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Abstract. Multiagent learning literature has investigated iterated
two-player games to develop mechanisms that allow agents to learn to
converge on Nash Equilibrium strategy profiles. Such equilibrium config-
urations imply that no player has the motivation to unilaterally change
its strategy. Often, in general sum games, a higher payoff can be ob-
tained by both players if one chooses not to respond myopically to the
other player. By developing mutual trust, agents can avoid immediate
best responses that will lead to a Nash Equilibrium with lesser payoff.
In this paper we experiment with agents who select actions based on ex-
pected utility calculations that incorporate the observed frequencies of
the actions of the opponent(s). We augment these stochastically greedy
agents with an interesting action revelation strategy that involves strate-
gic declaration of one’s commitment to an action to avoid worst-case,
pessimistic moves. We argue that in certain situations, such apparently
risky action revelation can indeed produce better payoffs than a non-
revealing approach. In particular, it is possible to obtain Pareto-optimal
Nash Equilibrium outcomes. We improve on the outcome efficiency of a
previous algorithm and present results over the set of structurally dis-
tinct two-person two-action conflict games where the players’ preferences
form a total order over the possible outcomes. We also present results on
a large number of randomly generated payoff matrices of varying sizes
and compare the payoffs of strategically revealing learners to payoffs at
Nash equilibrium.

1 Introduction

The goal of a rational learner, repeatedly playing a stage game against an op-
ponent, is to maximize its expected utility. In a two-player, general-sum game,
this means that the players need to systematically explore the joint action space
before settling on an efficient action combination1. Both agents can make con-
cessions from greedy strategies to improve their individual payoffs in the long
run [1]. Reinforcement learning schemes, and in particular, Q-learning [2] have
1 Though the general motivation behind our work and the proposed algorithms gen-

eralize to n-person games, we restrict our discussion in this paper to two-person
games.
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been widely used in single-agent learning situations. In the context of two-player
games, if one agent plays a stationary strategy, the stochastic game becomes a
Markov Decision Process and techniques like Q-learning can be used to learn to
play an optimal response against such a static opponent. When two agents learn
to play concurrently, however, the stationary environment assumption does not
hold any longer, and Q-learning is not guaranteed to converge in self-play. In
such cases, researchers have used the goal of convergence to Nash equilibrium in
self-play, where each player is playing a best response to the opponent strategy
and does not have any incentive to deviate from its strategy. This emphasis on
convergence of learning to Nash equilibrium is rooted in the literature in game
theory [3] where techniques like fictitious play and its variants lead to Nash
equilibrium convergence under certain conditions.

Convergence can be a desirable property in multiagent systems, but converg-
ing to just any Nash equilibrium is not necessarily the preferred outcome. A Nash
equilibrium of the single shot,i.e., stage game is not guaranteed to be Pareto op-
timal2. For example, the widely studied Prisoner’s dilemma (PD in Table 1(b))
game has a single pure strategy Nash equilibrium that is defect-defect, which is

Table 1. Prisoner’s dilemma and Battle of Sexes games

(a) Battle of the Sexes

C D
C 1,1 3,4
D 4,3 2,2

(b) Prisoners’ dilemma

C D
C 3,3 1,4
D 4,1 2,2

dominated by the cooperate-cooperate outcome. On the other hand, a strategy
that is Pareto Optimal is not necessarily a Nash equilibrium, i.e., there might be
incentives for one agent to deviate and obtain higher payoff. For example, each
of the agents has the incentive to deviate from the cooperate-cooperate Pareto
optima in PD. In the context of learning in games, it is assumed that the players
are likely to play the game over and over again. This opens the possibility for
such defections to be deterred or curtailed in repeated games by using disin-
centives. Actually, in the context of repeated games, the Folks Theorems ensure
that any payoffs pair that dominates the security value3 can be sustained by a
Nash equilibrium. This means that in the context of the repeated games, Pareto
optimal outcome can be the outcome of a Nash equilibrium. In [4], Littman and

2 A Pareto optimal outcome is one such that there is no other outcome where some
agent’s utility can be increased without decreasing the utility of some other agent.
An outcome X strongly dominates another outcome B if all agents receive a higher
utility in X compared to Y. An outcome X weakly dominates (or simply dominates)
another outcome B if at least one agent receives a higher utility in X and no agent
receives a lesser utility compared to outcome Y. A non-dominated outcome is Pareto
optimal.

3 The security value is the minimax outcome of the game: it is the outcome that a
player can guarantee itself even when its opponent tries to minimize its payoff.
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Stone present an algorithm that converges to a particular Pareto Optimal Nash
equilibrium in the repeated game.

It is evident that the primary goal of a rational agent, learning or otherwise, is
to maximize utility. Though we, as system designers, want convergence and cor-
responding system stability, those considerations are necessarily secondary for
a rational agent. The question then is what kind of outcomes are preferable for
agents engaged in repeated interactions with an uncertain horizon, i.e., without
knowledge of how many future interactions will happen. Several current multi-
agent learning approaches [4, 5, 6] assume that convergence to Nash equilibrium
in self-play is the desired goal, and we concur since it is required to obtain a
stable equilibrium. We additionally claim that any Nash equilibrium that is also
Pareto optimal should be preferred over other Pareto optimal outcomes. This
is because both the goals of utility maximization and stability can be met in
such cases. But we find no rational for preferring convergence to a dominated
Nash equilibria. Based on these considerations we now posit the following goal
for rational learners in self-play:

Learning goal in repeated play: The goal of learning agents in re-
peated self-play with an uncertain horizon is to reach a Pareto-optimal
Nash equilibria (PONE) of the repeated game.

We are interested in developing mechanisms by which agents can produce
PONE outcomes. In this paper, we experiment with two-person, general-sum
games where each agent only gets to observe its own payoff and the action played
by the opponent, but not the payoff received by the opponent. The knowledge of
this payoff would allow the players to compute PONE equilibria and to bargain
about the equilibrium. For example the algorithm in [4] assumes the game is
played under complete information, and the players compute and execute the
strategy to reach a particular equilibrium (the Nash bargaining equilibrium).
However, the payoff represents a utility that is private to the player. The player
may not want to share this information. Moreover, sharing one’s payoff struc-
ture requires trust: deceptive information can be used to take advantage of the
opponent. The ignorance of the opponent’s payoff requires the player to estimate
the preference of its opponent by its actions rather than by what could be com-
municated. By observing the actions played, our goal is to make players discover
outcomes that are beneficial for both players and provide incentive to make these
outcomes stable. This is challenging since agents cannot realize whether or not
the equilibrium reached is Pareto Optimal.

We had previously proposed a modification of the simultaneous-move game
playing protocol that allowed an agent to communicate to the opponent its irre-
vocable commitment to an action [7]. If an agent makes such a commitment, the
opponent can choose any action in response, essentially mirroring a sequential
play situation. At each iteration of the play, then, agents can choose to play
a simultaneous move game or a sequential move game. The motivation behind
this augmented protocol is for agents to build trust by committing up front to a
“cooperating” move, e.g., a cooperate move in PD. If the opponent myopically
chooses an exploitative action, e.g., a defect move in PD, the initiating agent
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would be less likely to repeat such cooperation commitments, leading to out-
comes that are less desirable to both parties than mutual cooperation. But if
the opponent resists the temptation to exploit and responds cooperatively, then
such mutually beneficial cooperation can be sustained.

We view the outcome of a Nash equilibrium of the one shot game as an
outcome reached by two players that do not want to try to build trust in search of
an efficient outcome. Though our ultimate goal is to develop augmented learning
algorithms that provably converge to PONE outcomes of the repeated game, in
this paper we highlight the advantage of outcomes from our augmented learning
schemes over Nash equilibrium outcomes of the single shot, stage game. In the
rest of the paper, by Nash equilibrium, we refer to the Nash equilibrium of the
stage game, which is a subset of the set of Nash equilibria of the repeated version
of the stage game.

We have empirically shown, over a large number of two-player games of vary-
ing sizes, that our proposed revelation protocol, that is motivated by consider-
ations of developing trusted behavior, produces higher average utility outcome
than Nash equilibrium outcomes of the single-shot games[7]. For a more sys-
tematic evaluation of the performance of our proposed protocol, we study, in
more detail, all two-player, two-action conflict games to develop more insight
about these results and to improve on our previous approach. A conflict game
is a game where both players do not view the same outcome as most profitable.
We are not interested in no-conflict games as the single outcome preferred by
both players is easily learned. We use the testbed proposed by Brams in [8] and
consisting of all 2x2 structurally distinct conflict games. In these games, each
agent rank orders each of the four possible outcomes. On closer inspection of the
results from our previous work, we identified enhancement possibilities over our
previous approaches. In this paper, we present the updated learners, the corre-
sponding testbed results and the challenges highlighted by those experiments.

2 Related Work

Over the past few years, multiagent learning researchers have adopted conver-
gence to Nash equilibrium of the repeated game as the desired goal for a rational
learner [4, 5, 6]. By modeling its opponent, Joint-Action Learners [9] converge to
a Nash equilibrium in cooperative domains. By using a variable rate, WoLF [6]
is guaranteed to converge to a Nash equilibrium in a two-person, two-actions it-
erated general-sum game, and converges empirically on a number of single-state,
multiple state, zero-sum, general-sum, two-player and multi-player stochastic
games. Finally, in any repeated game AWESOME [5] is guaranteed to learn to
play optimally against stationary opponents and to converge to a Nash equilib-
rium in self-play.

Some multiagent learning researchers have investigated other non-Nash equi-
librium concepts like coordination equilibrium [10] and correlated equilibrium [11].
If no communication is allowed during the play of the game, the players choose
their strategies independently. When players use mixed strategies, some bad
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outcome can occur. The concept of correlated equilibrium [12] permits depen-
dencies between the strategies: for example, before the play, the players can
adopt a strategy according to the joint observation of a public random variable.
[11] introduces algorithms which empirically converge to a correlated equilibrium
in a testbed of Markov game.

Consider the example of a Battle of Sexes game represented in Table 1(a).
The game models the dilemma of a couple deciding on the next date: they are
interested to go in different places, but both prefer to be be together than alone.
In this game, defecting is following one’s own interest whereas cooperating is
following the other’s interest. If both defect, they will be on their own, but enjoy
the activity they individually preferred, with a payoff of 2. If they both cooperate,
they will also be on their own, and will be worse off, with the lowest payoff
of 1, as they are now participating in the activity preferred by their partner.
The best (and fair) solution would consists in alternating between (Coordinate,
Defect) and (Defect, Coordinate) to obtain an average payoff of 3.5. The Nash
equilibrium of the game is to play each action with probability 0.5, which yields
an average payoff of 2.5. Only if the players observe a public random variable
can they avoid the worst outcomes.

The commitment that one player makes to an action in our revelation pro-
tocol can also be understood as a signal that can be used to reach a correlated
equilibrium [11]. For example, in the Battle of Sexes game, if a player commits
to cooperate, the other player can exploit the situation by playing defect, which
is beneficial for both players. When both players try to commit, they obtain 3.5
on average.

3 Game Protocol and Learners

In this paper, we build on the simultaneous revelation protocol [7]. Agents play
an nxn bimatrix game. At each iteration of the game, each player first announces
whether it wants to commit to an action or not (we will also use reveal an
action or not). If both players want to commit at the same time, one is chosen
randomly with equal probability. If none decides to commit, then both players
simultaneously announce their action. When one player commits an action, the
other player plays its best response to this action. Note that for now, the answer
to the committed action is myopic, we do not consider yet a strategic answer
to the revealed action. Each agent can observe whether the opponent wanted
to commit, which agent actually committed, and which action the opponent
played. Only the payoff of the opponent remains unknown, since its preferences
are considered private.

Let us use as an example matrix #27 of the testbed (Table 2(a)). The only
Nash equilibrium of the stage game is when both players play action 0, but this
state is dominated by the state where both agents play action 1. If the row
player commits to play action 1, the column player plays its best response that
is action 1: the row player gets 3, and the column player gets 4, which improves
on the payoff of the Nash equilibrium where row gets 2 and column gets 3. The
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Table 2. Representative games where proposed strategy enhancement leads to
improvement

(a) Game 27

0 1
0 2, 3 4, 1
1 1, 2 3, 4

(b) Game 29

0 1
0 3, 2 2, 1
1 4, 3 1, 4

(c) Game 48

0 1
0 3, 3 2, 1
1 4, 2 1, 4

column player could ensure a payoff of 3 (the payoff of the Nash equilibrium)
by revealing action 0, since the row player would play the best response, i.e.
action 0. However, by choosing not to commit, the column player let the row
player commit: thus the column player obtains its most preferred outcome of 4.
If the row player learns to reveal action 1 and the column learns not to reveal in
this game matrix, the two learners can converge to a Pareto optimal state that
dominates Nash equilibrium.

3.1 Learners

The agents used are expected utility based probabilistic (EUP) learners. An
agent estimates the expected utility of each of its action and plays by sampling
a probability distribution based on the expected utilities. First, the agent must
decide whether to reveal or not. We will use the following notation:

– Q(a,b) is the payoff of the agent when it plays a and the opponent plays b.
– BR(b) denotes the best response to action b.
– pOR is the probability that the opponent wants to reveal.
– pBR(b|a) is the probability that the opponent plays action b when the agent

reveals action a.
– pR(b) is the probability that the opponent reveals b given that it reveals.
– pNR(b) is the probability that the opponent plays action b in simultaneous

play, i.e., when no agent reveals.

In [7], the expected utility to reveal an action is

EUr(a) =
∑

b∈B
pBR(b|a)Q(a, b)

and the expected utility of not revealing is

EUnr(a) =
∑

b∈B
pNR(b)Q(a, b),

where B is the opponent’s action set. Back to our example of game #27
(Table 2(a)), the row player quickly learns to reveal action 1, providing it a
payoff of 3 and allowing the column player to get its most preferred outcome.
However, the expected utility of the column player to reveal action 0 is 3, and the
expected utility of not revealing an action should be 4, and not 3 as computed
from the above equations used in our previous work. This difference is because
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a utility-maximizing opponent will prefer to always reveal in this game. Hence,
we need to take into account the possibility of the opponent revealing in the
computation of the expected utility. Our augmented expressions for computing
the expected utilities to reveal action a is

EUr(a) =

(1 − pOR)
∑

b∈B
pBR(b|a)Q(a, b)

+
pOR

2

∑

b∈B
(pR(b)Q(BR(b), b) + pBR(b|a)Q(a, b)) .

Two cases can occur. Either the opponent does not want to reveal, in which case
the opponent will reply to the agent’s revelation, or the opponent also wants
to reveal, and with equal probability the opponent and the agent will get to
reveal its action. We also have the same cases when computing the expected
utility of playing action a, but not revealing. If the opponent reveals, the agent
will have to play the best response to the revealed action. If the opponent does
not reveal, both agents will announce their actions simultaneously. Hence the
expected utility is:

EUnr(a) =

pOR

∑

b∈B
pR(b)Q(BR(b), b)

+
(1 − pOR)

∑

b∈B
pNR(b)Q(a, b)

To choose an action from the expected utilities computed, the agent samples
the Boltzmann probability distribution with temperature T and decides to reveal
action a with probability :

p(reveal a) =
e

EUr(a)
T

∑
x∈A

(
e

EUr(x)
T + e

EUnr(x)
T

)

and it decides not to reveal with probability

p(not reveal) =
∑

x∈A e
EUnr(x)

T

∑
x∈A

(
e

EU(x)
T + e

EUnr(x)
T

) ,

where A is the agent’s action set.
If the agent reveals but not the opponent, the agent is done. If the opponent

reveals action b, the agent plays its best response: argmaxaQ(a, b). If no agent has
decided to reveal, the agent computes the expected utility to play each action:

EU(a) =
∑

b∈B
pNR(b)Q(a, b).
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The agent chooses its action a sampling the corresponding Boltzmann probabil-
ity distribution

p(a) =
e

EU(a)
T

∑
b∈B e

EU(b)
T

.

The temperature parameter, T , controls the exploration versus exploitation
tradeoff. At the beginning of the game, the temperature is set to a high value,
which ensures exploration. At each iteration, the temperature is reduced un-
til the temperature reaches a preset minimum threshold (the threshold is used
to prevent exponent overflow computation errors). The use of the Boltzmann
probability distribution with a decreasing temperature means that the players
converge to play pure strategies. If both agents learn to reveal, however, the
equilibrium reached is a restricted mixed strategy (at most two states of the
games will be played with equal probability).

4 Experimental Results

In the stage game, the players cannot build any trust required to find a mu-
tually beneficial outcome of the game. The goal of our experiments is to study
whether the learners using our augmented revelation protocol and by repeatedly
playing a game can improve performance compared to Nash equilibrium payoffs
of the stage game. In the following, by Nash equilibrium we refer to the Nash
equilibrium of the single shot, stage game.

The testbed, introduced by Brams in [8] consists of all 2x2 conflicting games
with ordinal payoff. Each player has a total preference order over the 4 different
outcomes. We use the numbers 1, 2, 3 and 4 as the preference of an agent, with 4
being the most preferred. We do not consider games where both agents have the
highest preference for the same outcome. Hence games in our testbed contain
all possible conflicting situations with ordinal payoffs and two choices per agent.
There are 57 structurally different, i.e., no two games are identical by renaming
the actions or the players, 2x2 conflict games.

In order to estimate the probabilities presented in the previous section, we
used frequency counts over the history of the play. We start with a temperature
of 10, and we decrease the temperature with a decay of .5% at each iteration.
We are first presenting results on a set of interesting matrices and then provide
results on the entire testbed.

4.1 Results on the Testbed

Benefits of the Augmented Protocol. We compared the results over the
testbed to evaluate the effectiveness of the augmentation. We found out that
in the three games of Table 2, the equilibrium found strictly dominates the
equilibrium found with the non-augmented algorithm. The payoffs, averaged
over 100 runs are presented in Table 3. In the three games, one player needs to
realize that it is better off by letting the opponent reveal its action, which is
the purpose of the augmentation. Note that even without the augmentation, the
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Table 3. Comparison of the average payoff between the augmented and the non aug-
mented Expected Utility calculations

Not augmented Augmented
Nash Payoff average payoff strategy average payoff strategy

Game 27 (2,2) (2.5, 3.5)
row: reveal 1
col: reveal 0 (3.0, 4.0)

row: reveal 1
col: no rev

Game 29 (2.5, 2.5) (3.5, 2.5)
row: no rev 0
col: no rev 0 (4.0, 3.0)

row: no rev
col: reveal 0

Game 48 (2,3) (2.5, 3.5)
row: reveal 1
col: reveal 0 (3.0, 4.0)

row: reveal 1
col: no rev

Game 50 (2,4) (2.3, 3.3)
row: mix
col: mix (2.5, 3.0)

row: reveal 1
col: reveal 0

opportunity of revealing the action brings an advantage since the equilibrium
found dominates the Nash equilibrium of the single stage game.

We provide in Figures 1 and 2 the learning curves of the augmented and the
non-augmented players, respectively, for game #27 of the testbed (see
Table 2(a)). The figures present the dynamics of the expected values of the
different actions and the probability distributions for both players when they
learn to play. With the augmentation, we see that the row player first learns to
play its Nash equilibrium component, before realizing that revealing its action 1
is a better option. The column player first learns to either reveal action 0 or not
reveal and then play action 0. But as soon as the column player starts to reveal
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its action 1, the column player learns not to reveal, which was not possible with
earlier expression of the expected utility. These observations confirm that the
augmentation can improve the performance of both players.

Comparing protocol outcome with Nash Equilibrium. 51 of the 57 games
in the testbed have a unique Nash equilibrium (9 of these games have a mixed
strategy equilibrium and 42 have pure strategy equilibrium), the remaining 6 have
multiple equilibria (two pure Nash equilibria and and a mixed strategy Nash equi-
librium). Of the 42 games that have a unique pure strategy Nash equilibrium, 4
games have a Nash equilibrium that is not Pareto-optimal: the prisoners’ dilemma,
game #27, #28 and #48 have a unique Nash equilibrium which is dominated.

The Pareto optimal outcome is reached games #27, #28 and #48 with the
augmented algorithm. The non-augmented protocol converges to the Pareto equi-
librium for game #28, but it failed to do so for games #27 and #48. We noticed
that in some games, namely games #41, #42, #44, the players learn not to re-
veal. Revealing does not help improve utility in these games. Incidentally, these
games also have a single mixed strategy Nash equilibrium.

We found that the augmented mechanism fails to produce a Pareto optimal
solution in only two games: the Prisoner’s dilemma game (Table 4(a)) and game
#50 (Table 4(b)) fails to converge because of the opportunity to reveal.

The Prisoner’s dilemma game has a single Nash equilibrium where each player
plays D. If a player reveals that it is going to cooperate (i.e. play C), the oppo-
nent’s myopic best response is to play defect (i.e. to play D). With the revelation
mechanism, the players learn to play D (by revealing or not). Hence, the players
do not benefit from the revelation protocol in the Prisoner’s dilemma game.
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Table 4. Games for which convergence to a Pareto optimal solution was not achieved

(a) Prisoners’ Dilemma
D C

D 2, 2 4, 1
C 1, 4 3, 3

(b) Game 50
0 1

0 2, 4 4, 3
1 1, 1 3, 2

From Table 3, we find that in game #50, the new solution with the augmented
protocol does not dominate the old solution. Without the augmentation, there
are multiple equilibria. One is when the column player reveals action 0, providing
2 for the row and 4 to the column player. The other is when both players learn to
reveal, providing 2.5 for the row player and 3 for the column player. The payoff
obtained with the revelation and the payoff of the Nash equilibrium outcome
of the stage game do not dominate one another. This game has a single Nash
equilibrium which is also a Pareto optima and where each agent plays action 0.
By revealing action 0, i.e., its component of the Nash equilibrium, the column
player can obtain its most preferred outcome since the best response of the row
player is to play action 0. The row player, however, can obtain more than the
payoff of the Nash equilibrium by revealing action 1 where the column player’s
best response is its action 1. The (1,1) outcome, however is not Pareto optimal
since it is dominated by the (0,1) outcome. The dynamics of the learning process
in this game is shown in Figure 3. Both the players learn to reveal and hence
each reveals about 50% of the time, and in each case the other agent plays its
best response, i.e., the outcome switches between (0,0) and (1,1). The interesting
observation is that the average payoff of the column player is 3, which would
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be its payoff if the column player played 1 instead of a myopic choice of 0 to
row player’s revealing action 0. Hence, revealing an action does not improve the
outcome of this game because of a myopic best response by the opponent.

4.2 Results on Randomly Generated Matrices

As shown in the restricted testbed of 2x2 conflicting games with a total pref-
erence over the outcomes, the structure of some games can be exploited by the
augmented protocol to improve the payoffs of both players. We have not seen
cases where both agents would be better off by playing the Nash equilibrium
(i.e. we have not encountered cases where revelation worsens the outcome). To
evaluate the effectiveness of the protocol on a more general set of matrices, we
ran experiments on randomly generated matrices as in [7].

We generated 1000 matrices of size 3x3, 5x5 and 7x7. Each matrix entry is
sampled from a uniform distribution in [0, 1]. We computed the Nash equilibrium
of the stage game of all these games using Gambit [13]. We compare the payoff
of the Nash equilibrium with the average payoff over 10 runs of the game played
with the revelation protocol. We are interested in two main questions:

– In what proportion of the games does the revelation protocol dominate all
the Nash equilibria of the stage game?

– Are there some games where a Nash equilibrium dominates the outcome of
the game played with the revelation protocol?

Results from the randomly generated matrices with both the augmented and
non-augmented variations are presented in Figure 4. The top curve on each fig-
ure represents the percentage of games where all the Nash equilibria (NE) are
dominated by the outcome of the revelation protocol. We find that the aug-
mented protocol is able to significantly improve the percentage of Nash domi-
nating outcomes and improves the outcome over Nash equilibria outcomes on
20–30% of the games. The percentage of such games where a Nash Equilibrium
is better than the outcome reached by the revelation protocol is represented in
the lower curve. We observe that this percentage decreases significantly with the
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augmentation and is now at the 5–10% range. Although these results show that
the proposed augmentation is a clear improvement over the previous protocol,
there is still scope for improvement as the current protocol does not guarantee
PONE outcomes.

5 Conclusion and Future Work

In this paper, we augmented a previous algorithm from [7] with the goal of
producing PONE outcomes in repeated single-stage games. We experiment with
two-player two-action general-sum conflict games where both agents have the
opportunity to commit to an action and allow the other agent to respond to it.
Though the revealing one’s action can be seen as making a concession to the op-
ponent, it can also be seen as an effective means to force the exploration a subset
of the possible outcomes and as a means to promoting trusted behavior that can
lead to higher payoffs than defensive, preemptive behavior that eliminates mutu-
ally preferred outcomes in an effort to avoid worst-case scenarios. The outcome
of a Nash equilibrium of the single shot, stage games can be seen as outcomes
reached by myopic players. We empirically show that our augmented protocol
can improve agent payoffs compared to Nash equilibrium outcomes of the stage
game in a variety of games: the search of a mutually beneficial outcome of the
game pays off in many games. The use of the testbed of all structurally distinct
2x2 conflict games [8] also highlights the shortcomings of the current protocol.
Agents fails to produce Pareto optimal outcomes in the prisoners’ dilemma game
and game #50 . The primary reason for this is that a player answers a revelation
with a myopic best response.

To find a non-myopic equilibrium, an agent should not be too greedy! We
are working on relaxing the requirement of playing a best response when the
opponent reveals. We plan to allow an agent to estimate the effects of its var-
ious responses to a revelation on subsequent play by the opponent. This task
is challenging since the space of strategies, using the play history, used by the
opponent to react to one’s play is infinite.

Another avenue of future research is to characterize the kind of equilibrium
we reach and the conditions under which the algorithm converges to a outcome
that dominates all Nash equilibria of the stage game. We plan to actively pursue
modifications to the protocol with the goal of reaching PONE outcomes of the
repeated game in all or most situations.
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