults that can affect the devices or the power sources:

edevice jam: We model a problem in the device which switches
between the different bus to power the subsystem. The agent i
faulty and gets locked to a particular bus in the system. Rer t
experiments, the bus powering the device is chosen at rantfom

too many devices get locked to the same bus, the system may no

longer be able to work at the optimal level, and in this cake, t
non-faulty agents must avoid this bus.

+eam Gamé g
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Figure 3: Device jam: comparison of the performance.

device reset:This fault models a surge in the power system. The psiteries and the agents are usifigLy, the world utility of the

agent controlling the choice of the power bus accidentabkets
itself. In this case, the agent must re-learn a policy.

system is 8. If the agents use the battery at their optimathdep
of-discharge, the cost incurred by the batteries does rangsh

battery degradation: The battery fails to re charge completely. A penefit is proportional to power consumption in our motes,
Typically, a battery is composed by many cells, and we model @ gecrease of performance is linear. This explanation igiedrfor

sudden failure of few of these cells: as a result, the totalguo
delivered by the battery is reduced. However, the cost fondor
this battery is unchanged: after the accident, the battar{ssanew
with a §% depth-of-discharge. I is high, the cost of using even
a small quantity of power might be expensive. In our expenitse
d=25%

In the following experiments, devices becomes faulty once,
at a time, over a window on charge cycles, when the learning
algorithm has converged. The speed of reaction of the legrni
algorithm plays an important role on the drop of performaace
on the time to converge again. We study the system across two
dimensions: the error rajeand the lengttn of the window where
the faults occur, or length of the “accident”. We presentltss
where the faults can occur in a window of 100, 500 and 100Gesycl
for various error rates ranging from®% to 90%. Each graph is an
averaged over 20 runs. The system for these experimentg is th
same than previously (Figure 2).

4.2.1 Device jam

During the accident, devices get locked to a particularehiats.
It may happen that many faulty agents use the same battetyawi
very negative effect od:. Under this scenario, non-faulty agents
must not worsen the world utility. In Figure 3, we compare the
utility obtained after the accident and convergence to a egw-
librium. For the three utilities that performs close to ol in the
non-faulty environment, we observe a similar trend. For W&ich
does not perform optimally, the influence of the fault is Isisxe
the agents are not able to distinguish between noise ans f&ar
the battery-utility, we see some improvement with incnegs$aulty
agents: the agents tend to under-use the batteries. Witautts,
more agents use the power, which results in relative be&dop
mance.

4.2.2 Battery degradation

gw v, Which performs optimally. When the agents are ugjing,
the batteries are used at a constant level, which explagsame

behavior. Team game suffers the same way, but because of high
level of noise, the performance is not very sensitive to thets.

We can notice that when 5 batteries fail, the agents are asingst

all the available power from the remaining batteries.

TG -3
WLU

Uog -
Gpat O

World utility G(/Symbol d)

0 2 3

Number of Faulty batteries

Figure 4: Battery degradation - Comparison of the perfor-
mance.

4.2.3 Device reset.

During the accident wherg% of the agents are resetting their
learning algorithmG drops, since the system is no longer at the
optimal distribution. The depth of he drop depends on thgtten
of the accident and of the private utility used. In Figure & aom-
pare the behavior of all the utilities with an overload systend
either20% or 50% of the agents are resetting. The drop in per-

An accident corresponds to a diminution of the total amodint o formance is greater fogyw v, because it is the only one to reach

energy delivered by a battery. Agents must reduce their ddrta
use the battery at the optimal depth-of-discharge, whiatareed

unchanged. In Figure 4, we present the world utility onceatijents
have adjusted their demand. For example, when there aretity f

optimal performance. For the battery-utility, the immeeiaffect

of the faults is not a drop, but a raise. Again, this is becdhee
faulty agents will explore and use more power, resultingririre
crease of5. Then, the agents learn to under-use the battery. Note



that the new equilibrium reached is slightly better thangirevious
one. We observe a similar phenomenondeg;: interestingly, we
noticed that in the case of the overloaded system, the reket the
system: the environment is more static and the agents caar-und
stand better the impact of their decisions@nThis reset help the

system to move out of a local maximum. In Figure 5, we present a

utility: WLU
10%, 30% 50%, 70% to 90% of the agents reset their memory
10 r . ; _
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8 [ -
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o 7 H ]
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5 5 |
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30% of the agents reset -
3l 50% of the agents reset - |
70% of the agents reset
2 ) 90%‘0f the agents reset ------ ) ) ‘ ‘

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
number of iterations

Figure 5: Device reset - private utility is WLU.

typical set of curves. This particular chart occurs with aartbad
and the agents are usipg v. The accidents occur between itera-
tion 2000 and 2100. The greater the valug ahe deeper the drop,
and the longer it takes to reach the previous level of perémcs.

5. FUTURE WORK AND CONCLUSION

In this work we addressed power distribution in spacecrang
the life expectancy of the batteries and the power demandaref
ious devices need to be balanced. This is a challenging mesou
allocation problem where, because of the long-term hareffatts
of deep battery discharges, it is beneficial for devicesmotquest
power even in cases where power is available. Our results gtz
agents using well-designed agent-specific reward funeiesrn to
use power in a globally beneficial manner and significantli ou
perform both utilities aimed to solely optimize device powen-
sumption and utilities aimed to solely optimize batterg lifFur-
thermore, such agents overcome device jams, device resats,
battery degradation providing good power distributionrewreex-
treme cases where over half the devices/batteries arermtigeal.

Finally, in this work, we assumed that all the devices havweakq
importance. However, in most real world application, traswamp-
tion is incorrect. Some systems are more important tharrotre,
and therefore their power needs supersedes those of ottenss;
In space vehicles for example, life support systems havéitie
est priorities. We are currently expanding these resulisdorpo-
rate device priorities so that critical systems are ensafegbtting
power in case of a breakdown in the system.
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