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ABSTRACT
Learning to converge to an efficient, i.e., Pareto-optimal Nash equi-
librium of the repeated game is an open problem in multiagent
learning. Our goal is to facilitate the learning of efficientout-
comes in repeated plays of incomplete information games when
only opponent’s actions but not its payoffs are observable.We use
a two-stage protocol that allows a player to unilaterally commit to
an action, allowing the other player to choose an action knowing
the action chosen by the committed player. The motivation behind
commitment is to promote trust between the players and prevent
them from mutually harmful choices made to preclude worst-case
outcomes. Our agents learn whether commitment is beneficialor
not. Interestingly, the decision to commit can be thought ofas ex-
panding the action space and our proposed protocol can be incor-
porated by any learning strategies used for playing repeated games.
We show the improvement of the outcome efficiency of standard
learning algorithms when using our proposed commitment proto-
col. We propose convergence to Pareto optimal Nash equilibrium
of repeated games as desirable learning outcomes. The perfor-
mance evaluation in this paper uses a similarly motivated metric
that measures the percentage of Nash equilibria for repeated games
that dominate the observed outcome.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: Distributed Artificial Intelligence—
Multiagent systems; I.2.6 [Artificial Intelligence ]: Learning

General Terms
Algorithms

Keywords
Repeated Game, Learning, Commitment

1. INTRODUCTION
A rational agent, playing an iterated games, tries to maximize ex-

pected utility. In a two-player, general-sum game, this means that
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the players need to systematically explore the joint actionspace
before settling on an action combination. Both agents can make
concessions from greedy strategies to improve their individual pay-
offs in the long run [12]. Reinforcement learning schemes, and in
particular, Q-learning [17] have been widely used in single-agent
learning situations. In the context of multi-player games,if one
agent plays a stationary strategy, the stochastic game becomes an
MDP and techniques like Q-learning can be used to learn to play an
optimal response against such a static opponent. When two agents
learn to play concurrently, however, the stationary assumption does
not hold any longer. In addition, it is no longer clear what anopti-
mal strategy is. Researchers have focused on convergence toNash
equilibrium (NE) in self-play, where each player is playinga best
response to the opponent strategy and does not have any incentive
to deviate from his strategy.

Convergence is a desirable property in multiagent systems,but
converging just to any NE is not the preferred outcome since NE is
not guaranteed to be Pareto optimal (an outcome is Pareto optimal
if no agent can improve its payoff without decreasing its opponent’s
payoff). For example, the widely studied Prisoner’s Dilemma game
(PD in Table 1(b)) has a single pure strategy NE that is defect-
defect, which is dominated by the cooperate-cooperate outcome. A
Pareto Optimal outcome may not be appealing to players if that out-
come is also not a NE, i.e., there might be incentives for one agent
to deviate and obtain higher payoff. For example, each agenthas
the incentive to deviate from the cooperate-cooperate Pareto op-
tima in PD. In repeated games, folk theorems[9] ensure that,when
players are “patient enough”, any payoff dominating a reservation
payoff can be sustained by a NE. Hence, in repeated games, there
are Pareto Optimal outcomes that are also NE outcomes.

It is evident that the primary goal of a rational agent, learning
or otherwise, is to maximize utility. Though we, as system design-
ers, want convergence and corresponding system stability,those
considerations are necessarily secondary for a rational agent. The
question then is what kind of outcomes are preferable for agents en-
gaged in repeated interactions with an uncertain horizon, i.e., with-
out knowledge of how many future interactions will happen.

Learning goal in repeated play: The goal of learn-
ing agents in repeated self-play with an uncertain hori-
zon should be to reach a Pareto-optimal Nash equilib-
ria (PONE).

We are interested in developing mechanisms by which agents can
produce PONE outcomes. [13] provides a solution under complete
knowledge. This assumption is unrealistic in most cases: oppo-
nent valuation is in general intrinsic and private. Moreover, payoff
communication opens the door for deceptive behavior. Hence, we
believe that not observing the opponent payoff is a more realistic
assumption. We are interested in two-person, general-sum games



where each agent only gets to observe its own payoff and the action
played by the opponent, but opponent’s payoff is unknown. Under
these conditions, it may be difficult to guarantee convergence to a
PONE. In order to compare the performance of different algorithms
that are trying to converge to a PONE, we introduce a new metric:
given an outcome of the game, the metric relates to the relative
number of outcomes dominating the current outcome.

2. RELATED WORK
Researchers have focused on convergence to NE in self-play.

This emphasis on convergence of learning to Nash equilibrium is
rooted in the literature in game theory [8] where techniqueslike fic-
titious play and its variants lead to NE convergence under certain
conditions. More recently, multiagent learning researchers have
also adopted convergence to NE as the desired goal for a rational
learner [6, 13]. By modeling the opponent, Joint-Action Learn-
ers [5] converge to a NE in cooperative domains. By using a vari-
able rate, WoLF [3] is guaranteed to converge to a Nash equilibrium
in a two-person, two-actions repeated general-sum game, and con-
verges empirically on a number of single-state, multiple state, zero-
sum, general-sum, two-player and multi-player stochasticgames.
Finally, in any repeated game AWESOME [6] is guaranteed to learn
to play optimally against stationary opponent and to converge to NE
in self-play.

In [15], Powers and Shoham propose new criteria for learners
in a MAS: converging to near best response against any stationary
players, converging to a PONE in self play, and close to minimax
payoff against any other players. They propose an algorithmthat
meets these criteria. It requires, however, knowledge of the op-
ponent’s payoff. This is not the case in [7] where Crandall and
Goodrich have a similar goal to our work. They propose an algo-
rithm that guarantees an outcome that is not lower than the minimax
outcome (this outcome can be sustained by a NE). Moreover, they
propose that a learner should learn to accept compromises that in-
crease their average payoff (Compromise/cooperate property). Al-
though they cannot guarantee this property, they present empirical
results showing convergence to Pareto efficient outcome in many
games (e.g. PD, Stag Hunt, Chicken).

We had previously proposed a modification on the simultaneous-
move game playing protocol that allowed an agent to communicate
to the opponent its irrevocable commitment to an action [1, 16]. If
an agent makes such a commitment, the opponent can choose any
action in response, essentially mirroring a sequential play situation.
At each iteration of the play, then, agents can choose to playa si-
multaneous move game or a sequential move game. Our use of
commitment is different from the use of commitment in [11] where
players cannot observe the actions of other players, and they com-
mit to play the same action for a sequence of time slots. In [1], we
compared the outcome obtain by an had hoc learner with the out-
come of a NE of the stage game (or one shot game). In this paper,
we show that the commitment protocol can be used with arbitrary
multiagent reinforcement learning algorithms and that it facilitates
convergence to near-efficient Nash equilibria of the repeated games
and not just to efficient Nash equilibria of single-stage games. In
addition, under the assumption that players are greedy, we provide
a correspondence between learning in the traditional protocol and
learning in the commit protocol. Finally, we propose a metric based
on the folk theorem that relates to the relative number of outcomes
dominating the reservation outcome and the current outcome.

3. EQUILIBRIUM IN REPEATED GAMES
To motivate our metric and the importance of considering equi-

C D
C 2,2 4,3
D 3,4 1,1

(a) Battle of the Sexes

C D
C 3,3 1,4
D 4,1 2,2

(b) Prisoners’ dilemma

Table 1: Prisoner’s dilemma and Battle of Sexes games

librium of the repeated game in multiagent learning, we review the
equilibrium concepts in the context of repeated games. We are in-
terested in repeated games where the agents play a normal form
game (called the stage game), infinitely and try to optimize the av-
erage payoff received.Notation: In the following, we consider an
n× n two-player game that can be represented by two matrices.r

andR (respectivelyc andC) denote the row player and its payoff
matrix (resp the column player and its payoff matrix), andpr (resp
pc) is the mixed strategy of the row (resp column) player. We will
useR(ar, ac) (respR(pr, pc)) to denote the payoff received by the
row player whenr playsar andc playsac (resp the expected util-
ity of the row player when it uses the strategypr and its opponent
plays strategypc).

3.1 Outcome candidates for equilibrium
For any (infinite) history of play, we can compute the propor-

tion of each pair of payoffs obtained by the players. The average
payoff obtained is a convex combination of the pairs of payoffs of
the game:V(H) = {(R(i, j), C(j, i))|(i, j) ∈ [1..n]2}. Hence,
all possible payoffs of the repeated game can be representedby the
convex hullH with vertices inV(H).

If no communication is allowed during the play of the game,
the players choose their strategies independently. Note that all the
points of the convex hull cannot be produced by independent mixed
strategy. The concept of correlated equilibrium [2] permits depen-
dencies between the strategies. For example, before the play, the
players can adopt a strategy according to the joint observation of a
public random variable. [10] introduces algorithms that empirically
converge to a correlated equilibrium in a testbed of Markov games.
Consider the example of a Battle of Sexes game represented inTa-
ble 1(a). The game models the dilemma of a couple deciding on
the next date: they are interested in going to different places, but
both prefer to be together than being alone. The best (and fair) solu-
tion would consists in alternating between (Coordinate, Defect) and
(Defect, Coordinate) to obtain an average payoff of 3.5. However,
playing independent uniform strategy leads to an average payoff
of 2.5. To avoid bad outcomes, players can use the observation of
a public random variable to coordinate their actions. The convex
hull containing all possible payoff of the repeated game is atrian-
gle represented in Figure 1. The shaded area inside the triangle in
Figure 1(a) is the payoff pairs that can be obtained by players using
independent mixed strategies. In this game, a large portionof high
payoffs for the row and the column player cannot be reached using
independent mixed strategies.

Each player can guarantee a minimum payoff by playing itsmax-
minstrategy. The payoff of the minimax equilibrium is defined by:

vr = min
pc



max
pr

R(pr, pc)

ff

for the row player

vc = min
pr



max
pc

C(pc, pr)

ff

for the column player
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Figure 1: Payoff of Battle of sexes

Hence, not all points inH are candidates to be equilibrium out-
comes: only outcomes that dominates the minimax value are of
interest. The region of feasible payoffF is defined by

F = {(x, y) ∈ H|x ≥ vr, y ≥ vc}.

In the example of the Battle of Sexes, the minimax value for both
player is 5

2
and occur when both players play the mixed strategy

( 3
4
, 1

4
). The feasible payoffsF are represented by the shaded area

in Figure 1(b). Note that most of these points are not reachable
when both players play independent mixed strategy.

3.2 Pareto and Nash Equilibrium
A Pareto optimal outcomeis one such that there is no other out-

come where some agent’s utility can be increased without decreas-
ing the utility of some other agent. An outcomeX strongly domi-
natesanother outcomeY if all agents receive a higher utility in X
compared toY . An outcomeX weakly dominates(or simplydom-
inates) another outcomeY if at least one agent receives a higher
utility in X and no agent receives a lesser utility compared to out-
comeY . A non-dominated outcome is Pareto optimal. In the 2-
dimensional representation, if there are no points “above”and “on
the right” of a pointx, x is Pareto optimal. The Pareto optimal
outcomes are located at the edgesP of the convex hullH. The
set of Pareto optimal points of the battle of sexes is represented in
Figure 1(a).

Strategies are inNash equilibriumwhen they are mutual best re-
sponses. Assuming that the opponent plays its component of the
Nash equilibrium, the player cannot do better than playing its own
component. For any single shot game, there exists at least a mixed
strategy NE. For the battle of sexes, there are two pure NE which
are (Cooperate, Defect) and (Defect, Cooperate) and a mixedstrat-
egy NE which is the minimax equilibrium( 3

4
, 1

4
). For infinitely

repeated games, the situation is very different since thereis an infi-
nite number of Nash equilibria. A set of “folk theorems” ensure that
if players are sufficiently patient, for each feasible payoff v ∈ F ,
there is a NE of the repeated game with payoffv. The idea behind
the theorem is exploited by Littman and Stone in [13] where they
introduce an algorithm to converge to a Pareto-optimal NE. In their
approach, if a player deviates from the equilibrium with outcome
v ∈ F , it will be punished by playing the minimax strategy long

enough. The punishment is designed so as to make it irrational to
deviate from the chosen equilibrium.

Hence, in the repeated game, any point inF is an outcome of a
NE. Points inF and not Pareto optimal are by definition dominated,
which make them poor candidate for good equilibrium points.The
NE that are also Pareto optimal, hence points inSPONE = F ∩
P 6= ∅ are preferable. A bargaining argument found in [14] high-
lights a best candidate, and their algorithm converge to onepartic-
ular NE on the Pareto frontier.

3.3 Metric for a two-player game
To compare two equilibrium outcomes, we can use the concept

of dominance. However, when there is no dominance between the
outcomes, additional metrics are needed. Investigating the sum of
the payoff of the player (a measure of the social welfare), orthe
product of the payoff (a measure of fairness) provides insight to
the equilibrium properties of the learning algorithms. Another ap-
proach is to consider the number of equilibria that dominatethe
current equilibrium: the fewer outcomes that dominate the current
outcome, the closer this outcome is to a Pareto Optimum. The folk
theorems [9] ensure that when an outcome dominates the minimax
outcome, it can be sustained by a NE of the repeated game. For
an outcomex, let d(x) denotes the area containing all points that
dominatesx in the payoff space. Ifd(x) = 0 andx dominates the
minimax outcome, thenx is a PONE.

Definition 1. Performance metric of an equilibrium outcomex:
δ(x) = d(x)

d(xmm)
wherexmm = (vr, vc) is the minimax outcome.

δ(x) represents the proportion of NE outcomes of the repeated
games that dominatesx. The smallerδ(x), the better the outcome
x is with respect to convergence to a PONE. When one outcomex

dominates an outcomey, δ(x) < δ(y). The opposite is not true:
when there is no dominance betweenx andy, δ(x) may be less,
equal, or greater thanδ(y).

4. COMMITMENT
We now present our proposed commitment protocol that can be

added onto any stage game playing algorithm. The motivationbe-
hind the protocol is for agents to improve payoffs by building trust
via up-front commitment to “cooperating” moves that can be mu-
tually beneficial, e.g., a cooperate move in PD. If the opponent my-
opically chooses an exploitative action, e.g., a defect move in PD,
the initiating agent would be less likely to repeat such cooperation
commitments, leading to outcomes that are less desirable toboth
parties than mutual cooperation. But if the opponent resists the
temptation to exploit and responds cooperatively, then such mutu-
ally beneficial cooperation can be sustained.

We use an augmented game playing protocol where the players
are allowed to announce the action they are going to play. The
first effect of this modification of the simultaneous play protocol
is to increase the space of possible payoff since players canplay
some correlated equilibrium1. For example, in the battle of the
sexes game, it is possible to reach the fair equilibrium where both
players gets a reward of 3.5. Commitment to an action can also
reduce some uncertainty and can help players to reach betterout-
come. In the remaining of this paper, we show that myopic ex-
ploitation of a commitment can improve the outcome of the game,
but non-myopic solutions are needed to reach a PONE.

1we have not proved that all possible outcome are possible, and it
is not clear whether all correlated equilibrium can be reached with
these assumptions



4.1 Protocol
We build on the simultaneous revelation protocol [1, 16]. Agents

repeatedly play ann × n bimatrix game. At each iteration of the
game, each player first announces whether or not it wants to commit
to an action. If both players want to commit at the same time,
one is chosen randomly. If no player decides to commit, then both
players simultaneously announce their action, as in the traditional
simultaneous play protocol. When one player commits to an action,
the other can choose any action given its opponent’s action.Each
agent can observe which agent actually revealed, and which action
the opponent played. In this paper we consider two-player games
where agents play best response action to opponent’s committed
action. We believe that this protocol can be easily extendedto a
n-player game withn ≥ 2 when only one player commits to an
action.

play 0

play 0 play 1 play 0 play 1 play 0 play 1

Commit 0 Commit 1 Opp Commit 0 Opp Commit 1 No Commitment

Initial State
Actions: commit 1

commit 0

no commitment

Actions: 
play 1

Figure 2: Game tree for a two-action game.

Such games can be represented by game trees, e.g., Figure 2
presents the tree for a two-action game. In the initial state, the
agents haven+1 actions: it can plan to commit to any of then ac-
tions of the game, or decide not to commit. The transition from the
root of the tree depends on the decision of the opponent. Thecom-
mit states are reached when the player commits and the opponent
does not, or when both players are willing to commit, but the player
wins the toss. From thecommitstate, no further decision is needed,
and the payoff received depends on the play of the opponent. When
the player decides not to commit, the transition can lead to any one
of the n states where the opponent commits or to the state where
no players is willing to commit. In both cases, the player hasn ac-
tions available. From theopp commitstates, the transition depends
only on the current players’ decision. From the state where there
is no commitment, the transition also depends on the opponent de-
cision. Any multiagent learning algorithm can be used to estimate
the utility of different actions, including the commitmentactions,
from repeated play against an opponent.

Definition 2. A pure strategy has one of the following form:
• “does not want to commit, when other player does not announce,
play actionk” that we denote by (¬, k).
• “want to commit to actionk” that we denote by (k, -).

4.2 Examples
The following examples illustrate the possible effects of play-

ing with the possibility to announce. We used matrices from the
testbed introduced by Brams in [4]. These examples shows that in
some cases, playing with announce is beneficial, and in othercases,
different equilibrium can be reached. In the first two examples we
show that one or both player announcing its play can be benefited.
In the last two examples, we show that announcing may improve
on the outcome of the NE of the stage game, but the equilibrium
may not be a PONE.

For game 27 presented in Table 2(a), there is a unique Nash
equilibrium in the single shot game where both players play ac-

0 1
0 2,3 4,1
1 1,2 3,4

(a) Game 27

0 1
0 2,4 4,3
1 1,1 3,2

(b) Game 50

Table 2: Payoffs Matrices of Two games in Brams’ Testbed

tion 0 with an outcome of(2, 3). Note that the NE is dominated by
the pure strategys∗ where both agents play action 1 with outcome
(3, 4). Assume that the column player plays the strategy(¬, 0).
The row player can get 3 by playing(¬, 0) or (0,−). More inter-
estingly, if the column player plays a best response to the commit-
ted action, the row player can obtain 4 by committing to action 1
(i.e. playing(1,−)). Note that this solution is also beneficial for
the row player that gets 3. For this game, the myopic exploitation
results in a beneficial outcome for both players.

The second example is the battle of the sexes of Table 1(a). The
strategies where both players play(0,−) is in NE. Half of the time,
a player receives 3, and half of the time, it receives 4. This game
exploits the possibility to play a coordinated equilibrium.

For Game 50 represented in Table 2(b), there is a single pure NE
of the stage game where both players play action 0. Note that this
solution is a PONE. The row player gets only its third preferred out-
come, when the column player gets its most preferred one. When
the players are allowed to commit and are myopic (they will exploit
the commitment of the opponent by playing a best response), the
row player can get a payoff of 3 by playing(1,−), since the my-
opic column player will respond by playing action 1. This situation
does not benefit the column player that, with the same argument,
can get 4 by playing(0,−). By playing myopically, the agents will
be in a correlated equilibrium where they gets (2,4) and (3,2) with
equal probability. Note that this equilibrium is not a PONE,since
the correlated equilibrium is strongly dominated by the strategies
(¬, 0) for the row and(¬, 1) for the column. In this case, com-
mitting to an action improves the outcome of the row player, but
decreases the payoff of the column.

Finally, we consider the Prisoners’ dilemma game in Table 1(b).
In this game, if the agents are myopic, a commitment does not pro-
vide any advantage: if a player commits to play cooperate, the op-
ponent greedily exploits the situation by playing defect. The cor-
related equilibrium where both agents reveals cooperate provides
better results than the NE, but it is still dominated by the(¬, C)
(¬, C) payoff. If a players commits to play defect, the best re-
sponse is also to play defect. Hence, if the players are limited to
play a best response when an agent reveals its action, they can im-
prove on the NE, but the equilibrium reached is not a PONE. These
last two games illustrate that non-myopic exploitation of acommit-
ment is needed to improve the payoff of both players.

5. ESTIMATING PAYOFFS
Learning in repeated games can be viewed as a reinforcement

learning task where, at each repetitiont of the stage game, the
player chooses a course of actions and gets a rewardrt for it. Play-
ers discount the future utilities using a discount factorγ ∈ [0, 1]
and try to maximize the sumu =

P

∞

t=0 γtrt. A simple, model-
free online technique for reinforcement learning is Q-learning [17].
The update rule for Q-learning when a learner played actiona in



stateS , and observe the rewardr and the new stateS ′ is

Q(a,S)← αQ(a,S)+ (1−α)

„

r + γ max
b∈Action(,S′)

Q(b,S ′)

«

.

The parameterα is the learning rate that controls the importance of
the new information compared to past information.

Q-learning can learn payoff in a Markov Decision Process (MDP).
When both players are learning, the Markovian assumption isvi-
olated. Because Q-learning updates has been used in multiagent
learning, we use this method to estimate the payoff online.

In learning the game tree of Figure 2, the reward provided to the
players are the payoffs of the stage game. For the terminal states
which are successors of the statesOpp Commiti, the utility of these
states can be learned. For any other state, the payoff depends on
the policy of the opponent. Assume that both players play a static
strategy and that the Q-values have converged. If the players are
no longer exploring, greedy exploitation of these values results in
playing a best response, since the player will try to optimize their
expected values. In particular, when players use a greedy exploita-
tion, they will play a best response to a commitment. Exploration
schemes such as theǫ-greedy, the use of Boltzmann probability
distribution, or the use of probability distribution learned by WoLF
will learn to play a best response to a commitment. In the fol-
lowing, we will use this hypothesis to reason about the play of the
game. Yet we recognize that to avoid myopic behavior, a learner
should not use a greedy exploitation.

If we assume that the opponent plays a best response to a com-
mitted action, given ann× n gameGc played in the protocol with
commitment, it is possible to build a gameGeq played with the tra-
ditional simultaneous game protocol: each player can directly play
one of the2n pure strategies available. An example whenn = 2
is provided in Table 3 and can be extended to anyn. Note that if
we relaxed the assumption of playing a best response to a commit-
ted action, the payoff of all cells where at least one agent commit
would depend on the action of the opponent. In this case, a learner
could still use this table to learn its expected payoff.

0 1
0 a0,0, b0,0 a0,1, b0,1

1 a1,0, b1,0 a1,1, b1,1

equivalent to
(¬, 0) (¬, 1) (0,−) (1,−)

(¬, 0) a0,0, b0,0 a0,1, b0,1 BR(-,0) BR(-,1)
(¬, 1) a0,0, b0,0 a0,1, b0,1 BR(-,0) BR(-,1)
(0,−) BR(0,-) BR(0,-) BR(0,0) BR(0,1)
(1,−) BR(1,-) BR(1,-) BR(1,0) BR(1,1)

where:

• BR(i,-) is the pair of payoff where row commits toi and col-
umn plays the best response toi

• BR(-,j) is the pair of payoff where column commits toj and
row plays the best response toj

• BR(i,j) is the average pair of payoff of BR(i,-) and BR(-,j)

Table 3: Equivalence of games in the traditional protocol and
the commit protocol when agents are greedy

Compared to NE outcome of a traditional protocol, the NE out-
come with the commit protocol may differ. We hypothesize that,
under rational play, the outcome of a game played with the com-

mit protocol is not strictly dominated by the outcome of the game
played with the traditional protocol. Assume that players are in a
NE of the stage game and are provided the opportunity to com-
mit. A player i commits only when it is beneficial, hence get-
ting a higher payoff. If the other playerj is improving due to the
commitment, both players improve their respective payoffs. Else,
j’s payoffs is worse. In this case,j may improve by committing,
which might decrease i’s payoff. If on average both players’pay-
offs decrease, the players will ultimately learn not to reveal. Wheni
commits andj cannot improve its payoff by committing, e.g. com-
mitting to any action yields a lesser payoff, the players reached a
different equilibrium (i improves andj is worse off but there is
no dominance). In any case, players should only benefit from the
commit protocol.

6. RESULTS
We compared the use of the protocol with commitment with the

traditional protocol of simultaneous play on various set ofmatri-
ces. We first experiment with the testbed proposed by Brams in[4]
which represents all the conflicted 2x2 games with ordinal payoff.
We then compared the results on a set of random matrices.

Any traditional algorithm for game playing can be used to learn
the game tree of Figure 2. For reason of simplicity, we use the
assumption that the players learn best response when an oppo-
nent commits, and we used the equivalent matrix presented inTa-
ble 3. We chose to use WoLF-PHC2 (Win or Learn Fast - policy
hill climbing) [3] as the learning algorithm. The algorithmlearns
mixed strategy and is guaranteed to converge to a NE in a 2-person,
2-actions repeated game. The outcome of a play the traditional pro-
tocol (resp. the commit protocol) are referred as to WoLF (resp.
WoLF(commit)).

6.1 Testbed of 2x2 conflicted games
We first use a neutral but extensive testbed of games introduced

by Brams in [4]: the testbed is composed of all possible conflicting
situations that can occur in a two-action two-player game with a
total preference order over the four outcomes of the game. This
testbed represents a wide variety of situations, includingoften-
studied games like PD, the chicken game, battle of the sexes,etc.
We use the numbers 1, 2, 3, 4, as the preference of an agent for a
state in the 2x2 matrix, with 4 being the most preferred. Though
these numbers correspond to ordinal payoff, we treat them ascar-
dinal payoffs. There is no game where agents can simultaneously
obtain their most preferred outcome, which implies that each game
represents a conflicting situation. There are 57 structurally differ-
ent 2x2 conflict games (no two games are identical by renamingthe
actions or the players). Learners typically have access to only their
own payoff matrices but can observe opponent actions. Lack of
knowledge of opponent payoff is a more realistic assumptionin an
open environment, but puts the learners at a disadvantage compared
to the static players.

Among the game of the testbed, 51 games have a unique NE
(9 of these games have a mixed strategy equilibrium and 42 have
pure strategy equilibrium), the remaining 6 have multiple equilibria
(two pure Nash equilibria and and a mixed strategy NE). Of the42
games that have a unique pure strategy NE, 4 games have a pure
NE that is not Pareto-optimal (the prisoners’ dilemma, game27, 28
and 48 have a unique NE which is dominated), and 2 games which
have a single mixed strategy NE are dominated by a pure strategy.

2WoLF-PHC settings:α(t) = 1
10+ t

100

, δW = 1
10+t

, δL = 4δW .

The games were played over 10,000 iterations, and results were
averaged over 40 runs.



In five games, the outcome of WoLF(commit) strictly dominates
the outcome of WoLF. Three of them are games where the NE is
dominated (games 27, 28, 29 and 48). The remaining two games
are the games where the NE is a mixed strategy NE dominated
by a pure strategy. In 9 other games, the equilibrium reachedis
different than the NE of the stage game, but there is no dominance.
We found that the augmented mechanism fails to produce a Pareto
optimal solution in only two games: the prisoner’s dilemma game
(Table 1(b)) and game 50 (Table 2(b)).

6.2 Results on randomly generated matrices
As shown in the previous experiments, the structure of some

games can be exploited by the commit protocol to improve the pay-
off of both players. To evaluate the effectiveness of the protocol on
a more general set of matrices, we ran experiments on randomly
generated matrices as in [16]. We generated 1000 matrices ofsizes
3x3, 5x5 and 7x7. Each matrix entry is sampled from a uniform
distribution in[0, 1]. We compare the outcome of WoLF(commit)
and WoLF.

In Figure 3, we plot different areas: the average area containing
all the outcome of NE (i.e. dominating the minimax outcome),the
area that dominates the outcome of the traditional and the commit-
ment protocol. We first observe that the minimax outcome is dom-
inated by more outcomes for larger games, i.e. the space of NE
is larger. When we compare with the area that dominates the out-
come found by WoLF we find that the outcome with the protocol
with commitment is dominated by less outcomes, and the differ-
ence increases with the game size. In Figure 4, we plot ourδ met-
ric that provides the percentage of sustainable NE of the repeated
game that dominates the outcome of the algorithm. The plot indi-
cates that the outcome obtained with protocol with commitment is
dominated by at most10% of the possible NE, when the outcome
of the traditional simultaneous game is dominated by 3 timesmore
NE. This suggests that the commitment protocol produces more ef-
ficient equilibrium than the traditional simultaneous gameprotocol.
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Figure 3: Results over randomly generated matrices: area of
the points that dominates the minimax outcome, WoLF and
WoLF(commit)

7. CONCLUSION AND FUTURE WORK
In this paper, we built on a previous algorithm from [1, 16] with

the goal of producing PONE outcomes in repeated single-stage
games. We propose a metric that can be used to measure the quality
of an outcome: it represents the relative number of Nash equilibria
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Figure 4: Results over randomly generated matrices: metricδ
for WoLF and WoLF(commit)

of the repeated game that dominate the outcome reached. Under the
assumption that the opponent payoff matrix is unknown, it might be
difficult to ensure convergence to a PONE. Our proposed metric is
helpful in comparing the relative efficiency of different outcomes.

We experiment with two-player two-action general-sum conflict
games where both agents have the opportunity to commit to an ac-
tion and allow the other agent to respond to it. The opportunity
of revealing its action should not be seen as making a concession
to the opponent, but rather as a means to explore the possibility of
mutually beneficial outcomes. Any learning algorithm can beaug-
mented to incorporate the commit protocol, which improves the
payoffs in most cases: we empirically show that our protocolim-
prove the payoffs obtained by WoLF-PHC in a variety of games.
The experiments also show shortcomings of the current commit-
ment protocol in that it fails to reach PONE outcomes: the primary
reason for this is that a player responds to a commitment witha
myopic best response.

We assume that a player does not know the payoff matrix of the
opponent, which makes it difficult to estimate whether the equilib-
rium reached is acceptable for both players. In particular,there are
situations where not playing a best response to a committed action
can be beneficial for both players. To find a non-myopic equilib-
rium, an agent should not be too greedy! Currently, the agents are
learning only their own payoff, and learn to play a best response
to a committed action. We are working on learning action-utility
estimates that incorporates an estimate of the preference of the op-
ponent in the game tree presented in Figure 2. We expect that the
agents will be able to more consistently discover states beneficial
for both learners, and thereby converge to PONE outcomes.
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