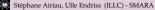
Multiagent Resource Allocation with Sharable Items: Simple Protocols and Nash Equilibria

Stéphane Airiau Ulle Endriss

ILLC - University of Amsterdam

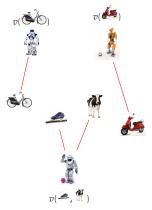


MultiAgent Resource Allocation (MARA)



non-sharable resources: allocations are partitions.

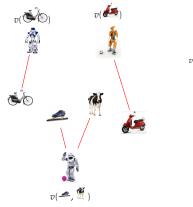
MultiAgent Resource Allocation (MARA)

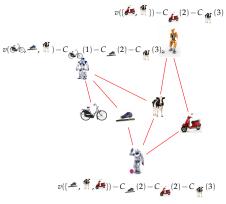


non-sharable resources: allocations are partitions.

Distributed protocols converging to optimal allocations.

MultiAgent Resource Allocation (MARA)





sharable resources.

non-sharable resources: allocations are partitions.

Distributed protocols converging to optimal allocations.

♥ Study distributed resource allocation problems where synergies between resources may exist and where resources can be shared.

outline

- **Control:** to start using a resource, an agent must receive the consent of the current users. Side payments are necessary.
- **No control:** agents are free to use any resource they want. Relation with congestion games and Nash equilibria.

A **MARA** problem with indivisible **sharable** items is $\langle \mathcal{N}, \mathcal{R}, (\Sigma_i)_{i \in \mathcal{N}}, (d_{i,r})_{i \in \mathcal{N}, r \in \mathcal{R}}, (v_i)_{i \in \mathcal{N}} \rangle$ with

- $\mathcal{N} = \{1, 2, \dots, n\}$ is a finite set of *n* agents.
- \mathcal{R} is a finite set of *m* resources.
- Σ_i is the set of **bundles** of agent *i*.
- *d*_{*i*,*r*}: {1,...,*n*} → ℝ is the **delay** perceived by agent *i* when using resource *r*.
- $v_i: \Sigma_i \to \mathbb{R}$ is the **valuation function** for agent *i*: for a bundle $\sigma \in \Sigma_i$, $v_i(\sigma)$ is the value of using the resources in the bundle σ_i , irrespective of the congestion.

• σ is an **allocation**.

- The **utility** of agent *i* in profile σ is defined as $u_i(\sigma) = v_i(\sigma_i) - \sum_{r \in \sigma_i} d_{i,r}(n_r(\sigma)).$
- $n_r(\sigma)$ the number of agents that use resource r in allocation σ , i.e., $n_r(\sigma) = |\{i \in \mathcal{N} | r \in \sigma_i\}|$.
- $\sim d_{i,r}(n_r(\sigma))$ is the delay of using resource *r* experienced by agent *i* in allocation σ .

• σ is an **allocation**.

- The **utility** of agent *i* in profile σ is defined as $u_i(\sigma) = v_i(\sigma_i) - \sum_{r \in \sigma_i} d_{i,r}(n_r(\sigma)).$
- $n_r(\sigma)$ the number of agents that use resource r in allocation σ , i.e., $n_r(\sigma) = |\{i \in \mathcal{N} | r \in \sigma_i\}|$.
- $\sim d_{i,r}(n_r(\sigma))$ is the delay of using resource *r* experienced by agent *i* in allocation σ .
 - A MARA problem is **symmetric** when the delay is the same for all agents (but resource-dependent).
 - **Assumption:** the delay is a **nondecreasing** function in the number of agents using the resource.
 - Assumption: all valuation functions are normalised, i.e., $v_i(\emptyset) = 0$ for all agents $i \in \mathbb{N}$.

Definition (deal)

A $\delta = (\sigma, \sigma')$ is a transformation from an allocation σ to an allocation σ' .

Definition (individual rational deal)

A deal $\delta = (\sigma, \sigma')$ is **individually rational (IR)** if there exists a payment function p such that $\forall i \in \mathbb{N}$, $u_i(\sigma') - u_i(\sigma) > p_i$, except for agents i **unaffected** by δ and for whom $p_i = 0$ is also permitted.

An agent *i* is **unaffected** by a deal $\delta = (\sigma, \sigma')$ if $\sigma(i) = \sigma'(i)$ and $|\{j \in \mathcal{N} \mid r \in \sigma(j)\}| = |\{j \in \mathcal{N} \mid r \in \sigma'(j)\}|$ for all $r \in \sigma(i)$.

In an IR deal, an agent i that does not change its bundle may be affected and hence, i may

- receive a payment (from agents starting to use a resource *i* uses) or
- make a payment (to agents that stop using a resource *i* uses)

General convergence

Theorem

Any sequence of IR deals will eventually result in an allocation of resources with maximal social welfare.

General convergence

Theorem

Any sequence of IR deals will eventually result in an allocation of resources with maximal social welfare.

However, an IR-deal may be quite complex (involving many agents and many resources at the same time) and hard to find.

- **ADD**(i, r): agent *i* adds to its bundle a single resource it is not currently using. For $r \notin \sigma_i$, agent *i* will have $\sigma_i \cup \{r\}$ after the ADD(i, r) action.
- DROP(*i*,*r*): agent *i* drops a resource it currently uses.
 i.e., after the drop, agent *i* will use σ_i \{r}.
- **SWAP**(*i*,*j*,*r*): agent *i* swaps the use of resource *r* with agent *j*, i.e., agent *i* drops the use of *r* and agent *j* adds the resource.
- 1-deal: a deal that concerns a single item, but possibly multiple agents.

A valuation function is modular iff for all σ , $\sigma' \subset \mathcal{N}$, $v(\sigma \cup \sigma') = v(\sigma) + v(\sigma') - v(\sigma \cap \sigma')$ Theorem

If all valuation functions are **modular**, then any sequence of IR 1-deals will eventually result in an allocation with maximal social welfare.

However, a 1-deal may still be **complex**, as it may involve many agents.

SWAP-deals may be needed: it is not always possible to decompose a deal into a sequence of ADD-deals or DROP-deals.

2-agent 1-resource symmetric example: $v_i(r) = 4$, $v_i(r) = 6$, $d_r(1) = 2$ and $d_r(2) = 5$. Imagine 1 uses r. ADD(j,r) is not rational. Only SWAP(i, j, r) is rational.

Theorem

If all valuation functions are **modular** and all delay functions are **nondecreasing** and **convex**, **then** there exists a sequence of IR ADD-deals leading from the empty allocation to an allocation with maximal social welfare.

Convexity is necessary

 $\mathcal{N} = \{1, 2, 3\}$, same valuation function $v_i(r) = 5$ and $v_i(\emptyset) = 0$ symmetric concave delay function d_r : $d_r(1) = 0$ and $d_r(k) = 3$ for k > 1.

The full allocation (which is optimal) cannot be reached from the empty allocation. 0 = 5 = 2(5-3) = 4 = 3(5-3) = 6.

Theorem

If all valuation functions are modular and all delay functions are nondecreasing and convex, then there exists a sequence of IR ADD-deals leading from the empty allocation to an allocation with maximal social welfare.

Convexity is necessary

 $\mathcal{N} = \{1, 2, 3\}$, same valuation function $v_i(r) = 5$ and $v_i(\emptyset) = 0$ symmetric concave delay function d_r : $d_r(1) = 0$ and $d_r(k) = 3$ for k > 1.

The full allocation (which is optimal) cannot be reached from the empty allocation. $0 \sim 5 \times 2(5-3) = 4 \sim 3(5-3) = 6$.

MARA with indivisible and sharable resources with control (a new user must receive the consent from current users before starting to use a resource)

Theorem	Result	Valuation	Delay	Symmetry	Deals	Init. Alloc.	Control
4	convergence	any	any	no	all	any	none
5	convergence	modular	any	no	1-deals	any	none
7	existence	modular	n.d.+convex	no	ADD	empty	none
9	existence	modular	n.d.+convex	no	DROP	full	none
10	convergence	modular	n.d.+convex	yes	ADD-DROP-SWAP	any	none
12	convergence	modular	n.d.+convex	yes	ADD-SWAP	empty	precedence
13	convergence	modular	n.d.+convex	yes	ADD-SWAP	empty	greedy

Absence of Control: no NE in pure strategy 2 $\{a,d,e\}$ {*b*,*d*} 25 34 2 2 1 $\{a,d,e\}$ $\{a,c\}$ $\{f\}$ $\{b,d\}$ 36 24 35 27 2 1 $\{f\}$ $\{a,c\}$ 35 28 $v_1(\{a,d,e\}) = 100$ resource b d а С е 65 $v_1({f}) = 100$ $d_{1,r}(1)$ 20 45 48 20 16 $d_{2,r}(1)$ 24 48 28 130 | $v_2(\{b,d\}) = 100$ 45 32 $d_{i,r}(2)$ $v_2(\{a,c\}) = 100$ 28 45 48 30 48 195

Lemma

Every allocation game with a **single** resource and with nondecreasing delay functions has got a pure NE.

Theorem

Every allocation game with modular valuation functions and nondecreasing delay functions has got a pure NE.

- We studied MARA for sharable resources.
- We obtained convergence and existence results for protocols leading to allocations that maximize utilitarian social welfare.
- We used results from congestion games to determine some classes of MARA problems possessing a pure Nash equilibrium.
- Many results assume modular valuation function. Can we say something about other classes?
- Can we say something about protocols leading to optimal egalitarian social welfare or to envy-free allocation?

Poster Red 63.